dawn-cmake/src/ast/traverse_expressions_test.cc
Ben Clayton 735dca8393 ast: Remove TypeConstructorExpression
Add a new 'Target' to the ast::CallExpression, which can be either an
Identifier or Type. The Identifier may resolve to a Type, if the Type is
a structure or alias.

The Resolver now resolves the CallExpression target to one of the
following sem::CallTargets:
* sem::Function
* sem::Intrinsic
* sem::TypeConstructor
* sem::TypeCast

This change will allow us to remove the type tracking logic from the WGSL
parser, which is required for out-of-order module scope declarations.

Bug: tint:888
Bug: tint:1266
Change-Id: I696f117115a50981fd5c102a0d7764641bb755dd
Reviewed-on: https://dawn-review.googlesource.com/c/tint/+/68525
Reviewed-by: David Neto <dneto@google.com>
Reviewed-by: James Price <jrprice@google.com>
Kokoro: Kokoro <noreply+kokoro@google.com>
2021-11-15 20:45:50 +00:00

238 lines
8.5 KiB
C++

// Copyright 2021 The Tint Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "src/ast/traverse_expressions.h"
#include "gmock/gmock.h"
#include "src/ast/test_helper.h"
namespace tint {
namespace ast {
namespace {
using ::testing::ElementsAre;
using TraverseExpressionsTest = TestHelper;
TEST_F(TraverseExpressionsTest, DescendIndexAccessor) {
std::vector<const ast::Expression*> e = {Expr(1), Expr(1), Expr(1), Expr(1)};
std::vector<const ast::Expression*> i = {IndexAccessor(e[0], e[1]),
IndexAccessor(e[2], e[3])};
auto* root = IndexAccessor(i[0], i[1]);
{
std::vector<const ast::Expression*> l2r;
TraverseExpressions<TraverseOrder::LeftToRight>(
root, Diagnostics(), [&](const ast::Expression* expr) {
l2r.push_back(expr);
return ast::TraverseAction::Descend;
});
EXPECT_THAT(l2r, ElementsAre(root, i[0], e[0], e[1], i[1], e[2], e[3]));
}
{
std::vector<const ast::Expression*> r2l;
TraverseExpressions<TraverseOrder::RightToLeft>(
root, Diagnostics(), [&](const ast::Expression* expr) {
r2l.push_back(expr);
return ast::TraverseAction::Descend;
});
EXPECT_THAT(r2l, ElementsAre(root, i[1], e[3], e[2], i[0], e[1], e[0]));
}
}
TEST_F(TraverseExpressionsTest, DescendBinaryExpression) {
std::vector<const ast::Expression*> e = {Expr(1), Expr(1), Expr(1), Expr(1)};
std::vector<const ast::Expression*> i = {Add(e[0], e[1]), Sub(e[2], e[3])};
auto* root = Mul(i[0], i[1]);
{
std::vector<const ast::Expression*> l2r;
TraverseExpressions<TraverseOrder::LeftToRight>(
root, Diagnostics(), [&](const ast::Expression* expr) {
l2r.push_back(expr);
return ast::TraverseAction::Descend;
});
EXPECT_THAT(l2r, ElementsAre(root, i[0], e[0], e[1], i[1], e[2], e[3]));
}
{
std::vector<const ast::Expression*> r2l;
TraverseExpressions<TraverseOrder::RightToLeft>(
root, Diagnostics(), [&](const ast::Expression* expr) {
r2l.push_back(expr);
return ast::TraverseAction::Descend;
});
EXPECT_THAT(r2l, ElementsAre(root, i[1], e[3], e[2], i[0], e[1], e[0]));
}
}
TEST_F(TraverseExpressionsTest, DescendBitcastExpression) {
auto* e = Expr(1);
auto* b0 = Bitcast<i32>(e);
auto* b1 = Bitcast<i32>(b0);
auto* b2 = Bitcast<i32>(b1);
auto* root = Bitcast<i32>(b2);
{
std::vector<const ast::Expression*> l2r;
TraverseExpressions<TraverseOrder::LeftToRight>(
root, Diagnostics(), [&](const ast::Expression* expr) {
l2r.push_back(expr);
return ast::TraverseAction::Descend;
});
EXPECT_THAT(l2r, ElementsAre(root, b2, b1, b0, e));
}
{
std::vector<const ast::Expression*> r2l;
TraverseExpressions<TraverseOrder::RightToLeft>(
root, Diagnostics(), [&](const ast::Expression* expr) {
r2l.push_back(expr);
return ast::TraverseAction::Descend;
});
EXPECT_THAT(r2l, ElementsAre(root, b2, b1, b0, e));
}
}
TEST_F(TraverseExpressionsTest, DescendCallExpression) {
std::vector<const ast::Expression*> e = {Expr(1), Expr(1), Expr(1), Expr(1)};
std::vector<const ast::Expression*> c = {Call("a", e[0], e[1]),
Call("b", e[2], e[3])};
auto* root = Call("c", c[0], c[1]);
{
std::vector<const ast::Expression*> l2r;
TraverseExpressions<TraverseOrder::LeftToRight>(
root, Diagnostics(), [&](const ast::Expression* expr) {
