dawn-cmake/src/tint/resolver/resolver.cc

2664 lines
100 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// Copyright 2020 The Tint Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "src/tint/resolver/resolver.h"
#include <algorithm>
#include <cmath>
#include <iomanip>
#include <limits>
#include <utility>
#include "src/tint/ast/alias.h"
#include "src/tint/ast/array.h"
#include "src/tint/ast/assignment_statement.h"
#include "src/tint/ast/bitcast_expression.h"
#include "src/tint/ast/break_statement.h"
#include "src/tint/ast/call_statement.h"
#include "src/tint/ast/continue_statement.h"
#include "src/tint/ast/depth_texture.h"
#include "src/tint/ast/disable_validation_attribute.h"
#include "src/tint/ast/discard_statement.h"
#include "src/tint/ast/fallthrough_statement.h"
#include "src/tint/ast/for_loop_statement.h"
#include "src/tint/ast/id_attribute.h"
#include "src/tint/ast/if_statement.h"
#include "src/tint/ast/internal_attribute.h"
#include "src/tint/ast/interpolate_attribute.h"
#include "src/tint/ast/loop_statement.h"
#include "src/tint/ast/matrix.h"
#include "src/tint/ast/pointer.h"
#include "src/tint/ast/return_statement.h"
#include "src/tint/ast/sampled_texture.h"
#include "src/tint/ast/sampler.h"
#include "src/tint/ast/storage_texture.h"
#include "src/tint/ast/switch_statement.h"
#include "src/tint/ast/traverse_expressions.h"
#include "src/tint/ast/type_name.h"
#include "src/tint/ast/unary_op_expression.h"
#include "src/tint/ast/variable_decl_statement.h"
#include "src/tint/ast/vector.h"
#include "src/tint/ast/workgroup_attribute.h"
#include "src/tint/resolver/uniformity.h"
#include "src/tint/sem/abstract_float.h"
#include "src/tint/sem/abstract_int.h"
#include "src/tint/sem/array.h"
#include "src/tint/sem/atomic.h"
#include "src/tint/sem/call.h"
#include "src/tint/sem/depth_multisampled_texture.h"
#include "src/tint/sem/depth_texture.h"
#include "src/tint/sem/for_loop_statement.h"
#include "src/tint/sem/function.h"
#include "src/tint/sem/if_statement.h"
#include "src/tint/sem/loop_statement.h"
#include "src/tint/sem/materialize.h"
#include "src/tint/sem/member_accessor_expression.h"
#include "src/tint/sem/module.h"
#include "src/tint/sem/multisampled_texture.h"
#include "src/tint/sem/pointer.h"
#include "src/tint/sem/reference.h"
#include "src/tint/sem/sampled_texture.h"
#include "src/tint/sem/sampler.h"
#include "src/tint/sem/statement.h"
#include "src/tint/sem/storage_texture.h"
#include "src/tint/sem/struct.h"
#include "src/tint/sem/switch_statement.h"
#include "src/tint/sem/type_constructor.h"
#include "src/tint/sem/type_conversion.h"
#include "src/tint/sem/variable.h"
#include "src/tint/utils/defer.h"
#include "src/tint/utils/math.h"
#include "src/tint/utils/reverse.h"
#include "src/tint/utils/scoped_assignment.h"
#include "src/tint/utils/transform.h"
namespace tint::resolver {
Resolver::Resolver(ProgramBuilder* builder)
: builder_(builder),
diagnostics_(builder->Diagnostics()),
intrinsic_table_(IntrinsicTable::Create(*builder)),
sem_(builder, dependencies_),
validator_(builder, sem_) {}
Resolver::~Resolver() = default;
bool Resolver::Resolve() {
if (builder_->Diagnostics().contains_errors()) {
return false;
}
if (!DependencyGraph::Build(builder_->AST(), builder_->Symbols(), builder_->Diagnostics(),
dependencies_)) {
return false;
}
bool result = ResolveInternal();
if (!result && !diagnostics_.contains_errors()) {
TINT_ICE(Resolver, diagnostics_) << "resolving failed, but no error was raised";
return false;
}
// Create the semantic module
builder_->Sem().SetModule(builder_->create<sem::Module>(
std::move(dependencies_.ordered_globals), std::move(enabled_extensions_)));
return result;
}
bool Resolver::ResolveInternal() {
Mark(&builder_->AST());
// Process all module-scope declarations in dependency order.
for (auto* decl : dependencies_.ordered_globals) {
Mark(decl);
if (!Switch<bool>(
decl, //
[&](const ast::Enable* e) { return Enable(e); },
[&](const ast::TypeDecl* td) { return TypeDecl(td); },
[&](const ast::Function* func) { return Function(func); },
[&](const ast::Variable* var) { return GlobalVariable(var); },
[&](Default) {
TINT_UNREACHABLE(Resolver, diagnostics_)
<< "unhandled global declaration: " << decl->TypeInfo().name;
return false;
})) {
return false;
}
}
AllocateOverridableConstantIds();
SetShadows();
if (!validator_.PipelineStages(entry_points_)) {
return false;
}
if (!enabled_extensions_.contains(ast::Extension::kChromiumDisableUniformityAnalysis)) {
if (!AnalyzeUniformity(builder_, dependencies_)) {
// TODO(jrprice): Reject programs that fail uniformity analysis.
}
}
bool result = true;
for (auto* node : builder_->ASTNodes().Objects()) {
if (marked_.count(node) == 0) {
TINT_ICE(Resolver, diagnostics_)
<< "AST node '" << node->TypeInfo().name << "' was not reached by the resolver\n"
<< "At: " << node->source << "\n"
<< "Pointer: " << node;
result = false;
}
}
return result;
}
sem::Type* Resolver::Type(const ast::Type* ty) {
Mark(ty);
auto* s = Switch(
ty, //
[&](const ast::Void*) { return builder_->create<sem::Void>(); },
[&](const ast::Bool*) { return builder_->create<sem::Bool>(); },
[&](const ast::I32*) { return builder_->create<sem::I32>(); },
[&](const ast::U32*) { return builder_->create<sem::U32>(); },
[&](const ast::F16* t) -> sem::F16* {
// Validate if f16 type is allowed.
if (!enabled_extensions_.contains(ast::Extension::kF16)) {
AddError("f16 used without 'f16' extension enabled", t->source);
return nullptr;
}
return builder_->create<sem::F16>();
},
[&](const ast::F32*) { return builder_->create<sem::F32>(); },
[&](const ast::Vector* t) -> sem::Vector* {
if (!t->type) {
AddError("missing vector element type", t->source.End());
return nullptr;
}
if (auto* el = Type(t->type)) {
if (auto* vector = builder_->create<sem::Vector>(el, t->width)) {
if (validator_.Vector(vector, t->source)) {
return vector;
}
}
}
return nullptr;
},
[&](const ast::Matrix* t) -> sem::Matrix* {
if (!t->type) {
AddError("missing matrix element type", t->source.End());
return nullptr;
}
if (auto* el = Type(t->type)) {
if (auto* column_type = builder_->create<sem::Vector>(el, t->rows)) {
if (auto* matrix = builder_->create<sem::Matrix>(column_type, t->columns)) {
if (validator_.Matrix(matrix, t->source)) {
return matrix;
}
}
}
}
return nullptr;
},
[&](const ast::Array* t) { return Array(t); },
[&](const ast::Atomic* t) -> sem::Atomic* {
if (auto* el = Type(t->type)) {
auto* a = builder_->create<sem::Atomic>(el);
if (!validator_.Atomic(t, a)) {
return nullptr;
}
return a;
}
return nullptr;
},
[&](const ast::Pointer* t) -> sem::Pointer* {
if (auto* el = Type(t->type)) {
auto access = t->access;
if (access == ast::kUndefined) {
access = DefaultAccessForStorageClass(t->storage_class);
}
return builder_->create<sem::Pointer>(el, t->storage_class, access);
}
return nullptr;
},
[&](const ast::Sampler* t) { return builder_->create<sem::Sampler>(t->kind); },
[&](const ast::SampledTexture* t) -> sem::SampledTexture* {
if (auto* el = Type(t->type)) {
return builder_->create<sem::SampledTexture>(t->dim, el);
}
return nullptr;
},
[&](const ast::MultisampledTexture* t) -> sem::MultisampledTexture* {
if (auto* el = Type(t->type)) {
return builder_->create<sem::MultisampledTexture>(t->dim, el);
}
return nullptr;
},
[&](const ast::DepthTexture* t) { return builder_->create<sem::DepthTexture>(t->dim); },
[&](const ast::DepthMultisampledTexture* t) {
return builder_->create<sem::DepthMultisampledTexture>(t->dim);
},
[&](const ast::StorageTexture* t) -> sem::StorageTexture* {
if (auto* el = Type(t->type)) {
if (!validator_.StorageTexture(t)) {
return nullptr;
}
return builder_->create<sem::StorageTexture>(t->dim, t->format, t->access, el);
}
return nullptr;
},
[&](const ast::ExternalTexture*) { return builder_->create<sem::ExternalTexture>(); },
[&](Default) {
auto* resolved = sem_.ResolvedSymbol(ty);
return Switch(
resolved, //
[&](sem::Type* type) { return type; },
[&](sem::Variable* var) {
auto name = builder_->Symbols().NameFor(var->Declaration()->symbol);
AddError("cannot use variable '" + name + "' as type", ty->source);
AddNote("'" + name + "' declared here", var->Declaration()->source);
return nullptr;
},
[&](sem::Function* func) {
auto name = builder_->Symbols().NameFor(func->Declaration()->symbol);
AddError("cannot use function '" + name + "' as type", ty->source);
AddNote("'" + name + "' declared here", func->Declaration()->source);
return nullptr;
},
[&](Default) {
if (auto* tn = ty->As<ast::TypeName>()) {
if (IsBuiltin(tn->name)) {
auto name = builder_->Symbols().NameFor(tn->name);
AddError("cannot use builtin '" + name + "' as type", ty->source);
return nullptr;
}
}
TINT_UNREACHABLE(Resolver, diagnostics_)
<< "Unhandled resolved type '"
<< (resolved ? resolved->TypeInfo().name : "<null>")
<< "' resolved from ast::Type '" << ty->TypeInfo().name << "'";
return nullptr;
});
});
if (s) {
builder_->Sem().Add(ty, s);
}
return s;
}
sem::Variable* Resolver::Variable(const ast::Variable* var,
VariableKind kind,
uint32_t index /* = 0 */) {
const sem::Type* storage_ty = nullptr;
// If the variable has a declared type, resolve it.
if (auto* ty = var->type) {
storage_ty = Type(ty);
if (!storage_ty) {
return nullptr;
}
}
const sem::Expression* rhs = nullptr;
// Does the variable have a constructor?
