mirror of
https://github.com/encounter/dawn-cmake.git
synced 2025-05-14 19:31:25 +00:00
Add a validation to ensure zero-attribute for unused vertex buffer slots (stepMode = VertexBufferNotUsed). Fuzz tests found that non-zero-attribute with unused vertex buffer can cause an error in swiftshader. We may be able to think input data having non-zero-attribute with unused vertex buffe is malformed. Refusing such input data can avoid the error. Bug: chromium:1333293 Change-Id: Ib58d526bdaefa683e459b5c813e348b72e81e13e Reviewed-on: https://dawn-review.googlesource.com/c/dawn/+/93560 Reviewed-by: Corentin Wallez <cwallez@chromium.org> Commit-Queue: Takahiro <hogehoge@gachapin.jp> Kokoro: Kokoro <noreply+kokoro@google.com>
1002 lines
43 KiB
C++
1002 lines
43 KiB
C++
// Copyright 2017 The Dawn Authors
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "dawn/native/RenderPipeline.h"
|
|
|
|
#include <algorithm>
|
|
#include <cmath>
|
|
#include <sstream>
|
|
|
|
#include "dawn/common/BitSetIterator.h"
|
|
#include "dawn/native/ChainUtils_autogen.h"
|
|
#include "dawn/native/Commands.h"
|
|
#include "dawn/native/Device.h"
|
|
#include "dawn/native/InternalPipelineStore.h"
|
|
#include "dawn/native/ObjectContentHasher.h"
|
|
#include "dawn/native/ObjectType_autogen.h"
|
|
#include "dawn/native/ValidationUtils_autogen.h"
|
|
#include "dawn/native/VertexFormat.h"
|
|
|
|
namespace dawn::native {
|
|
|
|
// Helper functions
|
|
namespace {
|
|
MaybeError ValidateVertexAttribute(
|
|
DeviceBase* device,
|
|
const VertexAttribute* attribute,
|
|
const EntryPointMetadata& metadata,
|
|
uint64_t vertexBufferStride,
|
|
ityp::bitset<VertexAttributeLocation, kMaxVertexAttributes>* attributesSetMask) {
|
|
DAWN_TRY(ValidateVertexFormat(attribute->format));
|
|
const VertexFormatInfo& formatInfo = GetVertexFormatInfo(attribute->format);
|
|
|
|
DAWN_INVALID_IF(
|
|
attribute->shaderLocation >= kMaxVertexAttributes,
|
|
"Attribute shader location (%u) exceeds the maximum number of vertex attributes "
|
|
"(%u).",
|
|
attribute->shaderLocation, kMaxVertexAttributes);
|
|
|
|
VertexAttributeLocation location(static_cast<uint8_t>(attribute->shaderLocation));
|
|
|
|
// No underflow is possible because the max vertex format size is smaller than
|
|
// kMaxVertexBufferArrayStride.
|
|
ASSERT(kMaxVertexBufferArrayStride >= formatInfo.byteSize);
|
|
DAWN_INVALID_IF(
|
|
attribute->offset > kMaxVertexBufferArrayStride - formatInfo.byteSize,
|
|
"Attribute offset (%u) with format %s (size: %u) doesn't fit in the maximum vertex "
|
|
"buffer stride (%u).",
|
|
attribute->offset, attribute->format, formatInfo.byteSize, kMaxVertexBufferArrayStride);
|
|
|
|
// No overflow is possible because the offset is already validated to be less
|
|
// than kMaxVertexBufferArrayStride.
|
|
ASSERT(attribute->offset < kMaxVertexBufferArrayStride);
|
|
DAWN_INVALID_IF(
|
|
vertexBufferStride > 0 && attribute->offset + formatInfo.byteSize > vertexBufferStride,
|
|
"Attribute offset (%u) with format %s (size: %u) doesn't fit in the vertex buffer "
|
|
"stride (%u).",
|
|
attribute->offset, attribute->format, formatInfo.byteSize, vertexBufferStride);
|
|
|
|
DAWN_INVALID_IF(attribute->offset % std::min(4u, formatInfo.byteSize) != 0,
|
|
"Attribute offset (%u) in not a multiple of %u.", attribute->offset,
|
|
std::min(4u, formatInfo.byteSize));
|
|
|
|
DAWN_INVALID_IF(metadata.usedVertexInputs[location] &&
|
|
formatInfo.baseType != metadata.vertexInputBaseTypes[location],
|
|
"Attribute base type (%s) does not match the "
|
|
"shader's base type (%s) in location (%u).",
|
|
formatInfo.baseType, metadata.vertexInputBaseTypes[location],
|
|
attribute->shaderLocation);
|
|
|
|
DAWN_INVALID_IF((*attributesSetMask)[location],
|
|
"Attribute shader location (%u) is used more than once.",
|
|
attribute->shaderLocation);
|
|
|
|
attributesSetMask->set(location);
|
|
return {};
|
|
}
|
|
|
|
MaybeError ValidateVertexBufferLayout(
|
|
DeviceBase* device,
|
|
const VertexBufferLayout* buffer,
|
|
const EntryPointMetadata& metadata,
|
|
ityp::bitset<VertexAttributeLocation, kMaxVertexAttributes>* attributesSetMask) {
|
|
DAWN_TRY(ValidateVertexStepMode(buffer->stepMode));
|
|
DAWN_INVALID_IF(buffer->arrayStride > kMaxVertexBufferArrayStride,
|
|
"Vertex buffer arrayStride (%u) is larger than the maximum array stride (%u).",
|
|
buffer->arrayStride, kMaxVertexBufferArrayStride);
|
|
|
|
DAWN_INVALID_IF(buffer->arrayStride % 4 != 0,
|
|
"Vertex buffer arrayStride (%u) is not a multiple of 4.", buffer->arrayStride);
|
|
|
|
DAWN_INVALID_IF(
|
|
buffer->stepMode == wgpu::VertexStepMode::VertexBufferNotUsed && buffer->attributeCount > 0,
|
|
"attributeCount (%u) is not zero although vertex buffer stepMode is %s.",
|
|
buffer->attributeCount, wgpu::VertexStepMode::VertexBufferNotUsed);
|
|
|
|
for (uint32_t i = 0; i < buffer->attributeCount; ++i) {
|
|
DAWN_TRY_CONTEXT(ValidateVertexAttribute(device, &buffer->attributes[i], metadata,
|
|
buffer->arrayStride, attributesSetMask),
|
|
"validating attributes[%u].", i);
|
|
}
|
|
|
|
return {};
|
|
}
|
|
|
|
MaybeError ValidateVertexState(DeviceBase* device,
|
|
const VertexState* descriptor,
|
|
const PipelineLayoutBase* layout) {
|
|
DAWN_INVALID_IF(descriptor->nextInChain != nullptr, "nextInChain must be nullptr.");
|
|
|
|
DAWN_INVALID_IF(descriptor->bufferCount > kMaxVertexBuffers,
|
|
"Vertex buffer count (%u) exceeds the maximum number of vertex buffers (%u).",
|
|
descriptor->bufferCount, kMaxVertexBuffers);
|
|
|
|
DAWN_TRY_CONTEXT(ValidateProgrammableStage(device, descriptor->module, descriptor->entryPoint,
|
|
descriptor->constantCount, descriptor->constants,
|
|
layout, SingleShaderStage::Vertex),
|
|
"validating vertex stage (module: %s, entryPoint: %s).", descriptor->module,
|
|
descriptor->entryPoint);
|
|
const EntryPointMetadata& vertexMetadata =
|
|
descriptor->module->GetEntryPoint(descriptor->entryPoint);
|
|
|
|
ityp::bitset<VertexAttributeLocation, kMaxVertexAttributes> attributesSetMask;
|
|
uint32_t totalAttributesNum = 0;
|
|
for (uint32_t i = 0; i < descriptor->bufferCount; ++i) {
|
|
DAWN_TRY_CONTEXT(ValidateVertexBufferLayout(device, &descriptor->buffers[i], vertexMetadata,
|
|
&attributesSetMask),
|
|
"validating buffers[%u].", i);
|
|
totalAttributesNum += descriptor->buffers[i].attributeCount;
|
|
}
|
|
|
|
// Every vertex attribute has a member called shaderLocation, and there are some
|
|
// requirements for shaderLocation: 1) >=0, 2) values are different across different
|
|
// attributes, 3) can't exceed kMaxVertexAttributes. So it can ensure that total
|
|
// attribute number never exceed kMaxVertexAttributes.