l2r.push_back(expr);
return ast::TraverseAction::Descend;
});
EXPECT_THAT(l2r, ElementsAre(root, c[0], e[0], e[1], c[1], e[2], e[3]));
}
{
std::vector<const ast::Expression*> r2l;
TraverseExpressions<TraverseOrder::RightToLeft>(
root, Diagnostics(), [&](const ast::Expression* expr) {
r2l.push_back(expr);
return ast::TraverseAction::Descend;
});
EXPECT_THAT(r2l, ElementsAre(root, c[1], e[3], e[2], c[0], e[1], e[0]));
}
}
// TODO(crbug.com/tint/1257): Test ignores member accessor 'member' field.
// Replace with the test below when fixed.
TEST_F(TraverseExpressionsTest, DescendMemberIndexExpression) {
auto* e = Expr(1);
auto* m = MemberAccessor(e, Expr("a"));
auto* root = MemberAccessor(m, Expr("b"));
{
std::vector<const ast::Expression*> l2r;
TraverseExpressions<TraverseOrder::LeftToRight>(
root, Diagnostics(), [&](const ast::Expression* expr) {
l2r.push_back(expr);
return ast::TraverseAction::Descend;
});
EXPECT_THAT(l2r, ElementsAre(root, m, e));
}
{
std::vector<const ast::Expression*> r2l;
TraverseExpressions<TraverseOrder::RightToLeft>(
root, Diagnostics(), [&](const ast::Expression* expr) {
r2l.push_back(expr);
return ast::TraverseAction::Descend;
});
EXPECT_THAT(r2l, ElementsAre(root, m, e));
}
}
// TODO(crbug.com/tint/1257): The correct test for DescendMemberIndexExpression.
TEST_F(TraverseExpressionsTest, DISABLED_DescendMemberIndexExpression) {
auto* e = Expr(1);
std::vector<const ast::IdentifierExpression*> i = {Expr("a"), Expr("b")};
auto* m = MemberAccessor(e, i[0]);
auto* root = MemberAccessor(m, i[1]);
{
std::vector<const ast::Expression*> l2r;
TraverseExpressions<TraverseOrder::LeftToRight>(
root, Diagnostics(), [&](const ast::Expression* expr) {
l2r.push_back(expr);
return ast::TraverseAction::Descend;
});
EXPECT_THAT(l2r, ElementsAre(root, m, e, i[0], i[1]));
}
{
std::vector<const ast::Expression*> r2l;
TraverseExpressions<TraverseOrder::RightToLeft>(
root, Diagnostics(), [&](const ast::Expression* expr) {
r2l.push_back(expr);
return ast::TraverseAction::Descend;
});
EXPECT_THAT(r2l, ElementsAre(root, i[1], m, i[0], e));
}
}
TEST_F(TraverseExpressionsTest, DescendUnaryExpression) {
auto* e = Expr(1);
auto* u0 = AddressOf(e);
auto* u1 = Deref(u0);
auto* u2 = AddressOf(u1);
auto* root = Deref(u2);
{
std::vector<const ast::Expression*> l2r;
TraverseExpressions<TraverseOrder::LeftToRight>(
root, Diagnostics(), [&](const ast::Expression* expr) {
l2r.push_back(expr);
return ast::TraverseAction::Descend;
});
EXPECT_THAT(l2r, ElementsAre(root, u2, u1, u0, e));
}
{
std::vector<const ast::Expression*> r2l;
TraverseExpressions<TraverseOrder::RightToLeft>(
root, Diagnostics(), [&](const ast::Expression* expr) {
r2l.push_back(expr);
return ast::TraverseAction::Descend;
});
EXPECT_THAT(r2l, ElementsAre(root, u2, u1, u0, e));
}
}
TEST_F(TraverseExpressionsTest, Skip) {
std::vector<const ast::Expression*> e = {Expr(1), Expr(1), Expr(1), Expr(1)};
std::vector<const ast::Expression*> i = {IndexAccessor(e[0], e[1]),
IndexAccessor(e[2], e[3])};
auto* root = IndexAccessor(i[0], i[1]);
std::vector<const ast::Expression*> order;
TraverseExpressions<TraverseOrder::LeftToRight>(
root, Diagnostics(), [&](const ast::Expression* expr) {
order.push_back(expr);
return expr == i[0] ? ast::TraverseAction::Skip
: ast::TraverseAction::Descend;
});
EXPECT_THAT(order, ElementsAre(root, i[0], i[1], e[2], e[3]));
}
TEST_F(TraverseExpressionsTest, Stop) {
std::vector<const ast::Expression*> e = {Expr(1), Expr(1), Expr(1), Expr(1)};
std::vector<const ast::Expression*> i = {IndexAccessor(e[0], e[1]),
IndexAccessor(e[2], e[3])};
auto* root = IndexAccessor(i[0], i[1]);
std::vector<const ast::Expression*> order;
TraverseExpressions<TraverseOrder::LeftToRight>(
root, Diagnostics(), [&](const ast::Expression* expr) {
order.push_back(expr);
return expr == i[0] ? ast::TraverseAction::Stop
: ast::TraverseAction::Descend;
});
EXPECT_THAT(order, ElementsAre(root, i[0]));
}
} // namespace
} // namespace ast
} // namespace tint