if (var->constructor) {
rhs = Materialize(Expression(var->constructor), storage_ty);
if (!rhs) {
return nullptr;
}
// If the variable has no declared type, infer it from the RHS
if (!storage_ty) {
if (!var->is_const && kind == VariableKind::kGlobal) {
AddError("module-scope 'var' declaration must specify a type", var->source);
return nullptr;
}
storage_ty = rhs->Type()->UnwrapRef(); // Implicit load of RHS
}
} else if (var->is_const && !var->is_overridable && kind != VariableKind::kParameter) {
AddError("'let' declaration must have an initializer", var->source);
return nullptr;
} else if (!var->type) {
AddError((kind == VariableKind::kGlobal)
? "module-scope 'var' declaration requires a type or initializer"
: "function-scope 'var' declaration requires a type or initializer",
var->source);
return nullptr;
}
if (!storage_ty) {
TINT_ICE(Resolver, diagnostics_) << "failed to determine storage type for variable '" +
builder_->Symbols().NameFor(var->symbol) + "'\n"
<< "Source: " << var->source;
return nullptr;
}
auto storage_class = var->declared_storage_class;
if (storage_class == ast::StorageClass::kNone && !var->is_const) {
// No declared storage class. Infer from usage / type.
if (kind == VariableKind::kLocal) {
storage_class = ast::StorageClass::kFunction;
} else if (storage_ty->UnwrapRef()->is_handle()) {
// https://gpuweb.github.io/gpuweb/wgsl/#module-scope-variables
// If the store type is a texture type or a sampler type, then the
// variable declaration must not have a storage class attribute. The
// storage class will always be handle.
storage_class = ast::StorageClass::kHandle;
}
}
if (kind == VariableKind::kLocal && !var->is_const &&
storage_class != ast::StorageClass::kFunction &&
validator_.IsValidationEnabled(var->attributes,
ast::DisabledValidation::kIgnoreStorageClass)) {
AddError("function-scope 'var' declaration must use 'function' storage class", var->source);
return nullptr;
}
auto access = var->declared_access;
if (access == ast::Access::kUndefined) {
access = DefaultAccessForStorageClass(storage_class);
}
auto* var_ty = storage_ty;
if (!var->is_const) {
// Variable declaration. Unlike `let`, `var` has storage.
// Variables are always of a reference type to the declared storage type.
var_ty = builder_->create<sem::Reference>(storage_ty, storage_class, access);
}
if (rhs && !validator_.VariableConstructorOrCast(var, storage_class, storage_ty, rhs->Type())) {
return nullptr;
}
if (!ApplyStorageClassUsageToType(storage_class, const_cast<sem::Type*>(var_ty), var->source)) {
AddNote(std::string("while instantiating ") +
((kind == VariableKind::kParameter) ? "parameter " : "variable ") +
builder_->Symbols().NameFor(var->symbol),
var->source);
return nullptr;
}
if (kind == VariableKind::kParameter) {
if (auto* ptr = var_ty->As<sem::Pointer>()) {
// For MSL, we push module-scope variables into the entry point as pointer
// parameters, so we also need to handle their store type.
if (!ApplyStorageClassUsageToType(
ptr->StorageClass(), const_cast<sem::Type*>(ptr->StoreType()), var->source)) {
AddNote("while instantiating parameter " + builder_->Symbols().NameFor(var->symbol),
var->source);
return nullptr;
}
}
}
switch (kind) {
case VariableKind::kGlobal: {
sem::BindingPoint binding_point;
if (auto bp = var->BindingPoint()) {
binding_point = {bp.group->value, bp.binding->value};
}
bool has_const_val = rhs && var->is_const && !var->is_overridable;
auto* global = builder_->create<sem::GlobalVariable>(
var, var_ty, storage_class, access,
has_const_val ? rhs->ConstantValue() : sem::Constant{}, binding_point);
if (var->is_overridable) {
global->SetIsOverridable();
if (auto* id = ast::GetAttribute<ast::IdAttribute>(var->attributes)) {
global->SetConstantId(static_cast<uint16_t>(id->value));
}
}
global->SetConstructor(rhs);
builder_->Sem().Add(var, global);
return global;
}
case VariableKind::kLocal: {
auto* local = builder_->create<sem::LocalVariable>(
var, var_ty, storage_class, access, current_statement_,
(rhs && var->is_const) ? rhs->ConstantValue() : sem::Constant{});
builder_->Sem().Add(var, local);
local->SetConstructor(rhs);
return local;
}
case VariableKind::kParameter: {
auto* param =
builder_->create<sem::Parameter>(var, index, var_ty, storage_class, access);
builder_->Sem().Add(var, param);
return param;
}
}
TINT_UNREACHABLE(Resolver, diagnostics_) << "unhandled VariableKind " << static_cast<int>(kind);
return nullptr;
}
ast::Access Resolver::DefaultAccessForStorageClass(ast::StorageClass storage_class) {
// https://gpuweb.github.io/gpuweb/wgsl/#storage-class
switch (storage_class) {
case ast::StorageClass::kStorage:
case ast::StorageClass::kUniform:
case ast::StorageClass::kHandle:
return ast::Access::kRead;
default:
break;
}
return ast::Access::kReadWrite;
}
void Resolver::AllocateOverridableConstantIds() {
// The next pipeline constant ID to try to allocate.
uint16_t next_constant_id = 0;
// Allocate constant IDs in global declaration order, so that they are
// deterministic.
// TODO(crbug.com/tint/1192): If a transform changes the order or removes an
// unused constant, the allocation may change on the next Resolver pass.
for (auto* decl : builder_->AST().GlobalDeclarations()) {
auto* var = decl->As<ast::Variable>();
if (!var || !var->is_overridable) {
continue;
}
uint16_t constant_id;
if (auto* id_attr = ast::GetAttribute<ast::IdAttribute>(var->attributes)) {
constant_id = static_cast<uint16_t>(id_attr->value);
} else {
// No ID was specified, so allocate the next available ID.
constant_id = next_constant_id;
while (constant_ids_.count(constant_id)) {
if (constant_id == UINT16_MAX) {
TINT_ICE(Resolver, builder_->Diagnostics())
<< "no more pipeline constant IDs available";
return;
}
constant_id++;
}
next_constant_id = constant_id + 1;
}
auto* sem = sem_.Get<sem::GlobalVariable>(var);
const_cast<sem::GlobalVariable*>(sem)->SetConstantId(constant_id);
}
}
void Resolver::SetShadows() {
for (auto it : dependencies_.shadows) {
Switch(
sem_.Get(it.first), //
[&](sem::LocalVariable* local) { local->SetShadows(sem_.Get(it.second)); },
[&](sem::Parameter* param) { param->SetShadows(sem_.Get(it.second)); });
}
}
sem::GlobalVariable* Resolver::GlobalVariable(const ast::Variable* var) {
auto* sem = Variable(var, VariableKind::kGlobal);
if (!sem) {
return nullptr;
}
auto storage_class = sem->StorageClass();
if (!var->is_const && storage_class == ast::StorageClass::kNone) {
AddError("module-scope 'var' declaration must have a storage class", var->source);
return nullptr;
}
if (var->is_const && storage_class != ast::StorageClass::kNone) {
AddError(var->is_overridable ? "'override' declaration must not have a storage class"
: "'let' declaration must not have a storage class",
var->source);
return nullptr;
}
for (auto* attr : var->attributes) {
Mark(attr);
if (auto* id_attr = attr->As<ast::IdAttribute>()) {
// Track the constant IDs that are specified in the shader.
constant_ids_.emplace(id_attr->value, sem);
}
}
if (!validator_.NoDuplicateAttributes(var->attributes)) {
return nullptr;
}
if (!validator_.GlobalVariable(sem, constant_ids_, atomic_composite_info_)) {
return nullptr;
}
// TODO(bclayton): Call this at the end of resolve on all uniform and storage
// referenced structs
if (!validator_.StorageClassLayout(sem, valid_type_storage_layouts_)) {
return nullptr;
}
return sem->As<sem::GlobalVariable>();
}
sem::Function* Resolver::Function(const ast::Function* decl) {
uint32_t parameter_index = 0;
std::unordered_map<Symbol, Source> parameter_names;
std::vector<sem::Parameter*> parameters;
// Resolve all the parameters
for (auto* param : decl->params) {
Mark(param);
{ // Check the parameter name is unique for the function
auto emplaced = parameter_names.emplace(param->symbol, param->source);
if (!emplaced.second) {
auto name = builder_->Symbols().NameFor(param->symbol);
AddError("redefinition of parameter '" + name + "'", param->source);
AddNote("previous definition is here", emplaced.first->second);
return nullptr;
}
}
auto* var =
As<sem::Parameter>(Variable(param, VariableKind::kParameter, parameter_index++));
if (!var) {
return nullptr;
}
for (auto* attr : param->attributes) {
Mark(attr);
}
if (!validator_.NoDuplicateAttributes(param->attributes)) {
return nullptr;
}
parameters.emplace_back(var);
auto* var_ty = const_cast<sem::Type*>(var->Type());
if (auto* str = var_ty->As<sem::Struct>()) {
switch (decl->PipelineStage()) {
case ast::PipelineStage::kVertex:
str->AddUsage(sem::PipelineStageUsage::kVertexInput);
break;
case ast::PipelineStage::kFragment:
str->AddUsage(sem::PipelineStageUsage::kFragmentInput);
break;
case ast::PipelineStage::kCompute:
str->AddUsage(sem::PipelineStageUsage::kComputeInput);
break;
case ast::PipelineStage::kNone:
break;
}
}
}
// Resolve the return type
sem::Type* return_type = nullptr;
if (auto* ty = decl->return_type) {
return_type = Type(ty);
if (!return_type) {
return nullptr;
}
} else {
return_type = builder_->create<sem::Void>();
}
if (auto* str = return_type->As<sem::Struct>()) {
if (!ApplyStorageClassUsageToType(ast::StorageClass::kNone, str, decl->source)) {
AddNote(
"while instantiating return type for " + builder_->Symbols().NameFor(decl->symbol),
decl->source);
return nullptr;
}
switch (decl->PipelineStage()) {
case ast::PipelineStage::kVertex:
str->AddUsage(sem::PipelineStageUsage::kVertexOutput);
break;
case ast::PipelineStage::kFragment:
str->AddUsage(sem::PipelineStageUsage::kFragmentOutput);
break;
case ast::PipelineStage::kCompute:
str->AddUsage(sem::PipelineStageUsage::kComputeOutput);
break;
case ast::PipelineStage::kNone:
break;
}
}
auto* func = builder_->create<sem::Function>(decl, return_type, parameters);
builder_->Sem().Add(decl, func);
TINT_SCOPED_ASSIGNMENT(current_function_, func);
if (!WorkgroupSize(decl)) {
return nullptr;
}
if (decl->IsEntryPoint()) {
entry_points_.emplace_back(func);
}
if (decl->body) {
Mark(decl->body);
if (current_compound_statement_) {
TINT_ICE(Resolver, diagnostics_)
<< "Resolver::Function() called with a current compound statement";
return nullptr;
}
auto* body = StatementScope(decl->body, builder_->create<sem::FunctionBlockStatement>(func),
[&] { return Statements(decl->body->statements); });
if (!body) {
return nullptr;
}
func->Behaviors() = body->Behaviors();
if (func->Behaviors().Contains(sem::Behavior::kReturn)) {
// https://www.w3.org/TR/WGSL/#behaviors-rules
// We assign a behavior to each function: it is its bodys behavior
// (treating the body as a regular statement), with any "Return" replaced
// by "Next".