|
|
ASSERT(totalAttributesNum <= kMaxVertexAttributes);
|
|
|
|
// TODO(dawn:563): Specify which inputs were not used in error message.
|
|
DAWN_INVALID_IF(!IsSubset(vertexMetadata.usedVertexInputs, attributesSetMask),
|
|
"Pipeline vertex stage uses vertex buffers not in the vertex state");
|
|
|
|
return {};
|
|
}
|
|
|
|
MaybeError ValidatePrimitiveState(const DeviceBase* device, const PrimitiveState* descriptor) {
|
|
DAWN_TRY(
|
|
ValidateSingleSType(descriptor->nextInChain, wgpu::SType::PrimitiveDepthClampingState));
|
|
const PrimitiveDepthClampingState* clampInfo = nullptr;
|
|
FindInChain(descriptor->nextInChain, &clampInfo);
|
|
if (clampInfo && !device->IsFeatureEnabled(Feature::DepthClamping)) {
|
|
return DAWN_VALIDATION_ERROR("The depth clamping feature is not supported");
|
|
}
|
|
DAWN_TRY(ValidatePrimitiveTopology(descriptor->topology));
|
|
DAWN_TRY(ValidateIndexFormat(descriptor->stripIndexFormat));
|
|
DAWN_TRY(ValidateFrontFace(descriptor->frontFace));
|
|
DAWN_TRY(ValidateCullMode(descriptor->cullMode));
|
|
|
|
// Pipeline descriptors must have stripIndexFormat == undefined if they are using
|
|
// non-strip topologies.
|
|
if (!IsStripPrimitiveTopology(descriptor->topology)) {
|
|
DAWN_INVALID_IF(descriptor->stripIndexFormat != wgpu::IndexFormat::Undefined,
|
|
"StripIndexFormat (%s) is not undefined when using a non-strip primitive "
|
|
"topology (%s).",
|
|
descriptor->stripIndexFormat, descriptor->topology);
|
|
}
|
|
|
|
return {};
|
|
}
|
|
|
|
MaybeError ValidateDepthStencilState(const DeviceBase* device,
|
|
const DepthStencilState* descriptor) {
|
|
if (descriptor->nextInChain != nullptr) {
|
|
return DAWN_VALIDATION_ERROR("nextInChain must be nullptr");
|
|
}
|
|
|
|
DAWN_TRY(ValidateCompareFunction(descriptor->depthCompare));
|
|
DAWN_TRY(ValidateCompareFunction(descriptor->stencilFront.compare));
|
|
DAWN_TRY(ValidateStencilOperation(descriptor->stencilFront.failOp));
|
|
DAWN_TRY(ValidateStencilOperation(descriptor->stencilFront.depthFailOp));
|
|
DAWN_TRY(ValidateStencilOperation(descriptor->stencilFront.passOp));
|
|
DAWN_TRY(ValidateCompareFunction(descriptor->stencilBack.compare));
|
|
DAWN_TRY(ValidateStencilOperation(descriptor->stencilBack.failOp));
|
|
DAWN_TRY(ValidateStencilOperation(descriptor->stencilBack.depthFailOp));
|
|
DAWN_TRY(ValidateStencilOperation(descriptor->stencilBack.passOp));
|
|
|
|
const Format* format;
|
|
DAWN_TRY_ASSIGN(format, device->GetInternalFormat(descriptor->format));
|
|
DAWN_INVALID_IF(!format->HasDepthOrStencil() || !format->isRenderable,
|
|
"Depth stencil format (%s) is not depth-stencil renderable.",
|
|
descriptor->format);
|
|
|
|
DAWN_INVALID_IF(
|
|
std::isnan(descriptor->depthBiasSlopeScale) || std::isnan(descriptor->depthBiasClamp),
|
|
"Either depthBiasSlopeScale (%f) or depthBiasClamp (%f) is NaN.",
|
|
descriptor->depthBiasSlopeScale, descriptor->depthBiasClamp);
|
|
|
|
DAWN_INVALID_IF(
|
|
!format->HasDepth() && (descriptor->depthCompare != wgpu::CompareFunction::Always ||
|
|
descriptor->depthWriteEnabled),
|
|
"Depth stencil format (%s) doesn't have depth aspect while depthCompare (%s) is "
|
|
"not %s or depthWriteEnabled (%u) is true.",
|
|
descriptor->format, descriptor->depthCompare, wgpu::CompareFunction::Always,
|
|
descriptor->depthWriteEnabled);
|
|
|
|
DAWN_INVALID_IF(!format->HasStencil() && StencilTestEnabled(descriptor),
|
|
"Depth stencil format (%s) doesn't have stencil aspect while stencil "
|
|
"test or stencil write is enabled.",
|
|
descriptor->format);
|
|
|
|
return {};
|
|
}
|
|
|
|
MaybeError ValidateMultisampleState(const MultisampleState* descriptor) {
|
|
DAWN_INVALID_IF(descriptor->nextInChain != nullptr, "nextInChain must be nullptr.");
|
|
|
|
DAWN_INVALID_IF(!IsValidSampleCount(descriptor->count),
|
|
"Multisample count (%u) is not supported.", descriptor->count);
|
|
|
|
DAWN_INVALID_IF(descriptor->alphaToCoverageEnabled && descriptor->count <= 1,
|
|
"Multisample count (%u) must be > 1 when alphaToCoverage is enabled.",
|
|
descriptor->count);
|
|
|
|
return {};
|
|
}
|
|
|
|
MaybeError ValidateBlendComponent(BlendComponent blendComponent) {
|
|
if (blendComponent.operation == wgpu::BlendOperation::Min ||
|
|
blendComponent.operation == wgpu::BlendOperation::Max) {
|
|
DAWN_INVALID_IF(blendComponent.srcFactor != wgpu::BlendFactor::One ||
|
|
blendComponent.dstFactor != wgpu::BlendFactor::One,
|
|
"Blend factor is not %s when blend operation is %s.",
|
|
wgpu::BlendFactor::One, blendComponent.operation);
|
|
}
|
|
|
|
return {};
|
|
}
|
|
|
|
MaybeError ValidateBlendState(DeviceBase* device, const BlendState* descriptor) {
|
|
DAWN_TRY(ValidateBlendOperation(descriptor->alpha.operation));
|
|
DAWN_TRY(ValidateBlendFactor(descriptor->alpha.srcFactor));
|
|
DAWN_TRY(ValidateBlendFactor(descriptor->alpha.dstFactor));
|
|
DAWN_TRY(ValidateBlendOperation(descriptor->color.operation));
|
|
DAWN_TRY(ValidateBlendFactor(descriptor->color.srcFactor));