func->Behaviors().Remove(sem::Behavior::kReturn);
func->Behaviors().Add(sem::Behavior::kNext);
}
}
for (auto* attr : decl->attributes) {
Mark(attr);
}
if (!validator_.NoDuplicateAttributes(decl->attributes)) {
return nullptr;
}
for (auto* attr : decl->return_type_attributes) {
Mark(attr);
}
if (!validator_.NoDuplicateAttributes(decl->return_type_attributes)) {
return nullptr;
}
auto stage = current_function_ ? current_function_->Declaration()->PipelineStage()
: ast::PipelineStage::kNone;
if (!validator_.Function(func, stage)) {
return nullptr;
}
// If this is an entry point, mark all transitively called functions as being
// used by this entry point.
if (decl->IsEntryPoint()) {
for (auto* f : func->TransitivelyCalledFunctions()) {
const_cast<sem::Function*>(f)->AddAncestorEntryPoint(func);
}
}
return func;
}
bool Resolver::WorkgroupSize(const ast::Function* func) {
// Set work-group size defaults.
sem::WorkgroupSize ws;
for (int i = 0; i < 3; i++) {
ws[i].value = 1;
ws[i].overridable_const = nullptr;
}
auto* attr = ast::GetAttribute<ast::WorkgroupAttribute>(func->attributes);
if (!attr) {
return true;
}
auto values = attr->Values();
std::array<const sem::Expression*, 3> args = {};
std::array<const sem::Type*, 3> arg_tys = {};
size_t arg_count = 0;
constexpr const char* kErrBadType =
"workgroup_size argument must be either literal or module-scope constant of type i32 "
"or u32";
for (int i = 0; i < 3; i++) {
// Each argument to this attribute can either be a literal, an identifier for a module-scope
// constants, or nullptr if not specified.
auto* value = values[i];
if (!value) {
break;
}
const auto* expr = Expression(value);
if (!expr) {
return false;
}
auto* ty = expr->Type();
if (!ty->IsAnyOf<sem::I32, sem::U32, sem::AbstractInt>()) {
AddError(kErrBadType, value->source);
return false;
}
args[i] = expr;
arg_tys[i] = ty;
arg_count++;
}
auto* common_ty = sem::Type::Common(arg_tys.data(), arg_count);
if (!common_ty) {
AddError("workgroup_size arguments must be of the same type, either i32 or u32",
attr->source);
return false;
}
// If all arguments are abstract-integers, then materialize to i32.
if (common_ty->Is<sem::AbstractInt>()) {
common_ty = builder_->create<sem::I32>();
}
for (size_t i = 0; i < arg_count; i++) {
auto* materialized = Materialize(args[i], common_ty);
if (!materialized) {
return false;
}
sem::Constant value;
if (auto* user = args[i]->As<sem::VariableUser>()) {
// We have an variable of a module-scope constant.
auto* decl = user->Variable()->Declaration();
if (!decl->is_const) {
AddError(kErrBadType, values[i]->source);
return false;
}
// Capture the constant if it is pipeline-overridable.
if (decl->is_overridable) {
ws[i].overridable_const = decl;
}
if (decl->constructor) {
value = sem_.Get(decl->constructor)->ConstantValue();
} else {
// No constructor means this value must be overriden by the user.
ws[i].value = 0;
continue;
}
} else if (values[i]->Is<ast::LiteralExpression>()) {
value = materialized->ConstantValue();
} else {
AddError(
"workgroup_size argument must be either a literal or a "
"module-scope constant",
values[i]->source);
return false;
}
if (!value) {
TINT_ICE(Resolver, diagnostics_)
<< "could not resolve constant workgroup_size constant value";
continue;
}
// validator_.Validate and set the default value for this dimension.
if (value.Element<AInt>(0).value < 1) {
AddError("workgroup_size argument must be at least 1", values[i]->source);
return false;
}
ws[i].value = value.Element<uint32_t>(0);
}
current_function_->SetWorkgroupSize(std::move(ws));
return true;
}
bool Resolver::Statements(const ast::StatementList& stmts) {
sem::Behaviors behaviors{sem::Behavior::kNext};
bool reachable = true;
for (auto* stmt : stmts) {
Mark(stmt);
auto* sem = Statement(stmt);
if (!sem) {
return false;
}
// s1 s2:(B1{Next}) B2
sem->SetIsReachable(reachable);
if (reachable) {
behaviors = (behaviors - sem::Behavior::kNext) + sem->Behaviors();
}
reachable = reachable && sem->Behaviors().Contains(sem::Behavior::kNext);
}
current_statement_->Behaviors() = behaviors;
if (!validator_.Statements(stmts)) {
return false;
}
return true;
}
sem::Statement* Resolver::Statement(const ast::Statement* stmt) {
return Switch(
stmt,
// Compound statements. These create their own sem::CompoundStatement
// bindings.
[&](const ast::BlockStatement* b) { return BlockStatement(b); },
[&](const ast::ForLoopStatement* l) { return ForLoopStatement(l); },
[&](const ast::LoopStatement* l) { return LoopStatement(l); },
[&](const ast::IfStatement* i) { return IfStatement(i); },
[&](const ast::SwitchStatement* s) { return SwitchStatement(s); },
// Non-Compound statements
[&](const ast::AssignmentStatement* a) { return AssignmentStatement(a); },
[&](const ast::BreakStatement* b) { return BreakStatement(b); },
[&](const ast::CallStatement* c) { return CallStatement(c); },
[&](const ast::CompoundAssignmentStatement* c) { return CompoundAssignmentStatement(c); },
[&](const ast::ContinueStatement* c) { return ContinueStatement(c); },
[&](const ast::DiscardStatement* d) { return DiscardStatement(d); },
[&](const ast::FallthroughStatement* f) { return FallthroughStatement(f); },
[&](const ast::IncrementDecrementStatement* i) { return IncrementDecrementStatement(i); },
[&](const ast::ReturnStatement* r) { return ReturnStatement(r); },
[&](const ast::VariableDeclStatement* v) { return VariableDeclStatement(v); },
// Error cases
[&](const ast::CaseStatement*) {
AddError("case statement can only be used inside a switch statement", stmt->source);
return nullptr;
},
[&](Default) {
AddError("unknown statement type: " + std::string(stmt->TypeInfo().name), stmt->source);
return nullptr;
});
}
sem::CaseStatement* Resolver::CaseStatement(const ast::CaseStatement* stmt) {
auto* sem =
builder_->create<sem::CaseStatement>(stmt, current_compound_statement_, current_function_);
return StatementScope(stmt, sem, [&] {
sem->Selectors().reserve(stmt->selectors.size());
for (auto* sel : stmt->selectors) {
auto* expr = Expression(sel);
if (!expr) {
return false;
}
sem->Selectors().emplace_back(expr);
}
Mark(stmt->body);
auto* body = BlockStatement(stmt->body);
if (!body) {
return false;
}
sem->SetBlock(body);
sem->Behaviors() = body->Behaviors();
return true;
});
}
sem::IfStatement* Resolver::IfStatement(const ast::IfStatement* stmt) {
auto* sem =
builder_->create<sem::IfStatement>(stmt, current_compound_statement_, current_function_);
return StatementScope(stmt, sem, [&] {
auto* cond = Expression(stmt->condition);
if (!cond) {
return false;
}
sem->SetCondition(cond);
sem->Behaviors() = cond->Behaviors();
sem->Behaviors().Remove(sem::Behavior::kNext);
Mark(stmt->body);
auto* body = builder_->create<sem::BlockStatement>(stmt->body, current_compound_statement_,
current_function_);
if (!StatementScope(stmt->body, body, [&] { return Statements(stmt->body->statements); })) {
return false;
}
sem->Behaviors().Add(body->Behaviors());
if (stmt->else_statement) {
Mark(stmt->else_statement);
auto* else_sem = Statement(stmt->else_statement);
if (!else_sem) {
return false;
}
sem->Behaviors().Add(else_sem->Behaviors());
} else {
// https://www.w3.org/TR/WGSL/#behaviors-rules
// if statements without an else branch are treated as if they had an
// empty else branch (which adds Next to their behavior)
sem->Behaviors().Add(sem::Behavior::kNext);
}
return validator_.IfStatement(sem);
});
}
sem::BlockStatement* Resolver::BlockStatement(const ast::BlockStatement* stmt) {
auto* sem = builder_->create<sem::BlockStatement>(
stmt->As<ast::BlockStatement>(), current_compound_statement_, current_function_);
return StatementScope(stmt, sem, [&] { return Statements(stmt->statements); });
}
sem::LoopStatement* Resolver::LoopStatement(const ast::LoopStatement* stmt) {
auto* sem =
builder_->create<sem::LoopStatement>(stmt, current_compound_statement_, current_function_);
return StatementScope(stmt, sem, [&] {
Mark(stmt->body);
auto* body = builder_->create<sem::LoopBlockStatement>(
stmt->body, current_compound_statement_, current_function_);
return StatementScope(stmt->body, body, [&] {
if (!Statements(stmt->body->statements)) {
return false;
}
auto& behaviors = sem->Behaviors();
behaviors = body->Behaviors();
if (stmt->continuing) {
Mark(stmt->continuing);
auto* continuing = StatementScope(
stmt->continuing,
builder_->create<sem::LoopContinuingBlockStatement>(
stmt->continuing, current_compound_statement_, current_function_),
[&] { return Statements(stmt->continuing->statements); });
if (!continuing) {
return false;
}
behaviors.Add(continuing->Behaviors());
}
if (behaviors.Contains(sem::Behavior::kBreak)) { // Does the loop exit?
behaviors.Add(sem::Behavior::kNext);
} else {
behaviors.Remove(sem::Behavior::kNext);
}
behaviors.Remove(sem::Behavior::kBreak, sem::Behavior::kContinue);
return validator_.LoopStatement(sem);
});
});
}
sem::ForLoopStatement* Resolver::ForLoopStatement(const ast::ForLoopStatement* stmt) {
auto* sem = builder_->create<sem::ForLoopStatement>(stmt, current_compound_statement_,
current_function_);
return StatementScope(stmt, sem, [&] {
auto& behaviors = sem->Behaviors();
if (auto* initializer = stmt->initializer) {
Mark(initializer);
auto* init = Statement(initializer);
if (!init) {
return false;
}
behaviors.Add(init->Behaviors());
}
if (auto* cond_expr = stmt->condition) {
auto* cond = Expression(cond_expr);
if (!cond) {
return false;
}
sem->SetCondition(cond);
behaviors.Add(cond->Behaviors());
}
if (auto* continuing = stmt->continuing) {
Mark(continuing);
auto* cont = Statement(continuing);
if (!cont) {
return false;
}
behaviors.Add(cont->Behaviors());
}
Mark(stmt->body);
auto* body = builder_->create<sem::LoopBlockStatement>(
stmt->body, current_compound_statement_, current_function_);
if (!StatementScope(stmt->body, body, [&] { return Statements(stmt->body->statements); })) {
return false;
}
behaviors.Add(body->Behaviors());
if (stmt->condition || behaviors.Contains(sem::Behavior::kBreak)) { // Does the loop exit?
behaviors.Add(sem::Behavior::kNext);
} else {
behaviors.Remove(sem::Behavior::kNext);
}
behaviors.Remove(sem::Behavior::kBreak, sem::Behavior::kContinue);
return validator_.ForLoopStatement(sem);
});
}
sem::Expression* Resolver::Expression(const ast::Expression* root) {
std::vector<const ast::Expression*> sorted;
constexpr size_t kMaxExpressionDepth = 512U;
bool failed = false;
if (!ast::TraverseExpressions<ast::TraverseOrder::RightToLeft>(
root, diagnostics_, [&](const ast::Expression* expr, size_t depth) {
if (depth > kMaxExpressionDepth) {
AddError(
"reached max expression depth of " + std::to_string(kMaxExpressionDepth),
expr->source);
failed = true;
return ast::TraverseAction::Stop;
}
if (!Mark(expr)) {
failed = true;
return ast::TraverseAction::Stop;
}
sorted.emplace_back(expr);
return ast::TraverseAction::Descend;
})) {
return nullptr;
}
if (failed) {
return nullptr;
}
for (auto* expr : utils::Reverse(sorted)) {
auto* sem_expr = Switch(
expr,
[&](const ast::IndexAccessorExpression* array) -> sem::Expression* {
return IndexAccessor(array);
},
[&](const ast::BinaryExpression* bin_op) -> sem::Expression* { return Binary(bin_op); },
[&](const ast::BitcastExpression* bitcast) -> sem::Expression* {
return Bitcast(bitcast);
},
[&](const ast::CallExpression* call) -> sem::Expression* { return Call(call); },
[&](const ast::IdentifierExpression* ident) -> sem::Expression* {
return Identifier(ident);
},
[&](const ast::LiteralExpression* literal) -> sem::Expression* {
return Literal(literal);
},
[&](const ast::MemberAccessorExpression* member) -> sem::Expression* {
return MemberAccessor(member);
},
[&](const ast::UnaryOpExpression* unary) -> sem::Expression* { return UnaryOp(unary); },
[&](const ast::PhonyExpression*) -> sem::Expression* {
return builder_->create<sem::Expression>(expr, builder_->create<sem::Void>(),
current_statement_, sem::Constant{},
/* has_side_effects */ false);
},
[&](Default) {
TINT_ICE(Resolver, diagnostics_)
<< "unhandled expression type: " << expr->TypeInfo().name;
return nullptr;
});
if (!sem_expr) {
return nullptr;
}
builder_->Sem().Add(expr, sem_expr);
if (expr == root) {
return sem_expr;
}
}
TINT_ICE(Resolver, diagnostics_) << "Expression() did not find root node";
return nullptr;
}
const sem::Expression* Resolver::Materialize(const sem::Expression* expr,
const sem::Type* target_type /* = nullptr */) {
if (!expr) {
return nullptr; // Allow for Materialize(Expression(blah))
}
// Helper for actually creating the the materialize node, performing the constant cast, updating
// the ast -> sem binding, and performing validation.
auto materialize = [&](const sem::Type* target_ty) -> sem::Materialize* {
auto* decl = expr->Declaration();
auto expr_val = EvaluateConstantValue(decl, expr->Type());
if (!expr_val) {
return nullptr;
}
if (!expr_val->IsValid()) {
TINT_ICE(Resolver, builder_->Diagnostics())
<< decl->source
<< "EvaluateConstantValue() returned invalid value for materialized value of type: "
<< builder_->FriendlyName(expr->Type());
return nullptr;
}
auto materialized_val = ConvertValue(expr_val.Get(), target_ty, decl->source);
if (!materialized_val) {
return nullptr;
}
if (!materialized_val->IsValid()) {
TINT_ICE(Resolver, builder_->Diagnostics())
<< decl->source << "ConvertValue(" << builder_->FriendlyName(expr_val->Type())
<< " -> " << builder_->FriendlyName(target_ty) << ") returned invalid value";
return nullptr;
}
auto* m =
builder_->create<sem::Materialize>(expr, current_statement_, materialized_val.Get());
m->Behaviors() = expr->Behaviors();
builder_->Sem().Replace(decl, m);
return validator_.Materialize(m) ? m : nullptr;
};
// Helpers for constructing semantic types
auto i32 = [&] { return builder_->create<sem::I32>(); };
auto f32 = [&] { return builder_->create<sem::F32>(); };
auto i32v = [&](uint32_t width) { return builder_->create<sem::Vector>(i32(), width); };
auto f32v = [&](uint32_t width) { return builder_->create<sem::Vector>(f32(), width); };
auto f32m = [&](uint32_t columns, uint32_t rows) {
return builder_->create<sem::Matrix>(f32v(rows), columns);
};
// Type dispatch based on the expression type
return Switch<sem::Expression*>(
expr->Type(), //
[&](const sem::AbstractInt*) { return materialize(target_type ? target_type : i32()); },
[&](const sem::AbstractFloat*) { return materialize(target_type ? target_type : f32()); },
[&](const sem::Vector* v) {
return Switch(
v->type(), //
[&](const sem::AbstractInt*) {
return materialize(target_type ? target_type : i32v(v->Width()));
},
[&](const sem::AbstractFloat*) {
return materialize(target_type ? target_type : f32v(v->Width()));
},
[&](Default) { return expr; });
},
[&](const sem::Matrix* m) {
return Switch(
m->type(), //
[&](const sem::AbstractFloat*) {
return materialize(target_type ? target_type : f32m(m->columns(), m->rows()));
},
[&](Default) { return expr; });
},
[&](Default) { return expr; });
}
bool Resolver::MaterializeArguments(std::vector<const sem::Expression*>& args,
const sem::CallTarget* target) {
for (size_t i = 0, n = std::min(args.size(), target->Parameters().size()); i < n; i++) {
const auto* param_ty = target->Parameters()[i]->Type();
if (ShouldMaterializeArgument(param_ty)) {
auto* materialized = Materialize(args[i], param_ty);
if (!materialized) {
return false;
}
args[i] = materialized;
}
}
return true;
}
bool Resolver::ShouldMaterializeArgument(const sem::Type* parameter_ty) const {
const auto* param_el_ty = sem::Type::ElementOf(parameter_ty);
return param_el_ty && !param_el_ty->Is<sem::AbstractNumeric>();
}
sem::Expression* Resolver::IndexAccessor(const ast::IndexAccessorExpression* expr) {
auto* idx = Materialize(sem_.Get(expr->index));
if (!idx) {
return nullptr;
}
auto* obj = sem_.Get(expr->object);
auto* obj_raw_ty = obj->Type();
auto* obj_ty = obj_raw_ty->UnwrapRef();
auto* ty = Switch(
obj_ty, //
[&](const sem::Array* arr) { return arr->ElemType(); },
[&](const sem::Vector* vec) { return vec->type(); },
[&](const sem::Matrix* mat) {
return builder_->create<sem::Vector>(mat->type(), mat->rows());
},
[&](Default) {
AddError("cannot index type '" + sem_.TypeNameOf(obj_ty) + "'", expr->source);
return nullptr;
});
if (ty == nullptr) {
return nullptr;
}
auto* idx_ty = idx->Type()->UnwrapRef();
if (!idx_ty->IsAnyOf<sem::I32, sem::U32>()) {
AddError("index must be of type 'i32' or 'u32', found: '" + sem_.TypeNameOf(idx_ty) + "'",
idx->Declaration()->source);
return nullptr;
}
// If we're extracting from a reference, we return a reference.
if (auto* ref = obj_raw_ty->As<sem::Reference>()) {
ty = builder_->create<sem::Reference>(ty, ref->StorageClass(), ref->Access());
}
auto val = EvaluateConstantValue(expr, ty);
if (!val) {
return nullptr;
}
bool has_side_effects = idx->HasSideEffects() || obj->HasSideEffects();
auto* sem = builder_->create<sem::Expression>(expr, ty, current_statement_, val.Get(),
has_side_effects, obj->SourceVariable());
sem->Behaviors() = idx->Behaviors() + obj->Behaviors();
return sem;
}
sem::Expression* Resolver::Bitcast(const ast::BitcastExpression* expr) {
auto* inner = Materialize(sem_.Get(expr->expr));
if (!inner) {
return nullptr;
}
auto* ty = Type(expr->type);
if (!ty) {
return nullptr;
}
auto val = EvaluateConstantValue(expr, ty);
if (!val) {
return nullptr;
}
auto* sem = builder_->create<sem::Expression>(expr, ty, current_statement_, val.Get(),
inner->HasSideEffects());
sem->Behaviors() = inner->Behaviors();
if (!validator_.Bitcast(expr, ty)) {
return nullptr;
}
return sem;
}
sem::Call* Resolver::Call(const ast::CallExpression* expr) {
// A CallExpression can resolve to one of:
// * A function call.
// * A builtin call.
// * A type constructor.
// * A type conversion.
// Resolve all of the arguments, their types and the set of behaviors.
std::vector<const sem::Expression*> args(expr->args.size());
sem::Behaviors arg_behaviors;
for (size_t i = 0; i < expr->args.size(); i++) {
auto* arg = sem_.Get(expr->args[i]);
if (!arg) {
return nullptr;
}
args[i] = arg;
arg_behaviors.Add(arg->Behaviors());
}
arg_behaviors.Remove(sem::Behavior::kNext);
// Did any arguments have side effects?
bool has_side_effects =
std::any_of(args.begin(), args.end(), [](auto* e) { return e->HasSideEffects(); });
// ct_ctor_or_conv is a helper for building either a sem::TypeConstructor or sem::TypeConversion
// call for a CtorConvIntrinsic with an optional template argument type.
auto ct_ctor_or_conv = [&](CtorConvIntrinsic ty, const sem::Type* template_arg) -> sem::Call* {
auto arg_tys = utils::Transform(args, [](auto* arg) { return arg->Type(); });
auto* call_target = intrinsic_table_->Lookup(ty, template_arg, arg_tys, expr->source);
if (!call_target) {
return nullptr;
}
if (!MaterializeArguments(args, call_target)) {
return nullptr;
}
auto val = EvaluateConstantValue(expr, call_target->ReturnType());
if (!val) {
return nullptr;
}
return builder_->create<sem::Call>(expr, call_target, std::move(args), current_statement_,
val.Get(), has_side_effects);
};
// ct_ctor_or_conv is a helper for building either a sem::TypeConstructor or sem::TypeConversion
// call for the given semantic type.