|
|
DAWN_TRY(ValidateBlendFactor(descriptor->color.dstFactor));
|
|
DAWN_TRY(ValidateBlendComponent(descriptor->alpha));
|
|
DAWN_TRY(ValidateBlendComponent(descriptor->color));
|
|
|
|
return {};
|
|
}
|
|
|
|
bool BlendFactorContainsSrcAlpha(const wgpu::BlendFactor& blendFactor) {
|
|
return blendFactor == wgpu::BlendFactor::SrcAlpha ||
|
|
blendFactor == wgpu::BlendFactor::OneMinusSrcAlpha ||
|
|
blendFactor == wgpu::BlendFactor::SrcAlphaSaturated;
|
|
}
|
|
|
|
MaybeError ValidateColorTargetState(
|
|
DeviceBase* device,
|
|
const ColorTargetState* descriptor,
|
|
bool fragmentWritten,
|
|
const EntryPointMetadata::FragmentOutputVariableInfo& fragmentOutputVariable) {
|
|
DAWN_INVALID_IF(descriptor->nextInChain != nullptr, "nextInChain must be nullptr.");
|
|
|
|
if (descriptor->blend) {
|
|
DAWN_TRY_CONTEXT(ValidateBlendState(device, descriptor->blend), "validating blend state.");
|
|
}
|
|
|
|
DAWN_TRY(ValidateColorWriteMask(descriptor->writeMask));
|
|
|
|
const Format* format;
|
|
DAWN_TRY_ASSIGN(format, device->GetInternalFormat(descriptor->format));
|
|
DAWN_INVALID_IF(!format->IsColor() || !format->isRenderable,
|
|
"Color format (%s) is not color renderable.", descriptor->format);
|
|
|
|
DAWN_INVALID_IF(
|
|
descriptor->blend &&
|
|
!(format->GetAspectInfo(Aspect::Color).supportedSampleTypes & SampleTypeBit::Float),
|
|
"Blending is enabled but color format (%s) is not blendable.", descriptor->format);
|
|
|
|
if (fragmentWritten) {
|
|
DAWN_INVALID_IF(
|
|
fragmentOutputVariable.baseType != format->GetAspectInfo(Aspect::Color).baseType,
|
|
"Color format (%s) base type (%s) doesn't match the fragment "
|
|
"module output type (%s).",
|
|
descriptor->format, format->GetAspectInfo(Aspect::Color).baseType,
|
|
fragmentOutputVariable.baseType);
|
|
|
|
DAWN_INVALID_IF(fragmentOutputVariable.componentCount < format->componentCount,
|
|
"The fragment stage has fewer output components (%u) than the color format "
|
|
"(%s) component count (%u).",
|
|
fragmentOutputVariable.componentCount, descriptor->format,
|
|
format->componentCount);
|
|
|
|
if (descriptor->blend) {
|
|
if (fragmentOutputVariable.componentCount < 4u) {
|
|
// No alpha channel output
|
|
// Make sure there's no alpha involved in the blending operation
|
|
DAWN_INVALID_IF(BlendFactorContainsSrcAlpha(descriptor->blend->color.srcFactor) ||
|
|
BlendFactorContainsSrcAlpha(descriptor->blend->color.dstFactor),
|
|
"Color blending srcfactor (%s) or dstFactor (%s) is reading alpha "
|
|
"but it is missing from fragment output.",
|
|
descriptor->blend->color.srcFactor,
|
|
descriptor->blend->color.dstFactor);
|
|
}
|
|
}
|
|
} else {
|
|
DAWN_INVALID_IF(
|
|
descriptor->writeMask != wgpu::ColorWriteMask::None,
|
|
"Color target has no corresponding fragment stage output but writeMask (%s) is "
|
|
"not zero.",
|
|
descriptor->writeMask);
|
|
}
|
|
|
|
return {};
|
|
}
|
|
|
|
MaybeError ValidateFragmentState(DeviceBase* device,
|
|
const FragmentState* descriptor,
|
|
const PipelineLayoutBase* layout) {
|
|
DAWN_INVALID_IF(descriptor->nextInChain != nullptr, "nextInChain must be nullptr.");
|
|
|
|
DAWN_TRY_CONTEXT(ValidateProgrammableStage(device, descriptor->module, descriptor->entryPoint,
|
|
descriptor->constantCount, descriptor->constants,
|
|
layout, SingleShaderStage::Fragment),
|
|
"validating fragment stage (module: %s, entryPoint: %s).", descriptor->module,
|
|
descriptor->entryPoint);
|
|
|
|
uint32_t maxColorAttachments = device->GetLimits().v1.maxColorAttachments;
|
|
DAWN_INVALID_IF(descriptor->targetCount > maxColorAttachments,
|
|
"Number of targets (%u) exceeds the maximum (%u).", descriptor->targetCount,
|
|
maxColorAttachments);
|
|
|
|
const EntryPointMetadata& fragmentMetadata =
|
|
descriptor->module->GetEntryPoint(descriptor->entryPoint);
|
|
for (ColorAttachmentIndex i(uint8_t(0));
|
|
i < ColorAttachmentIndex(static_cast<uint8_t>(descriptor->targetCount)); ++i) {
|
|
const ColorTargetState* target = &descriptor->targets[static_cast<uint8_t>(i)];
|
|
if (target->format != wgpu::TextureFormat::Undefined) {
|
|
DAWN_TRY_CONTEXT(
|
|
ValidateColorTargetState(device, target, fragmentMetadata.fragmentOutputsWritten[i],
|
|
fragmentMetadata.fragmentOutputVariables[i]),
|
|
"validating targets[%u].", static_cast<uint8_t>(i));
|
|
} else {
|
|
DAWN_INVALID_IF(target->blend,
|
|
"Color target[%u] blend state is set when the format is undefined.",
|
|
static_cast<uint8_t>(i));
|
|
}
|
|
}
|
|
|
|
return {};
|
|
}
|
|
|
|
MaybeError ValidateInterStageMatching(DeviceBase* device,
|
|
const VertexState& vertexState,
|
|
const FragmentState& fragmentState) {
|
|
const EntryPointMetadata& vertexMetadata =
|
|
vertexState.module->GetEntryPoint(vertexState.entryPoint);
|
|
const EntryPointMetadata& fragmentMetadata =
|
|
fragmentState.module->GetEntryPoint(fragmentState.entryPoint);
|
|
|
|
// TODO(dawn:563): Can this message give more details?