auto ty_ctor_or_conv = [&](const sem::Type* ty) {
return Switch(
ty, //
[&](const sem::Vector* v) {
return ct_ctor_or_conv(VectorCtorConvIntrinsic(v->Width()), v->type());
},
[&](const sem::Matrix* m) {
return ct_ctor_or_conv(MatrixCtorConvIntrinsic(m->columns(), m->rows()), m->type());
},
[&](const sem::I32*) { return ct_ctor_or_conv(CtorConvIntrinsic::kI32, nullptr); },
[&](const sem::U32*) { return ct_ctor_or_conv(CtorConvIntrinsic::kU32, nullptr); },
[&](const sem::F32*) { return ct_ctor_or_conv(CtorConvIntrinsic::kF32, nullptr); },
[&](const sem::Bool*) { return ct_ctor_or_conv(CtorConvIntrinsic::kBool, nullptr); },
[&](const sem::Array* arr) -> sem::Call* {
auto* call_target = utils::GetOrCreate(
array_ctors_, ArrayConstructorSig{{arr, args.size()}},
[&]() -> sem::TypeConstructor* {
sem::ParameterList params(args.size());
for (size_t i = 0; i < args.size(); i++) {
params[i] = builder_->create<sem::Parameter>(
nullptr, // declaration
static_cast<uint32_t>(i), // index
arr->ElemType(), // type
ast::StorageClass::kNone, // storage_class
ast::Access::kUndefined); // access
}
return builder_->create<sem::TypeConstructor>(arr, std::move(params));
});
if (!MaterializeArguments(args, call_target)) {
return nullptr;
}
auto val = EvaluateConstantValue(expr, call_target->ReturnType());
if (!val) {
return nullptr;
}
return builder_->create<sem::Call>(expr, call_target, std::move(args),
current_statement_, val.Get(), has_side_effects);
},
[&](const sem::Struct* str) -> sem::Call* {
auto* call_target = utils::GetOrCreate(
struct_ctors_, StructConstructorSig{{str, args.size()}},
[&]() -> sem::TypeConstructor* {
sem::ParameterList params(std::min(args.size(), str->Members().size()));
for (size_t i = 0, n = params.size(); i < n; i++) {
params[i] = builder_->create<sem::Parameter>(
nullptr, // declaration
static_cast<uint32_t>(i), // index
str->Members()[i]->Type(), // type
ast::StorageClass::kNone, // storage_class
ast::Access::kUndefined); // access
}
return builder_->create<sem::TypeConstructor>(str, std::move(params));
});
if (!MaterializeArguments(args, call_target)) {
return nullptr;
}
auto val = EvaluateConstantValue(expr, call_target->ReturnType());
if (!val) {
return nullptr;
}
return builder_->create<sem::Call>(expr, call_target, std::move(args),
current_statement_, val.Get(), has_side_effects);
},
[&](Default) {
AddError("type is not constructible", expr->source);
return nullptr;
});
};
// ast::CallExpression has a target which is either an ast::Type or an ast::IdentifierExpression
sem::Call* call = nullptr;
if (expr->target.type) {
// ast::CallExpression has an ast::Type as the target.
// This call is either a type constructor or type conversion.
call = Switch(
expr->target.type,
[&](const ast::Vector* v) -> sem::Call* {
Mark(v);
// vector element type must be inferred if it was not specified.
sem::Type* template_arg = nullptr;
if (v->type) {
template_arg = Type(v->type);
if (!template_arg) {
return nullptr;
}
}
if (auto* c = ct_ctor_or_conv(VectorCtorConvIntrinsic(v->width), template_arg)) {
builder_->Sem().Add(expr->target.type, c->Target()->ReturnType());
return c;
}
return nullptr;
},
[&](const ast::Matrix* m) -> sem::Call* {
Mark(m);
// matrix element type must be inferred if it was not specified.
sem::Type* template_arg = nullptr;
if (m->type) {
template_arg = Type(m->type);
if (!template_arg) {
return nullptr;
}
}
if (auto* c = ct_ctor_or_conv(MatrixCtorConvIntrinsic(m->columns, m->rows),
template_arg)) {
builder_->Sem().Add(expr->target.type, c->Target()->ReturnType());
return c;
}
return nullptr;
},
[&](const ast::Type* ast) -> sem::Call* {
// Handler for AST types that do not have an optional element type.
if (auto* ty = Type(ast)) {
return ty_ctor_or_conv(ty);
}
return nullptr;
},
[&](Default) {
TINT_ICE(Resolver, diagnostics_)
<< expr->source << " unhandled CallExpression target:\n"
<< "type: "
<< (expr->target.type ? expr->target.type->TypeInfo().name : "<null>");
return nullptr;
});
} else {
// ast::CallExpression has an ast::IdentifierExpression as the target.
// This call is either a function call, builtin call, type constructor or type conversion.
auto* ident = expr->target.name;
Mark(ident);
auto* resolved = sem_.ResolvedSymbol(ident);
call = Switch<sem::Call*>(
resolved, //
[&](sem::Type* ty) {
// A type constructor or conversions.
// Note: Unlike the code path where we're resolving the call target from an
// ast::Type, all types must already have the element type explicitly specified, so
// there's no need to infer element types.
return ty_ctor_or_conv(ty);
},
[&](sem::Function* func) {
return FunctionCall(expr, func, std::move(args), arg_behaviors);
},
[&](sem::Variable* var) {
auto name = builder_->Symbols().NameFor(var->Declaration()->symbol);
AddError("cannot call variable '" + name + "'", ident->source);
AddNote("'" + name + "' declared here", var->Declaration()->source);
return nullptr;
},
[&](Default) -> sem::Call* {
auto name = builder_->Symbols().NameFor(ident->symbol);
auto builtin_type = sem::ParseBuiltinType(name);
if (builtin_type != sem::BuiltinType::kNone) {
return BuiltinCall(expr, builtin_type, std::move(args));
}
TINT_ICE(Resolver, diagnostics_)
<< expr->source << " unhandled CallExpression target:\n"
<< "resolved: " << (resolved ? resolved->TypeInfo().name : "<null>") << "\n"
<< "name: " << builder_->Symbols().NameFor(ident->symbol);
return nullptr;
});
}
if (!call) {
return nullptr;
}
return validator_.Call(call, current_statement_) ? call : nullptr;
}
sem::Call* Resolver::BuiltinCall(const ast::CallExpression* expr,
sem::BuiltinType builtin_type,
std::vector<const sem::Expression*> args) {
IntrinsicTable::Builtin builtin;
{
auto arg_tys = utils::Transform(args, [](auto* arg) { return arg->Type(); });
builtin = intrinsic_table_->Lookup(builtin_type, arg_tys, expr->source);
if (!builtin.sem) {
return nullptr;
}
}
if (!MaterializeArguments(args, builtin.sem)) {
return nullptr;
}
if (builtin.sem->IsDeprecated()) {
AddWarning("use of deprecated builtin", expr->source);
}
// If the builtin is @const, and all arguments have constant values, evaluate the builtin now.
sem::Constant constant;
if (builtin.const_eval_fn) {
std::vector<sem::Constant> values(args.size());
bool is_const = true; // all arguments have constant values
for (size_t i = 0; i < values.size(); i++) {
if (auto v = args[i]->ConstantValue()) {
values[i] = std::move(v);
} else {
is_const = false;
break;
}
}
if (is_const) {
constant = builtin.const_eval_fn(*builder_, values.data(), args.size());
}
}
bool has_side_effects =
builtin.sem->HasSideEffects() ||
std::any_of(args.begin(), args.end(), [](auto* e) { return e->HasSideEffects(); });
auto* call = builder_->create<sem::Call>(expr, builtin.sem, std::move(args), current_statement_,
constant, has_side_effects);
current_function_->AddDirectlyCalledBuiltin(builtin.sem);
if (!validator_.RequiredExtensionForBuiltinFunction(call, enabled_extensions_)) {
return nullptr;
}
if (IsTextureBuiltin(builtin_type)) {
if (!validator_.TextureBuiltinFunction(call)) {
return nullptr;
}
CollectTextureSamplerPairs(builtin.sem, call->Arguments());
}
if (!validator_.BuiltinCall(call)) {
return nullptr;
}
current_function_->AddDirectCall(call);
return call;
}
void Resolver::CollectTextureSamplerPairs(const sem::Builtin* builtin,
const std::vector<const sem::Expression*>& args) const {
// Collect a texture/sampler pair for this builtin.
const auto& signature = builtin->Signature();
int texture_index = signature.IndexOf(sem::ParameterUsage::kTexture);
if (texture_index == -1) {
TINT_ICE(Resolver, diagnostics_) << "texture builtin without texture parameter";
}
auto* texture = args[texture_index]->As<sem::VariableUser>()->Variable();
if (!texture->Type()->UnwrapRef()->Is<sem::StorageTexture>()) {
int sampler_index = signature.IndexOf(sem::ParameterUsage::kSampler);
const sem::Variable* sampler =
sampler_index != -1 ? args[sampler_index]->As<sem::VariableUser>()->Variable()
: nullptr;
current_function_->AddTextureSamplerPair(texture, sampler);
}
}
sem::Call* Resolver::FunctionCall(const ast::CallExpression* expr,
sem::Function* target,
std::vector<const sem::Expression*> args,
sem::Behaviors arg_behaviors) {
auto sym = expr->target.name->symbol;
auto name = builder_->Symbols().NameFor(sym);
if (!MaterializeArguments(args, target)) {
return nullptr;
}
// TODO(crbug.com/tint/1420): For now, assume all function calls have side
// effects.
bool has_side_effects = true;
auto* call = builder_->create<sem::Call>(expr, target, std::move(args), current_statement_,
sem::Constant{}, has_side_effects);
target->AddCallSite(call);
call->Behaviors() = arg_behaviors + target->Behaviors();
if (!validator_.FunctionCall(call, current_statement_)) {
return nullptr;
}
if (current_function_) {
// Note: Requires called functions to be resolved first.
// This is currently guaranteed as functions must be declared before
// use.
current_function_->AddTransitivelyCalledFunction(target);
current_function_->AddDirectCall(call);
for (auto* transitive_call : target->TransitivelyCalledFunctions()) {
current_function_->AddTransitivelyCalledFunction(transitive_call);
}
// We inherit any referenced variables from the callee.
for (auto* var : target->TransitivelyReferencedGlobals()) {
current_function_->AddTransitivelyReferencedGlobal(var);
}
// Note: Validation *must* be performed before calling this method.