|
|
DAWN_INVALID_IF(
|
|
vertexMetadata.usedInterStageVariables != fragmentMetadata.usedInterStageVariables,
|
|
"One or more fragment inputs and vertex outputs are not one-to-one matching");
|
|
|
|
// TODO(dawn:802): Validate interpolation types and interpolition sampling types
|
|
for (size_t i : IterateBitSet(vertexMetadata.usedInterStageVariables)) {
|
|
const auto& vertexOutputInfo = vertexMetadata.interStageVariables[i];
|
|
const auto& fragmentInputInfo = fragmentMetadata.interStageVariables[i];
|
|
DAWN_INVALID_IF(
|
|
vertexOutputInfo.baseType != fragmentInputInfo.baseType,
|
|
"The base type (%s) of the vertex output at location %u is different from the "
|
|
"base type (%s) of the fragment input at location %u.",
|
|
vertexOutputInfo.baseType, i, fragmentInputInfo.baseType, i);
|
|
|
|
DAWN_INVALID_IF(vertexOutputInfo.componentCount != fragmentInputInfo.componentCount,
|
|
"The component count (%u) of the vertex output at location %u is different "
|
|
"from the component count (%u) of the fragment input at location %u.",
|
|
vertexOutputInfo.componentCount, i, fragmentInputInfo.componentCount, i);
|
|
|
|
DAWN_INVALID_IF(
|
|
vertexOutputInfo.interpolationType != fragmentInputInfo.interpolationType,
|
|
"The interpolation type (%s) of the vertex output at location %u is different "
|
|
"from the interpolation type (%s) of the fragment input at location %u.",
|
|
vertexOutputInfo.interpolationType, i, fragmentInputInfo.interpolationType, i);
|
|
|
|
DAWN_INVALID_IF(
|
|
vertexOutputInfo.interpolationSampling != fragmentInputInfo.interpolationSampling,
|
|
"The interpolation sampling (%s) of the vertex output at location %u is "
|
|
"different from the interpolation sampling (%s) of the fragment input at "
|
|
"location %u.",
|
|
vertexOutputInfo.interpolationSampling, i, fragmentInputInfo.interpolationSampling, i);
|
|
}
|
|
|
|
return {};
|
|
}
|
|
} // anonymous namespace
|
|
|
|
// Helper functions
|
|
size_t IndexFormatSize(wgpu::IndexFormat format) {
|
|
switch (format) {
|
|
case wgpu::IndexFormat::Uint16:
|
|
return sizeof(uint16_t);
|
|
case wgpu::IndexFormat::Uint32:
|
|
return sizeof(uint32_t);
|
|
case wgpu::IndexFormat::Undefined:
|
|
break;
|
|
}
|
|
UNREACHABLE();
|
|
}
|
|
|
|
bool IsStripPrimitiveTopology(wgpu::PrimitiveTopology primitiveTopology) {
|
|
return primitiveTopology == wgpu::PrimitiveTopology::LineStrip ||
|
|
primitiveTopology == wgpu::PrimitiveTopology::TriangleStrip;
|
|
}
|
|
|
|
MaybeError ValidateRenderPipelineDescriptor(DeviceBase* device,
|
|
const RenderPipelineDescriptor* descriptor) {
|
|
DAWN_INVALID_IF(descriptor->nextInChain != nullptr, "nextInChain must be nullptr.");
|
|
|
|
if (descriptor->layout != nullptr) {
|
|
DAWN_TRY(device->ValidateObject(descriptor->layout));
|
|
}
|
|
|
|
DAWN_TRY_CONTEXT(ValidateVertexState(device, &descriptor->vertex, descriptor->layout),
|
|
"validating vertex state.");
|
|
|
|
DAWN_TRY_CONTEXT(ValidatePrimitiveState(device, &descriptor->primitive),
|
|
"validating primitive state.");
|
|
|
|
if (descriptor->depthStencil) {
|
|
DAWN_TRY_CONTEXT(ValidateDepthStencilState(device, descriptor->depthStencil),
|
|
"validating depthStencil state.");
|
|
}
|
|
|
|
DAWN_TRY_CONTEXT(ValidateMultisampleState(&descriptor->multisample),
|
|
"validating multisample state.");
|
|
|
|
if (descriptor->fragment != nullptr) {
|
|
DAWN_TRY_CONTEXT(ValidateFragmentState(device, descriptor->fragment, descriptor->layout),
|
|
"validating fragment state.");
|
|
|
|
DAWN_INVALID_IF(descriptor->fragment->targetCount == 0 && !descriptor->depthStencil,
|
|
"Must have at least one color or depthStencil target.");
|
|
|
|
DAWN_TRY(ValidateInterStageMatching(device, descriptor->vertex, *(descriptor->fragment)));
|
|
}
|
|
|
|
return {};
|
|
}
|
|
|
|
std::vector<StageAndDescriptor> GetRenderStagesAndSetPlaceholderShader(
|
|
DeviceBase* device,
|
|
const RenderPipelineDescriptor* descriptor) {
|
|
std::vector<StageAndDescriptor> stages;
|
|
stages.push_back({SingleShaderStage::Vertex, descriptor->vertex.module,
|
|
descriptor->vertex.entryPoint, descriptor->vertex.constantCount,
|
|
descriptor->vertex.constants});
|
|
if (descriptor->fragment != nullptr) {
|
|
stages.push_back({SingleShaderStage::Fragment, descriptor->fragment->module,
|
|
descriptor->fragment->entryPoint, descriptor->fragment->constantCount,
|
|
descriptor->fragment->constants});
|
|
} else if (device->IsToggleEnabled(Toggle::UsePlaceholderFragmentInVertexOnlyPipeline)) {
|
|
InternalPipelineStore* store = device->GetInternalPipelineStore();
|
|
// The placeholder fragment shader module should already be initialized
|
|
DAWN_ASSERT(store->placeholderFragmentShader != nullptr);
|
|
ShaderModuleBase* placeholderFragmentShader = store->placeholderFragmentShader.Get();
|
|
stages.push_back(
|
|
{SingleShaderStage::Fragment, placeholderFragmentShader, "fs_empty_main", 0, nullptr});
|
|
}
|
|
return stages;
|
|
}
|
|
|
|
bool StencilTestEnabled(const DepthStencilState* depthStencil) {
|
|
return depthStencil->stencilBack.compare != wgpu::CompareFunction::Always ||
|
|
depthStencil->stencilBack.failOp != wgpu::StencilOperation::Keep ||
|
|
depthStencil->stencilBack.depthFailOp != wgpu::StencilOperation::Keep ||
|
|
depthStencil->stencilBack.passOp != wgpu::StencilOperation::Keep ||
|
|
depthStencil->stencilFront.compare != wgpu::CompareFunction::Always ||
|
|
depthStencil->stencilFront.failOp != wgpu::StencilOperation::Keep ||
|
|
depthStencil->stencilFront.depthFailOp != wgpu::StencilOperation::Keep ||
|
|
depthStencil->stencilFront.passOp != wgpu::StencilOperation::Keep;
|
|
}
|
|
|
|
// RenderPipelineBase
|
|
|
|
RenderPipelineBase::RenderPipelineBase(DeviceBase* device,
|
|
const RenderPipelineDescriptor* descriptor)
|
|
: PipelineBase(device,
|
|
descriptor->layout,
|
|
descriptor->label,
|
|
GetRenderStagesAndSetPlaceholderShader(device, descriptor)),
|
|
mAttachmentState(device->GetOrCreateAttachmentState(descriptor)) {
|
|
mVertexBufferCount = descriptor->vertex.bufferCount;
|
|
const VertexBufferLayout* buffers = descriptor->vertex.buffers;
|
|
for (uint8_t slot = 0; slot < mVertexBufferCount; ++slot) {
|
|
// Skip unused slots
|
|
if (buffers[slot].stepMode == wgpu::VertexStepMode::VertexBufferNotUsed) {
|
|
continue;
|
|
}
|
|
|
|
VertexBufferSlot typedSlot(slot);
|
|
|
|
mVertexBufferSlotsUsed.set(typedSlot);
|
|
mVertexBufferInfos[typedSlot].arrayStride = buffers[slot].arrayStride;
|
|
mVertexBufferInfos[typedSlot].stepMode = buffers[slot].stepMode;
|
|
mVertexBufferInfos[typedSlot].usedBytesInStride = 0;
|
|
mVertexBufferInfos[typedSlot].lastStride = 0;
|
|
switch (buffers[slot].stepMode) {
|
|
case wgpu::VertexStepMode::Vertex:
|
|
mVertexBufferSlotsUsedAsVertexBuffer.set(typedSlot);
|
|
break;
|
|
case wgpu::VertexStepMode::Instance:
|
|
mVertexBufferSlotsUsedAsInstanceBuffer.set(typedSlot);
|
|
break;
|
|
default:
|
|
DAWN_UNREACHABLE();
|
|
}
|
|
|
|
for (uint32_t i = 0; i < buffers[slot].attributeCount; ++i) {
|
|
VertexAttributeLocation location = VertexAttributeLocation(
|
|
static_cast<uint8_t>(buffers[slot].attributes[i].shaderLocation));
|
|
mAttributeLocationsUsed.set(location);
|
|
mAttributeInfos[location].shaderLocation = location;
|
|
mAttributeInfos[location].vertexBufferSlot = typedSlot;
|
|
mAttributeInfos[location].offset = buffers[slot].attributes[i].offset;
|
|
mAttributeInfos[location].format = buffers[slot].attributes[i].format;
|
|
// Compute the access boundary of this attribute by adding attribute format size to
|
|
// attribute offset. Although offset is in uint64_t, such sum must be no larger than
|
|
// maxVertexBufferArrayStride (2048), which is promised by the GPUVertexBufferLayout
|
|
// validation of creating render pipeline. Therefore, calculating in uint16_t will
|
|
// cause no overflow.
|
|
uint32_t formatByteSize =
|
|
GetVertexFormatInfo(buffers[slot].attributes[i].format).byteSize;
|
|
DAWN_ASSERT(buffers[slot].attributes[i].offset <= 2048);
|
|
uint16_t accessBoundary =
|
|
uint16_t(buffers[slot].attributes[i].offset) + uint16_t(formatByteSize);
|
|
mVertexBufferInfos[typedSlot].usedBytesInStride =
|
|
std::max(mVertexBufferInfos[typedSlot].usedBytesInStride, accessBoundary);
|
|
mVertexBufferInfos[typedSlot].lastStride =
|
|
std::max(mVertexBufferInfos[typedSlot].lastStride,
|
|
mAttributeInfos[location].offset + formatByteSize);
|
|
}
|
|
}
|
|
|
|
mPrimitive = descriptor->primitive;
|
|
const PrimitiveDepthClampingState* clampInfo = nullptr;
|
|
FindInChain(mPrimitive.nextInChain, &clampInfo);
|
|
if (clampInfo) {
|
|
mClampDepth = clampInfo->clampDepth;
|
|
}
|
|
mMultisample = descriptor->multisample;
|
|
|
|
if (mAttachmentState->HasDepthStencilAttachment()) {
|
|
mDepthStencil = *descriptor->depthStencil;
|
|
mWritesDepth = mDepthStencil.depthWriteEnabled;
|
|
if (mDepthStencil.stencilWriteMask) {
|
|
if ((mPrimitive.cullMode != wgpu::CullMode::Front &&
|
|
(mDepthStencil.stencilFront.failOp != wgpu::StencilOperation::Keep ||
|
|
mDepthStencil.stencilFront.depthFailOp != wgpu::StencilOperation::Keep ||
|
|
mDepthStencil.stencilFront.passOp != wgpu::StencilOperation::Keep)) ||
|
|
(mPrimitive.cullMode != wgpu::CullMode::Back &&
|
|
(mDepthStencil.stencilBack.failOp != wgpu::StencilOperation::Keep ||
|
|
mDepthStencil.stencilBack.depthFailOp != wgpu::StencilOperation::Keep ||
|
|
mDepthStencil.stencilBack.passOp != wgpu::StencilOperation::Keep))) {
|
|
mWritesStencil = true;
|
|
}
|
|
}
|
|
} else {
|
|
// These default values below are useful for backends to fill information.