CollectTextureSamplerPairs(target, call->Arguments());
}
return call;
}
void Resolver::CollectTextureSamplerPairs(sem::Function* func,
const std::vector<const sem::Expression*>& args) const {
// Map all texture/sampler pairs from the target function to the
// current function. These can only be global or parameter
// variables. Resolve any parameter variables to the corresponding
// argument passed to the current function. Leave global variables
// as-is. Then add the mapped pair to the current function's list of
// texture/sampler pairs.
for (sem::VariablePair pair : func->TextureSamplerPairs()) {
const sem::Variable* texture = pair.first;
const sem::Variable* sampler = pair.second;
if (auto* param = texture->As<sem::Parameter>()) {
texture = args[param->Index()]->As<sem::VariableUser>()->Variable();
}
if (sampler) {
if (auto* param = sampler->As<sem::Parameter>()) {
sampler = args[param->Index()]->As<sem::VariableUser>()->Variable();
}
}
current_function_->AddTextureSamplerPair(texture, sampler);
}
}
sem::Expression* Resolver::Literal(const ast::LiteralExpression* literal) {
auto* ty = Switch(
literal,
[&](const ast::IntLiteralExpression* i) -> sem::Type* {
switch (i->suffix) {
case ast::IntLiteralExpression::Suffix::kNone:
return builder_->create<sem::AbstractInt>();
case ast::IntLiteralExpression::Suffix::kI:
return builder_->create<sem::I32>();
case ast::IntLiteralExpression::Suffix::kU:
return builder_->create<sem::U32>();
}
return nullptr;
},
[&](const ast::FloatLiteralExpression* f) -> sem::Type* {
switch (f->suffix) {
case ast::FloatLiteralExpression::Suffix::kNone:
return builder_->create<sem::AbstractFloat>();
case ast::FloatLiteralExpression::Suffix::kF:
return builder_->create<sem::F32>();
case ast::FloatLiteralExpression::Suffix::kH:
return builder_->create<sem::F16>();
}
return nullptr;
},
[&](const ast::BoolLiteralExpression*) { return builder_->create<sem::Bool>(); },
[&](Default) { return nullptr; });
if (ty == nullptr) {
TINT_UNREACHABLE(Resolver, builder_->Diagnostics())
<< "Unhandled literal type: " << literal->TypeInfo().name;
return nullptr;
}
if ((ty->Is<sem::F16>()) && (!enabled_extensions_.contains(tint::ast::Extension::kF16))) {
AddError("f16 literal used without 'f16' extension enabled", literal->source);
return nullptr;
}
auto val = EvaluateConstantValue(literal, ty);
if (!val) {
return nullptr;
}
return builder_->create<sem::Expression>(literal, ty, current_statement_, val.Get(),
/* has_side_effects */ false);
}
sem::Expression* Resolver::Identifier(const ast::IdentifierExpression* expr) {
auto symbol = expr->symbol;
auto* resolved = sem_.ResolvedSymbol(expr);
if (auto* var = As<sem::Variable>(resolved)) {
auto* user = builder_->create<sem::VariableUser>(expr, current_statement_, var);
if (current_statement_) {
// If identifier is part of a loop continuing block, make sure it
// doesn't refer to a variable that is bypassed by a continue statement
// in the loop's body block.
if (auto* continuing_block =
current_statement_->FindFirstParent<sem::LoopContinuingBlockStatement>()) {
auto* loop_block = continuing_block->FindFirstParent<sem::LoopBlockStatement>();
if (loop_block->FirstContinue()) {
auto& decls = loop_block->Decls();
// If our identifier is in loop_block->decls, make sure its index is
// less than first_continue
auto iter = std::find_if(decls.begin(), decls.end(),
[&symbol](auto* v) { return v->symbol == symbol; });
if (iter != decls.end()) {
auto var_decl_index =
static_cast<size_t>(std::distance(decls.begin(), iter));
if (var_decl_index >= loop_block->NumDeclsAtFirstContinue()) {
AddError("continue statement bypasses declaration of '" +
builder_->Symbols().NameFor(symbol) + "'",
loop_block->FirstContinue()->source);
AddNote("identifier '" + builder_->Symbols().NameFor(symbol) +
"' declared here",
(*iter)->source);
AddNote("identifier '" + builder_->Symbols().NameFor(symbol) +
"' referenced in continuing block here",
expr->source);
return nullptr;
}
}
}
}
}
if (current_function_) {
if (auto* global = var->As<sem::GlobalVariable>()) {
current_function_->AddDirectlyReferencedGlobal(global);
}
}
var->AddUser(user);
return user;
}
if (Is<sem::Function>(resolved)) {
AddError("missing '(' for function call", expr->source.End());
return nullptr;
}
if (IsBuiltin(symbol)) {
AddError("missing '(' for builtin call", expr->source.End());
return nullptr;
}
if (resolved->Is<sem::Type>()) {
AddError("missing '(' for type constructor or cast", expr->source.End());
return nullptr;
}
TINT_ICE(Resolver, diagnostics_)
<< expr->source << " unresolved identifier:\n"
<< "resolved: " << (resolved ? resolved->TypeInfo().name : "<null>") << "\n"
<< "name: " << builder_->Symbols().NameFor(symbol);
return nullptr;
}
sem::Expression* Resolver::MemberAccessor(const ast::MemberAccessorExpression* expr) {
auto* structure = sem_.TypeOf(expr->structure);
auto* storage_ty = structure->UnwrapRef();
auto* source_var = sem_.Get(expr->structure)->SourceVariable();
const sem::Type* ret = nullptr;
std::vector<uint32_t> swizzle;
// Structure may be a side-effecting expression (e.g. function call).
auto* sem_structure = sem_.Get(expr->structure);
bool has_side_effects = sem_structure && sem_structure->HasSideEffects();
if (auto* str = storage_ty->As<sem::Struct>()) {
Mark(expr->member);
auto symbol = expr->member->symbol;
const sem::StructMember* member = nullptr;
for (auto* m : str->Members()) {
if (m->Name() == symbol) {
ret = m->Type();
member = m;
break;
}
}
if (ret == nullptr) {
AddError("struct member " + builder_->Symbols().NameFor(symbol) + " not found",
expr->source);
return nullptr;
}
// If we're extracting from a reference, we return a reference.
if (auto* ref = structure->As<sem::Reference>()) {
ret = builder_->create<sem::Reference>(ret, ref->StorageClass(), ref->Access());
}
return builder_->create<sem::StructMemberAccess>(expr, ret, current_statement_, member,
has_side_effects, source_var);
}
if (auto* vec = storage_ty->As<sem::Vector>()) {
Mark(expr->member);
std::string s = builder_->Symbols().NameFor(expr->member->symbol);
auto size = s.size();
swizzle.reserve(s.size());
for (auto c : s) {
switch (c) {
case 'x':
case 'r':
swizzle.emplace_back(0);
break;
case 'y':
case 'g':
swizzle.emplace_back(1);
break;
case 'z':
case 'b':
swizzle.emplace_back(2);
break;
case 'w':
case 'a':
swizzle.emplace_back(3);
break;
default:
AddError("invalid vector swizzle character",
expr->member->source.Begin() + swizzle.size());
return nullptr;
}
if (swizzle.back() >= vec->Width()) {
AddError("invalid vector swizzle member", expr->member->source);
return nullptr;
}
}
if (size < 1 || size > 4) {
AddError("invalid vector swizzle size", expr->member->source);
return nullptr;
}
// All characters are valid, check if they're being mixed
auto is_rgba = [](char c) { return c == 'r' || c == 'g' || c == 'b' || c == 'a'; };
auto is_xyzw = [](char c) { return c == 'x' || c == 'y' || c == 'z' || c == 'w'; };
if (!std::all_of(s.begin(), s.end(), is_rgba) &&
!std::all_of(s.begin(), s.end(), is_xyzw)) {
AddError("invalid mixing of vector swizzle characters rgba with xyzw",
expr->member->source);
return nullptr;
}
if (size == 1) {
// A single element swizzle is just the type of the vector.
ret = vec->type();
// If we're extracting from a reference, we return a reference.
if (auto* ref = structure->As<sem::Reference>()) {
ret = builder_->create<sem::Reference>(ret, ref->StorageClass(), ref->Access());
}
} else {
// The vector will have a number of components equal to the length of
// the swizzle.
ret = builder_->create<sem::Vector>(vec->type(), static_cast<uint32_t>(size));
}
return builder_->create<sem::Swizzle>(expr, ret, current_statement_, std::move(swizzle),
has_side_effects, source_var);
}
AddError("invalid member accessor expression. Expected vector or struct, got '" +
sem_.TypeNameOf(storage_ty) + "'",
expr->structure->source);
return nullptr;
}
sem::Expression* Resolver::Binary(const ast::BinaryExpression* expr) {
const auto* lhs = sem_.Get(expr->lhs);
const auto* rhs = sem_.Get(expr->rhs);
auto* lhs_ty = lhs->Type()->UnwrapRef();
auto* rhs_ty = rhs->Type()->UnwrapRef();
auto op = intrinsic_table_->Lookup(expr->op, lhs_ty, rhs_ty, expr->source, false);
if (!op.result) {
return nullptr;
}
if (ShouldMaterializeArgument(op.lhs)) {
lhs = Materialize(lhs, op.lhs);
if (!lhs) {
return nullptr;
}
}
if (ShouldMaterializeArgument(op.rhs)) {
rhs = Materialize(rhs, op.rhs);
if (!rhs) {
return nullptr;
}
}
auto val = EvaluateConstantValue(expr, op.result);
if (!val) {
return nullptr;
}
bool has_side_effects = lhs->HasSideEffects() || rhs->HasSideEffects();
auto* sem = builder_->create<sem::Expression>(expr, op.result, current_statement_, val.Get(),
has_side_effects);
sem->Behaviors() = lhs->Behaviors() + rhs->Behaviors();
return sem;
}
sem::Expression* Resolver::UnaryOp(const ast::UnaryOpExpression* unary) {
const auto* expr = sem_.Get(unary->expr);
auto* expr_ty = expr->Type();
if (!expr_ty) {
return nullptr;
}
const sem::Type* ty = nullptr;
const sem::Variable* source_var = nullptr;
switch (unary->op) {
case ast::UnaryOp::kAddressOf:
if (auto* ref = expr_ty->As<sem::Reference>()) {
if (ref->StoreType()->UnwrapRef()->is_handle()) {
AddError("cannot take the address of expression in handle storage class",
unary->expr->source);
return nullptr;
}
auto* array = unary->expr->As<ast::IndexAccessorExpression>();
auto* member = unary->expr->As<ast::MemberAccessorExpression>();
if ((array && sem_.TypeOf(array->object)->UnwrapRef()->Is<sem::Vector>()) ||
(member && sem_.TypeOf(member->structure)->UnwrapRef()->Is<sem::Vector>())) {
AddError("cannot take the address of a vector component", unary->expr->source);
return nullptr;
}
ty = builder_->create<sem::Pointer>(ref->StoreType(), ref->StorageClass(),
ref->Access());
source_var = expr->SourceVariable();
} else {
AddError("cannot take the address of expression", unary->expr->source);
return nullptr;
}
break;
case ast::UnaryOp::kIndirection:
if (auto* ptr = expr_ty->As<sem::Pointer>()) {
ty = builder_->create<sem::Reference>(ptr->StoreType(), ptr->StorageClass(),
ptr->Access());
source_var = expr->SourceVariable();
} else {
AddError("cannot dereference expression of type '" + sem_.TypeNameOf(expr_ty) + "'",
unary->expr->source);
return nullptr;
}
break;
default: {
auto op = intrinsic_table_->Lookup(unary->op, expr_ty, unary->source);
if (!op.result) {
return nullptr;
}
if (ShouldMaterializeArgument(op.parameter)) {
expr = Materialize(expr, op.parameter);
if (!expr) {
return nullptr;
}
}
ty = op.result;
break;
}
}
auto val = EvaluateConstantValue(unary, ty);
if (!val) {
return nullptr;
}
auto* sem = builder_->create<sem::Expression>(unary, ty, current_statement_, val.Get(),
expr->HasSideEffects(), source_var);
sem->Behaviors() = expr->Behaviors();
return sem;
}
bool Resolver::Enable(const ast::Enable* enable) {
enabled_extensions_.add(enable->extension);
return true;
}
sem::Type* Resolver::TypeDecl(const ast::TypeDecl* named_type) {
sem::Type* result = nullptr;
if (auto* alias = named_type->As<ast::Alias>()) {
result = Alias(alias);
} else if (auto* str = named_type->As<ast::Struct>()) {
result = Structure(str);
} else {
TINT_UNREACHABLE(Resolver, diagnostics_) << "Unhandled TypeDecl";
}
if (!result) {
return nullptr;
}
builder_->Sem().Add(named_type, result);
return result;
}
sem::Array* Resolver::Array(const ast::Array* arr) {
auto source = arr->source;
auto* elem_type = Type(arr->type);
if (!elem_type) {
return nullptr;
}
if (!validator_.IsPlain(elem_type)) { // Check must come before GetDefaultAlignAndSize()
AddError(sem_.TypeNameOf(elem_type) + " cannot be used as an element type of an array",
source);
return nullptr;
}
uint32_t el_align = elem_type->Align();
uint32_t el_size = elem_type->Size();
if (!validator_.NoDuplicateAttributes(arr->attributes)) {
return nullptr;
}
// Look for explicit stride via @stride(n) attribute
uint32_t explicit_stride = 0;
for (auto* attr : arr->attributes) {
Mark(attr);
if (auto* sd = attr->As<ast::StrideAttribute>()) {
explicit_stride = sd->stride;
if (!validator_.ArrayStrideAttribute(sd, el_size, el_align, source)) {
return nullptr;
}
continue;
}
AddError("attribute is not valid for array types", attr->source);
return nullptr;
}
// Calculate implicit stride
uint64_t implicit_stride = utils::RoundUp<uint64_t>(el_align, el_size);
uint64_t stride = explicit_stride ? explicit_stride : implicit_stride;
// Evaluate the constant array size expression.