|
|
// The values indicate that depth and stencil test are disabled when backends
|
|
// set their own depth stencil states/descriptors according to the values in
|
|
// mDepthStencil.
|
|
mDepthStencil.format = wgpu::TextureFormat::Undefined;
|
|
mDepthStencil.depthWriteEnabled = false;
|
|
mDepthStencil.depthCompare = wgpu::CompareFunction::Always;
|
|
mDepthStencil.stencilBack.compare = wgpu::CompareFunction::Always;
|
|
mDepthStencil.stencilBack.failOp = wgpu::StencilOperation::Keep;
|
|
mDepthStencil.stencilBack.depthFailOp = wgpu::StencilOperation::Keep;
|
|
mDepthStencil.stencilBack.passOp = wgpu::StencilOperation::Keep;
|
|
mDepthStencil.stencilFront.compare = wgpu::CompareFunction::Always;
|
|
mDepthStencil.stencilFront.failOp = wgpu::StencilOperation::Keep;
|
|
mDepthStencil.stencilFront.depthFailOp = wgpu::StencilOperation::Keep;
|
|
mDepthStencil.stencilFront.passOp = wgpu::StencilOperation::Keep;
|
|
mDepthStencil.stencilReadMask = 0xff;
|
|
mDepthStencil.stencilWriteMask = 0xff;
|
|
mDepthStencil.depthBias = 0;
|
|
mDepthStencil.depthBiasSlopeScale = 0.0f;
|
|
mDepthStencil.depthBiasClamp = 0.0f;
|
|
}
|
|
|
|
for (ColorAttachmentIndex i : IterateBitSet(mAttachmentState->GetColorAttachmentsMask())) {
|
|
// Vertex-only render pipeline have no color attachment. For a render pipeline with
|
|
// color attachments, there must be a valid FragmentState.
|
|
ASSERT(descriptor->fragment != nullptr);
|
|
const ColorTargetState* target = &descriptor->fragment->targets[static_cast<uint8_t>(i)];
|
|
mTargets[i] = *target;
|
|
|
|
if (target->blend != nullptr) {
|
|
mTargetBlend[i] = *target->blend;
|
|
mTargets[i].blend = &mTargetBlend[i];
|
|
}
|
|
}
|
|
|
|
SetContentHash(ComputeContentHash());
|
|
TrackInDevice();
|
|
|
|
// Initialize the cache key to include the cache type and device information.
|
|
mCacheKey.Record(CacheKey::Type::RenderPipeline, device->GetCacheKey());
|
|
}
|
|
|
|
RenderPipelineBase::RenderPipelineBase(DeviceBase* device) : PipelineBase(device) {
|
|
TrackInDevice();
|
|
}
|
|
|
|
RenderPipelineBase::RenderPipelineBase(DeviceBase* device, ObjectBase::ErrorTag tag)
|
|
: PipelineBase(device, tag) {}
|
|
|
|
RenderPipelineBase::~RenderPipelineBase() = default;
|
|
|
|
void RenderPipelineBase::DestroyImpl() {
|
|
if (IsCachedReference()) {
|
|
// Do not uncache the actual cached object if we are a blueprint.
|
|
GetDevice()->UncacheRenderPipeline(this);
|
|
}
|
|
|
|
// Remove reference to the attachment state so that we don't have lingering references to
|
|
// it preventing it from being uncached in the device.
|
|
mAttachmentState = nullptr;
|
|
}
|
|
|
|
// static
|
|
RenderPipelineBase* RenderPipelineBase::MakeError(DeviceBase* device) {
|
|
class ErrorRenderPipeline final : public RenderPipelineBase {
|
|
public:
|
|
explicit ErrorRenderPipeline(DeviceBase* device)
|
|
: RenderPipelineBase(device, ObjectBase::kError) {}
|
|
|
|
MaybeError Initialize() override {
|
|
UNREACHABLE();
|
|
return {};
|
|
}
|
|
};
|
|
|
|
return new ErrorRenderPipeline(device);
|
|
}
|
|
|
|
ObjectType RenderPipelineBase::GetType() const {
|
|
return ObjectType::RenderPipeline;
|
|
}
|
|
|
|
const ityp::bitset<VertexAttributeLocation, kMaxVertexAttributes>&
|
|
RenderPipelineBase::GetAttributeLocationsUsed() const {
|
|
ASSERT(!IsError());
|
|
return mAttributeLocationsUsed;
|
|
}
|
|
|
|
const VertexAttributeInfo& RenderPipelineBase::GetAttribute(
|
|
VertexAttributeLocation location) const {
|
|
ASSERT(!IsError());
|
|
ASSERT(mAttributeLocationsUsed[location]);
|
|
return mAttributeInfos[location];
|
|
}
|
|
|
|
const ityp::bitset<VertexBufferSlot, kMaxVertexBuffers>&
|
|
RenderPipelineBase::GetVertexBufferSlotsUsed() const {
|
|
ASSERT(!IsError());
|
|
return mVertexBufferSlotsUsed;
|
|
}
|
|
|
|
const ityp::bitset<VertexBufferSlot, kMaxVertexBuffers>&
|
|
RenderPipelineBase::GetVertexBufferSlotsUsedAsVertexBuffer() const {
|
|
ASSERT(!IsError());
|
|
return mVertexBufferSlotsUsedAsVertexBuffer;
|
|
}
|
|
|
|
const ityp::bitset<VertexBufferSlot, kMaxVertexBuffers>&
|
|
RenderPipelineBase::GetVertexBufferSlotsUsedAsInstanceBuffer() const {
|
|
ASSERT(!IsError());
|
|
return mVertexBufferSlotsUsedAsInstanceBuffer;
|
|
}
|
|
|
|
const VertexBufferInfo& RenderPipelineBase::GetVertexBuffer(VertexBufferSlot slot) const {
|
|
ASSERT(!IsError());
|
|
ASSERT(mVertexBufferSlotsUsed[slot]);
|
|
return mVertexBufferInfos[slot];
|
|
}
|
|
|
|
uint32_t RenderPipelineBase::GetVertexBufferCount() const {
|
|
ASSERT(!IsError());
|
|
return mVertexBufferCount;
|
|
}
|
|
|
|
const ColorTargetState* RenderPipelineBase::GetColorTargetState(
|
|
ColorAttachmentIndex attachmentSlot) const {
|
|
ASSERT(!IsError());
|
|
ASSERT(attachmentSlot < mTargets.size());
|
|
return &mTargets[attachmentSlot];
|
|
}
|
|
|
|
const DepthStencilState* RenderPipelineBase::GetDepthStencilState() const {
|
|
ASSERT(!IsError());
|
|
return &mDepthStencil;
|
|
}
|
|
|
|
wgpu::PrimitiveTopology RenderPipelineBase::GetPrimitiveTopology() const {
|
|
ASSERT(!IsError());
|
|
return mPrimitive.topology;
|
|
}
|
|
|
|
wgpu::IndexFormat RenderPipelineBase::GetStripIndexFormat() const {