// sem::Array uses a size of 0 for a runtime-sized array.
uint32_t count = 0;
if (auto* count_expr = arr->count) {
const auto* count_sem = Materialize(Expression(count_expr));
if (!count_sem) {
return nullptr;
}
auto size_source = count_expr->source;
auto* ty = count_sem->Type()->UnwrapRef();
if (!ty->is_integer_scalar()) {
AddError("array size must be integer scalar", size_source);
return nullptr;
}
if (auto* ident = count_expr->As<ast::IdentifierExpression>()) {
// Make sure the identifier is a non-overridable module-scope constant.
auto* var = sem_.ResolvedSymbol<sem::GlobalVariable>(ident);
if (!var || !var->Declaration()->is_const || var->IsOverridable()) {
AddError("array size identifier must be a literal or a module-scope 'let'",
size_source);
return nullptr;
}
count_expr = var->Declaration()->constructor;
} else if (!count_expr->Is<ast::LiteralExpression>()) {
AddError("array size identifier must be a literal or a module-scope 'let'",
size_source);
return nullptr;
}
auto count_val = count_sem->ConstantValue();
if (!count_val) {
TINT_ICE(Resolver, diagnostics_) << "could not resolve array size expression";
return nullptr;
}
if (count_val.Element<AInt>(0).value < 1) {
AddError("array size must be at least 1", size_source);
return nullptr;
}
count = count_val.Element<uint32_t>(0);
}
auto size = std::max<uint64_t>(count, 1) * stride;
if (size > std::numeric_limits<uint32_t>::max()) {
std::stringstream msg;
msg << "array size in bytes must not exceed 0x" << std::hex
<< std::numeric_limits<uint32_t>::max() << ", but is 0x" << std::hex << size;
AddError(msg.str(), arr->source);
return nullptr;
}
if (stride > std::numeric_limits<uint32_t>::max() ||
implicit_stride > std::numeric_limits<uint32_t>::max()) {
TINT_ICE(Resolver, diagnostics_) << "calculated array stride exceeds uint32";
return nullptr;
}
auto* out = builder_->create<sem::Array>(
elem_type, count, el_align, static_cast<uint32_t>(size), static_cast<uint32_t>(stride),
static_cast<uint32_t>(implicit_stride));
if (!validator_.Array(out, source)) {
return nullptr;
}
if (elem_type->Is<sem::Atomic>()) {
atomic_composite_info_.emplace(out, arr->type->source);
} else {
auto found = atomic_composite_info_.find(elem_type);
if (found != atomic_composite_info_.end()) {
atomic_composite_info_.emplace(out, found->second);
}
}
return out;
}
sem::Type* Resolver::Alias(const ast::Alias* alias) {
auto* ty = Type(alias->type);
if (!ty) {
return nullptr;
}
if (!validator_.Alias(alias)) {
return nullptr;
}
return ty;
}
sem::Struct* Resolver::Structure(const ast::Struct* str) {
if (!validator_.NoDuplicateAttributes(str->attributes)) {
return nullptr;
}
for (auto* attr : str->attributes) {
Mark(attr);
}
sem::StructMemberList sem_members;
sem_members.reserve(str->members.size());
// Calculate the effective size and alignment of each field, and the overall
// size of the structure.
// For size, use the size attribute if provided, otherwise use the default
// size for the type.
// For alignment, use the alignment attribute if provided, otherwise use the
// default alignment for the member type.
// Diagnostic errors are raised if a basic rule is violated.
// Validation of storage-class rules requires analysing the actual variable
// usage of the structure, and so is performed as part of the variable
// validation.
uint64_t struct_size = 0;
uint64_t struct_align = 1;
std::unordered_map<Symbol, const ast::StructMember*> member_map;
for (auto* member : str->members) {
Mark(member);
auto result = member_map.emplace(member->symbol, member);
if (!result.second) {
AddError("redefinition of '" + builder_->Symbols().NameFor(member->symbol) + "'",
member->source);
AddNote("previous definition is here", result.first->second->source);
return nullptr;
}
// Resolve member type
auto* type = Type(member->type);
if (!type) {
return nullptr;
}
// validator_.Validate member type
if (!validator_.IsPlain(type)) {
AddError(sem_.TypeNameOf(type) + " cannot be used as the type of a structure member",
member->source);
return nullptr;
}
uint64_t offset = struct_size;
uint64_t align = type->Align();
uint64_t size = type->Size();
if (!validator_.NoDuplicateAttributes(member->attributes)) {
return nullptr;
}
bool has_offset_attr = false;
bool has_align_attr = false;
bool has_size_attr = false;
for (auto* attr : member->attributes) {
Mark(attr);
if (auto* o = attr->As<ast::StructMemberOffsetAttribute>()) {
// Offset attributes are not part of the WGSL spec, but are emitted
// by the SPIR-V reader.
if (o->offset < struct_size) {
AddError("offsets must be in ascending order", o->source);
return nullptr;
}
offset = o->offset;
align = 1;
has_offset_attr = true;
} else if (auto* a = attr->As<ast::StructMemberAlignAttribute>()) {
if (a->align <= 0 || !utils::IsPowerOfTwo(a->align)) {
AddError("align value must be a positive, power-of-two integer", a->source);
return nullptr;
}
align = a->align;
has_align_attr = true;
} else if (auto* s = attr->As<ast::StructMemberSizeAttribute>()) {
if (s->size < size) {
AddError("size must be at least as big as the type's size (" +
std::to_string(size) + ")",
s->source);
return nullptr;
}
size = s->size;
has_size_attr = true;
}
}
if (has_offset_attr && (has_align_attr || has_size_attr)) {
AddError("offset attributes cannot be used with align or size attributes",
member->source);
return nullptr;
}
offset = utils::RoundUp(align, offset);
if (offset > std::numeric_limits<uint32_t>::max()) {
std::stringstream msg;
msg << "struct member has byte offset 0x" << std::hex << offset
<< ", but must not exceed 0x" << std::hex << std::numeric_limits<uint32_t>::max();
AddError(msg.str(), member->source);
return nullptr;
}
auto* sem_member = builder_->create<sem::StructMember>(
member, member->symbol, type, static_cast<uint32_t>(sem_members.size()),
static_cast<uint32_t>(offset), static_cast<uint32_t>(align),
static_cast<uint32_t>(size));
builder_->Sem().Add(member, sem_member);
sem_members.emplace_back(sem_member);
struct_size = offset + size;
struct_align = std::max(struct_align, align);
}
uint64_t size_no_padding = struct_size;
struct_size = utils::RoundUp(struct_align, struct_size);
if (struct_size > std::numeric_limits<uint32_t>::max()) {
std::stringstream msg;
msg << "struct size in bytes must not exceed 0x" << std::hex
<< std::numeric_limits<uint32_t>::max() << ", but is 0x" << std::hex << struct_size;
AddError(msg.str(), str->source);
return nullptr;
}
if (struct_align > std::numeric_limits<uint32_t>::max()) {
TINT_ICE(Resolver, diagnostics_) << "calculated struct stride exceeds uint32";
return nullptr;
}
auto* out = builder_->create<sem::Struct>(
str, str->name, sem_members, static_cast<uint32_t>(struct_align),
static_cast<uint32_t>(struct_size), static_cast<uint32_t>(size_no_padding));
for (size_t i = 0; i < sem_members.size(); i++) {
auto* mem_type = sem_members[i]->Type();
if (mem_type->Is<sem::Atomic>()) {
atomic_composite_info_.emplace(out, sem_members[i]->Declaration()->source);
break;
} else {
auto found = atomic_composite_info_.find(mem_type);
if (found != atomic_composite_info_.end()) {
atomic_composite_info_.emplace(out, found->second);
break;
}
}
}
auto stage = current_function_ ? current_function_->Declaration()->PipelineStage()
: ast::PipelineStage::kNone;
if (!validator_.Structure(out, stage)) {
return nullptr;
}
return out;
}
sem::Statement* Resolver::ReturnStatement(const ast::ReturnStatement* stmt) {
auto* sem =
builder_->create<sem::Statement>(stmt, current_compound_statement_, current_function_);
return StatementScope(stmt, sem, [&] {
auto& behaviors = current_statement_->Behaviors();
behaviors = sem::Behavior::kReturn;
const sem::Type* value_ty = nullptr;
if (auto* value = stmt->value) {
const auto* expr = Expression(value);
if (!expr) {
return false;
}
if (auto* ret_ty = current_function_->ReturnType(); !ret_ty->Is<sem::Void>()) {
expr = Materialize(expr, ret_ty);
if (!expr) {
return false;
}
}
behaviors.Add(expr->Behaviors() - sem::Behavior::kNext);
value_ty = expr->Type()->UnwrapRef();
} else {
value_ty = builder_->create<sem::Void>();
}
// Validate after processing the return value expression so that its type
// is available for validation.