|
|
ASSERT(!IsError());
|
|
return mPrimitive.stripIndexFormat;
|
|
}
|
|
|
|
wgpu::CullMode RenderPipelineBase::GetCullMode() const {
|
|
ASSERT(!IsError());
|
|
return mPrimitive.cullMode;
|
|
}
|
|
|
|
wgpu::FrontFace RenderPipelineBase::GetFrontFace() const {
|
|
ASSERT(!IsError());
|
|
return mPrimitive.frontFace;
|
|
}
|
|
|
|
bool RenderPipelineBase::IsDepthBiasEnabled() const {
|
|
ASSERT(!IsError());
|
|
return mDepthStencil.depthBias != 0 || mDepthStencil.depthBiasSlopeScale != 0;
|
|
}
|
|
|
|
int32_t RenderPipelineBase::GetDepthBias() const {
|
|
ASSERT(!IsError());
|
|
return mDepthStencil.depthBias;
|
|
}
|
|
|
|
float RenderPipelineBase::GetDepthBiasSlopeScale() const {
|
|
ASSERT(!IsError());
|
|
return mDepthStencil.depthBiasSlopeScale;
|
|
}
|
|
|
|
float RenderPipelineBase::GetDepthBiasClamp() const {
|
|
ASSERT(!IsError());
|
|
return mDepthStencil.depthBiasClamp;
|
|
}
|
|
|
|
bool RenderPipelineBase::ShouldClampDepth() const {
|
|
ASSERT(!IsError());
|
|
return mClampDepth;
|
|
}
|
|
|
|
ityp::bitset<ColorAttachmentIndex, kMaxColorAttachments>
|
|
RenderPipelineBase::GetColorAttachmentsMask() const {
|
|
ASSERT(!IsError());
|
|
return mAttachmentState->GetColorAttachmentsMask();
|
|
}
|
|
|
|
bool RenderPipelineBase::HasDepthStencilAttachment() const {
|
|
ASSERT(!IsError());
|
|
return mAttachmentState->HasDepthStencilAttachment();
|
|
}
|
|
|
|
wgpu::TextureFormat RenderPipelineBase::GetColorAttachmentFormat(
|
|
ColorAttachmentIndex attachment) const {
|
|
ASSERT(!IsError());
|
|
return mTargets[attachment].format;
|
|
}
|
|
|
|
wgpu::TextureFormat RenderPipelineBase::GetDepthStencilFormat() const {
|
|
ASSERT(!IsError());
|
|
ASSERT(mAttachmentState->HasDepthStencilAttachment());
|
|
return mDepthStencil.format;
|
|
}
|
|
|
|
uint32_t RenderPipelineBase::GetSampleCount() const {
|
|
ASSERT(!IsError());
|
|
return mAttachmentState->GetSampleCount();
|
|
}
|
|
|
|
uint32_t RenderPipelineBase::GetSampleMask() const {
|
|
ASSERT(!IsError());
|
|
return mMultisample.mask;
|
|
}
|
|
|
|
bool RenderPipelineBase::IsAlphaToCoverageEnabled() const {
|
|
ASSERT(!IsError());
|
|
return mMultisample.alphaToCoverageEnabled;
|
|
}
|
|
|
|
const AttachmentState* RenderPipelineBase::GetAttachmentState() const {
|
|
ASSERT(!IsError());
|
|
|
|
return mAttachmentState.Get();
|
|
}
|
|
|
|
bool RenderPipelineBase::WritesDepth() const {
|
|
ASSERT(!IsError());
|
|
|
|
return mWritesDepth;
|
|
}
|
|
|
|
bool RenderPipelineBase::WritesStencil() const {
|
|
ASSERT(!IsError());
|
|
|
|
return mWritesStencil;
|
|
}
|
|
|
|
size_t RenderPipelineBase::ComputeContentHash() {
|
|
ObjectContentHasher recorder;
|
|
|
|
// Record modules and layout
|
|
recorder.Record(PipelineBase::ComputeContentHash());
|
|
|
|
// Hierarchically record the attachment state.
|
|
// It contains the attachments set, texture formats, and sample count.
|
|
recorder.Record(mAttachmentState->GetContentHash());
|
|
|
|
// Record attachments
|
|
for (ColorAttachmentIndex i : IterateBitSet(mAttachmentState->GetColorAttachmentsMask())) {
|
|
const ColorTargetState& desc = *GetColorTargetState(i);
|
|
recorder.Record(desc.writeMask);
|
|
if (desc.blend != nullptr) {
|
|
recorder.Record(desc.blend->color.operation, desc.blend->color.srcFactor,
|
|
desc.blend->color.dstFactor);
|
|
recorder.Record(desc.blend->alpha.operation, desc.blend->alpha.srcFactor,
|
|
desc.blend->alpha.dstFactor);
|
|
}
|
|
}
|
|
|
|
if (mAttachmentState->HasDepthStencilAttachment()) {
|
|
const DepthStencilState& desc = mDepthStencil;
|
|
recorder.Record(desc.depthWriteEnabled, desc.depthCompare);
|
|
recorder.Record(desc.stencilReadMask, desc.stencilWriteMask);
|
|
recorder.Record(desc.stencilFront.compare, desc.stencilFront.failOp,
|
|
desc.stencilFront.depthFailOp, desc.stencilFront.passOp);
|
|
recorder.Record(desc.stencilBack.compare, desc.stencilBack.failOp,
|
|
desc.stencilBack.depthFailOp, desc.stencilBack.passOp);
|
|
recorder.Record(desc.depthBias, desc.depthBiasSlopeScale, desc.depthBiasClamp);
|
|
}
|
|
|
|
// Record vertex state
|
|
recorder.Record(mAttributeLocationsUsed);
|
|
for (VertexAttributeLocation location : IterateBitSet(mAttributeLocationsUsed)) {
|
|
const VertexAttributeInfo& desc = GetAttribute(location);
|
|
recorder.Record(desc.shaderLocation, desc.vertexBufferSlot, desc.offset, desc.format);
|
|
}
|
|
|
|
recorder.Record(mVertexBufferSlotsUsed);
|
|
for (VertexBufferSlot slot : IterateBitSet(mVertexBufferSlotsUsed)) {
|
|
const VertexBufferInfo& desc = GetVertexBuffer(slot);
|
|
recorder.Record(desc.arrayStride, desc.stepMode);
|
|
}
|
|
|
|
// Record primitive state
|
|
recorder.Record(mPrimitive.topology, mPrimitive.stripIndexFormat, mPrimitive.frontFace,
|
|
mPrimitive.cullMode, mClampDepth);
|
|
|
|
// Record multisample state
|
|
// Sample count hashed as part of the attachment state
|
|
recorder.Record(mMultisample.mask, mMultisample.alphaToCoverageEnabled);
|
|
|
|
return recorder.GetContentHash();
|
|
}
|
|
|
|
bool RenderPipelineBase::EqualityFunc::operator()(const RenderPipelineBase* a,
|
|
const RenderPipelineBase* b) const {
|
|
// Check the layout and shader stages.
|
|
if (!PipelineBase::EqualForCache(a, b)) {
|
|
return false;
|
|
}
|
|
|
|
// Check the attachment state.
|
|
// It contains the attachments set, texture formats, and sample count.
|
|
if (a->mAttachmentState.Get() != b->mAttachmentState.Get()) {
|
|
return false;
|
|
}
|
|
|
|
if (a->mAttachmentState.Get() != nullptr) {
|
|
for (ColorAttachmentIndex i :
|
|
IterateBitSet(a->mAttachmentState->GetColorAttachmentsMask())) {
|
|
const ColorTargetState& descA = *a->GetColorTargetState(i);
|
|
const ColorTargetState& descB = *b->GetColorTargetState(i);
|
|
if (descA.writeMask != descB.writeMask) {
|
|
return false;
|
|
}
|
|
if ((descA.blend == nullptr) != (descB.blend == nullptr)) {
|
|
return false;
|
|
}
|
|
if (descA.blend != nullptr) {
|
|
if (descA.blend->color.operation != descB.blend->color.operation ||
|
|
descA.blend->color.srcFactor != descB.blend->color.srcFactor ||
|
|
descA.blend->color.dstFactor != descB.blend->color.dstFactor) {
|
|
return false;
|
|
}
|
|
if (descA.blend->alpha.operation != descB.blend->alpha.operation ||
|
|
descA.blend->alpha.srcFactor != descB.blend->alpha.srcFactor ||
|
|
descA.blend->alpha.dstFactor != descB.blend->alpha.dstFactor) {
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Check depth/stencil state
|
|
if (a->mAttachmentState->HasDepthStencilAttachment()) {
|
|
const DepthStencilState& stateA = a->mDepthStencil;
|
|
const DepthStencilState& stateB = b->mDepthStencil;
|
|
|
|
ASSERT(!std::isnan(stateA.depthBiasSlopeScale));
|
|
ASSERT(!std::isnan(stateB.depthBiasSlopeScale));
|
|
ASSERT(!std::isnan(stateA.depthBiasClamp));
|
|
ASSERT(!std::isnan(stateB.depthBiasClamp));
|
|
|
|
if (stateA.depthWriteEnabled != stateB.depthWriteEnabled ||
|
|
stateA.depthCompare != stateB.depthCompare ||
|
|
stateA.depthBias != stateB.depthBias ||
|
|
stateA.depthBiasSlopeScale != stateB.depthBiasSlopeScale ||
|
|
stateA.depthBiasClamp != stateB.depthBiasClamp) {
|
|
return false;
|
|
}
|
|
if (stateA.stencilFront.compare != stateB.stencilFront.compare ||
|
|
stateA.stencilFront.failOp != stateB.stencilFront.failOp ||
|
|
stateA.stencilFront.depthFailOp != stateB.stencilFront.depthFailOp ||
|
|
stateA.stencilFront.passOp != stateB.stencilFront.passOp) {
|
|
return false;
|
|
}
|
|
if (stateA.stencilBack.compare != stateB.stencilBack.compare ||
|
|
stateA.stencilBack.failOp != stateB.stencilBack.failOp ||
|
|
stateA.stencilBack.depthFailOp != stateB.stencilBack.depthFailOp ||
|
|
stateA.stencilBack.passOp != stateB.stencilBack.passOp) {
|
|
return false;
|
|
}
|
|
if (stateA.stencilReadMask != stateB.stencilReadMask ||
|
|
stateA.stencilWriteMask != stateB.stencilWriteMask) {
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Check vertex state
|
|
if (a->mAttributeLocationsUsed != b->mAttributeLocationsUsed) {
|
|
return false;
|
|
}
|
|
|
|
for (VertexAttributeLocation loc : IterateBitSet(a->mAttributeLocationsUsed)) {
|
|
const VertexAttributeInfo& descA = a->GetAttribute(loc);
|
|
const VertexAttributeInfo& descB = b->GetAttribute(loc);
|
|
if (descA.shaderLocation != descB.shaderLocation ||
|
|
descA.vertexBufferSlot != descB.vertexBufferSlot || descA.offset != descB.offset ||
|
|
descA.format != descB.format) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
if (a->mVertexBufferSlotsUsed != b->mVertexBufferSlotsUsed) {
|
|
return false;
|
|
}
|
|
|
|
for (VertexBufferSlot slot : IterateBitSet(a->mVertexBufferSlotsUsed)) {
|
|
const VertexBufferInfo& descA = a->GetVertexBuffer(slot);
|
|
const VertexBufferInfo& descB = b->GetVertexBuffer(slot);
|
|
if (descA.arrayStride != descB.arrayStride || descA.stepMode != descB.stepMode) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Check primitive state
|
|
{
|
|
const PrimitiveState& stateA = a->mPrimitive;
|
|
const PrimitiveState& stateB = b->mPrimitive;
|
|
if (stateA.topology != stateB.topology ||
|
|
stateA.stripIndexFormat != stateB.stripIndexFormat ||
|
|
stateA.frontFace != stateB.frontFace || stateA.cullMode != stateB.cullMode ||
|
|
a->mClampDepth != b->mClampDepth) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Check multisample state
|
|
{
|
|
const MultisampleState& stateA = a->mMultisample;
|
|
const MultisampleState& stateB = b->mMultisample;
|
|
// Sample count already checked as part of the attachment state.
|
|
if (stateA.mask != stateB.mask ||
|
|
stateA.alphaToCoverageEnabled != stateB.alphaToCoverageEnabled) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
} // namespace dawn::native
|