return validator_.Return(stmt, current_function_->ReturnType(), value_ty,
current_statement_);
});
}
sem::SwitchStatement* Resolver::SwitchStatement(const ast::SwitchStatement* stmt) {
auto* sem = builder_->create<sem::SwitchStatement>(stmt, current_compound_statement_,
current_function_);
return StatementScope(stmt, sem, [&] {
auto& behaviors = sem->Behaviors();
const auto* cond = Expression(stmt->condition);
if (!cond) {
return false;
}
behaviors = cond->Behaviors() - sem::Behavior::kNext;
auto* cond_ty = cond->Type()->UnwrapRef();
utils::UniqueVector<const sem::Type*> types;
types.add(cond_ty);
std::vector<sem::CaseStatement*> cases;
cases.reserve(stmt->body.size());
for (auto* case_stmt : stmt->body) {
Mark(case_stmt);
auto* c = CaseStatement(case_stmt);
if (!c) {
return false;
}
for (auto* expr : c->Selectors()) {
types.add(expr->Type()->UnwrapRef());
}
cases.emplace_back(c);
behaviors.Add(c->Behaviors());
sem->Cases().emplace_back(c);
}
// Determine the common type across all selectors and the switch expression
// This must materialize to an integer scalar (non-abstract).
auto* common_ty = sem::Type::Common(types.data(), types.size());
if (!common_ty || !common_ty->is_integer_scalar()) {
// No common type found or the common type was abstract.
// Pick i32 and let validation deal with any mismatches.
common_ty = builder_->create<sem::I32>();
}
cond = Materialize(cond, common_ty);
if (!cond) {
return false;
}
for (auto* c : cases) {
for (auto*& sel : c->Selectors()) { // Note: pointer reference
sel = Materialize(sel, common_ty);
if (!sel) {
return false;
}
}
}
if (behaviors.Contains(sem::Behavior::kBreak)) {
behaviors.Add(sem::Behavior::kNext);
}
behaviors.Remove(sem::Behavior::kBreak, sem::Behavior::kFallthrough);
return validator_.SwitchStatement(stmt);
});
}
sem::Statement* Resolver::VariableDeclStatement(const ast::VariableDeclStatement* stmt) {
auto* sem =
builder_->create<sem::Statement>(stmt, current_compound_statement_, current_function_);
return StatementScope(stmt, sem, [&] {
Mark(stmt->variable);
auto* var = Variable(stmt->variable, VariableKind::kLocal);
if (!var) {
return false;
}
for (auto* attr : stmt->variable->attributes) {
Mark(attr);
if (!attr->Is<ast::InternalAttribute>()) {
AddError("attributes are not valid on local variables", attr->source);
return false;
}
}
if (current_block_) { // Not all statements are inside a block
current_block_->AddDecl(stmt->variable);
}
if (auto* ctor = var->Constructor()) {
sem->Behaviors() = ctor->Behaviors();
}
return validator_.Variable(var);
});
}
sem::Statement* Resolver::AssignmentStatement(const ast::AssignmentStatement* stmt) {
auto* sem =
builder_->create<sem::Statement>(stmt, current_compound_statement_, current_function_);
return StatementScope(stmt, sem, [&] {
auto* lhs = Expression(stmt->lhs);
if (!lhs) {
return false;
}
const bool is_phony_assignment = stmt->lhs->Is<ast::PhonyExpression>();
const auto* rhs = Expression(stmt->rhs);
if (!rhs) {
return false;
}
if (!is_phony_assignment) {
rhs = Materialize(rhs, lhs->Type()->UnwrapRef());
if (!rhs) {
return false;
}
}
auto& behaviors = sem->Behaviors();
behaviors = rhs->Behaviors();
if (!is_phony_assignment) {
behaviors.Add(lhs->Behaviors());
}
return validator_.Assignment(stmt, sem_.TypeOf(stmt->rhs));
});
}
sem::Statement* Resolver::BreakStatement(const ast::BreakStatement* stmt) {
auto* sem =
builder_->create<sem::Statement>(stmt, current_compound_statement_, current_function_);
return StatementScope(stmt, sem, [&] {
sem->Behaviors() = sem::Behavior::kBreak;
return validator_.BreakStatement(sem, current_statement_);
});
}
sem::Statement* Resolver::CallStatement(const ast::CallStatement* stmt) {
auto* sem =
builder_->create<sem::Statement>(stmt, current_compound_statement_, current_function_);
return StatementScope(stmt, sem, [&] {
if (auto* expr = Expression(stmt->expr)) {
sem->Behaviors() = expr->Behaviors();
return true;
}
return false;
});
}
sem::Statement* Resolver::CompoundAssignmentStatement(
const ast::CompoundAssignmentStatement* stmt) {
auto* sem =
builder_->create<sem::Statement>(stmt, current_compound_statement_, current_function_);
return StatementScope(stmt, sem, [&] {
auto* lhs = Expression(stmt->lhs);
if (!lhs) {
return false;
}
auto* rhs = Expression(stmt->rhs);
if (!rhs) {
return false;
}
sem->Behaviors() = rhs->Behaviors() + lhs->Behaviors();
auto* lhs_ty = lhs->Type()->UnwrapRef();
auto* rhs_ty = rhs->Type()->UnwrapRef();
auto* ty = intrinsic_table_->Lookup(stmt->op, lhs_ty, rhs_ty, stmt->source, true).result;
if (!ty) {
return false;
}
return validator_.Assignment(stmt, ty);
});
}
sem::Statement* Resolver::ContinueStatement(const ast::ContinueStatement* stmt) {
auto* sem =
builder_->create<sem::Statement>(stmt, current_compound_statement_, current_function_);
return StatementScope(stmt, sem, [&] {
sem->Behaviors() = sem::Behavior::kContinue;
// Set if we've hit the first continue statement in our parent loop
if (auto* block = sem->FindFirstParent<sem::LoopBlockStatement>()) {
if (!block->FirstContinue()) {
const_cast<sem::LoopBlockStatement*>(block)->SetFirstContinue(
stmt, block->Decls().size());
}
}
return validator_.ContinueStatement(sem, current_statement_);
});
}
sem::Statement* Resolver::DiscardStatement(const ast::DiscardStatement* stmt) {
auto* sem =
builder_->create<sem::Statement>(stmt, current_compound_statement_, current_function_);
return StatementScope(stmt, sem, [&] {
sem->Behaviors() = sem::Behavior::kDiscard;
current_function_->SetHasDiscard();
return validator_.DiscardStatement(sem, current_statement_);
});
}
sem::Statement* Resolver::FallthroughStatement(const ast::FallthroughStatement* stmt) {
auto* sem =
builder_->create<sem::Statement>(stmt, current_compound_statement_, current_function_);
return StatementScope(stmt, sem, [&] {
sem->Behaviors() = sem::Behavior::kFallthrough;
return validator_.FallthroughStatement(sem);
});
}
sem::Statement* Resolver::IncrementDecrementStatement(
const ast::IncrementDecrementStatement* stmt) {
auto* sem =
builder_->create<sem::Statement>(stmt, current_compound_statement_, current_function_);
return StatementScope(stmt, sem, [&] {
auto* lhs = Expression(stmt->lhs);
if (!lhs) {
return false;
}
sem->Behaviors() = lhs->Behaviors();
return validator_.IncrementDecrementStatement(stmt);
});
}
bool Resolver::ApplyStorageClassUsageToType(ast::StorageClass sc,
sem::Type* ty,
const Source& usage) {
ty = const_cast<sem::Type*>(ty->UnwrapRef());
if (auto* str = ty->As<sem::Struct>()) {
if (str->StorageClassUsage().count(sc)) {
return true; // Already applied
}
str->AddUsage(sc);
for (auto* member : str->Members()) {
if (!ApplyStorageClassUsageToType(sc, member->Type(), usage)) {
std::stringstream err;
err << "while analysing structure member " << sem_.TypeNameOf(str) << "."
<< builder_->Symbols().NameFor(member->Declaration()->symbol);
AddNote(err.str(), member->Declaration()->source);
return false;
}
}
return true;
}
if (auto* arr = ty->As<sem::Array>()) {
if (arr->IsRuntimeSized() && sc != ast::StorageClass::kStorage) {
AddError(
"runtime-sized arrays can only be used in the <storage> storage "
"class",
usage);
return false;
}
return ApplyStorageClassUsageToType(sc, const_cast<sem::Type*>(arr->ElemType()), usage);
}
if (ast::IsHostShareable(sc) && !validator_.IsHostShareable(ty)) {
std::stringstream err;
err << "Type '" << sem_.TypeNameOf(ty) << "' cannot be used in storage class '" << sc
<< "' as it is non-host-shareable";
AddError(err.str(), usage);
return false;
}
return true;
}
template <typename SEM, typename F>
SEM* Resolver::StatementScope(const ast::Statement* ast, SEM* sem, F&& callback) {
builder_->Sem().Add(ast, sem);
auto* as_compound = As<sem::CompoundStatement, CastFlags::kDontErrorOnImpossibleCast>(sem);
auto* as_block = As<sem::BlockStatement, CastFlags::kDontErrorOnImpossibleCast>(sem);
TINT_SCOPED_ASSIGNMENT(current_statement_, sem);
TINT_SCOPED_ASSIGNMENT(current_compound_statement_,
as_compound ? as_compound : current_compound_statement_);
TINT_SCOPED_ASSIGNMENT(current_block_, as_block ? as_block : current_block_);
if (!callback()) {
return nullptr;
}
return sem;
}
bool Resolver::Mark(const ast::Node* node) {
if (node == nullptr) {
TINT_ICE(Resolver, diagnostics_) << "Resolver::Mark() called with nullptr";
return false;
}
if (marked_.emplace(node).second) {
return true;
}
TINT_ICE(Resolver, diagnostics_) << "AST node '" << node->TypeInfo().name
<< "' was encountered twice in the same AST of a Program\n"
<< "At: " << node->source << "\n"
<< "Pointer: " << node;
return false;
}
void Resolver::AddError(const std::string& msg, const Source& source) const {
diagnostics_.add_error(diag::System::Resolver, msg, source);
}
void Resolver::AddWarning(const std::string& msg, const Source& source) const {
diagnostics_.add_warning(diag::System::Resolver, msg, source);
}
void Resolver::AddNote(const std::string& msg, const Source& source) const {
diagnostics_.add_note(diag::System::Resolver, msg, source);
}
bool Resolver::IsBuiltin(Symbol symbol) const {
std::string name = builder_->Symbols().NameFor(symbol);
return sem::ParseBuiltinType(name) != sem::BuiltinType::kNone;
}
} // namespace tint::resolver