dawn-cmake/examples/glTFViewer/glTFViewer.cpp

681 lines
26 KiB
C++

// Copyright 2017 The NXT Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Enable this before including any headers as we want inttypes.h to define
// format macros such as PRId64 that are used in picojson.
#ifndef __STDC_FORMAT_MACROS
#define __STDC_FORMAT_MACROS
#endif
#include "Utils.h"
#include <bitset>
#define GLM_FORCE_DEPTH_ZERO_TO_ONE
#include <glm/mat4x4.hpp>
#include <glm/gtc/matrix_inverse.hpp>
#include <glm/gtc/matrix_transform.hpp>
#include <glm/gtc/type_ptr.hpp>
#include "GLFW/glfw3.h"
#define TINYGLTF_LOADER_IMPLEMENTATION
#define STB_IMAGE_IMPLEMENTATION
#include <tinygltfloader/tiny_gltf_loader.h>
#include "Camera.inl"
namespace gl {
enum {
Triangles = 0x0004,
UnsignedShort = 0x1403,
UnsignedInt = 0x1405,
Float = 0x1406,
RGBA = 0x1908,
Nearest = 0x2600,
Linear = 0x2601,
NearestMipmapNearest = 0x2700,
LinearMipmapNearest = 0x2701,
NearestMipmapLinear = 0x2702,
LinearMipmapLinear = 0x2703,
ArrayBuffer = 0x8892,
ElementArrayBuffer = 0x8893,
FragmentShader = 0x8B30,
VertexShader = 0x8B31,
FloatVec2 = 0x8B50,
FloatVec3 = 0x8B51,
FloatVec4 = 0x8B52,
};
}
struct MaterialInfo {
nxt::Buffer uniformBuffer;
nxt::Pipeline pipeline;
nxt::BindGroup bindGroup0;
std::map<uint32_t, std::string> slotSemantics;
};
struct u_transform_block {
glm::mat4 modelViewProj;
glm::mat4 modelInvTr;
};
nxt::Device device;
nxt::Queue queue;
nxt::RenderPass renderpass;
nxt::Framebuffer framebuffer;
nxt::Buffer defaultBuffer;
std::map<std::string, nxt::Buffer> buffers;
std::map<std::string, nxt::CommandBuffer> commandBuffers;
std::map<uint32_t, std::string> slotSemantics = {{0, "POSITION"}, {1, "NORMAL"}, {2, "TEXCOORD_0"}};
nxt::Sampler defaultSampler;
std::map<std::string, nxt::Sampler> samplers;
nxt::TextureView defaultTexture;
std::map<std::string, nxt::TextureView> textures;
tinygltf::Scene scene;
glm::mat4 projection = glm::perspective(glm::radians(60.f), 640.f/480, 0.1f, 2000.f);
Camera camera;
// Helpers
namespace {
std::string getFilePathExtension(const std::string &FileName) {
if (FileName.find_last_of(".") != std::string::npos) {
return FileName.substr(FileName.find_last_of(".") + 1);
}
return "";
}
bool techniqueParameterTypeToVertexFormat(int type, nxt::VertexFormat *format) {
switch (type) {
case gl::FloatVec2:
*format = nxt::VertexFormat::FloatR32G32;
return true;
case gl::FloatVec3:
*format = nxt::VertexFormat::FloatR32G32B32;
return true;
case gl::FloatVec4:
*format = nxt::VertexFormat::FloatR32G32B32A32;
return true;
default:
return false;
}
}
}
// Initialization
namespace {
void initBuffers() {
defaultBuffer = device.CreateBufferBuilder()
.SetAllowedUsage(nxt::BufferUsageBit::Vertex | nxt::BufferUsageBit::Index)
.SetSize(256)
.GetResult();
defaultBuffer.FreezeUsage(nxt::BufferUsageBit::Vertex | nxt::BufferUsageBit::Index);
for (const auto& bv : scene.bufferViews) {
const auto& iBufferViewID = bv.first;
const auto& iBufferView = bv.second;
nxt::BufferUsageBit usage = nxt::BufferUsageBit::None;
switch (iBufferView.target) {
case gl::ArrayBuffer:
usage |= nxt::BufferUsageBit::Vertex;
break;
case gl::ElementArrayBuffer:
usage |= nxt::BufferUsageBit::Index;
break;
case 0:
fprintf(stderr, "TODO: buffer view has no target; skipping\n");
continue;
default:
fprintf(stderr, "unsupported buffer view target %d\n", iBufferView.target);
continue;
}
const auto& iBuffer = scene.buffers.at(iBufferView.buffer);
uint32_t iBufferViewSize =
iBufferView.byteLength ? iBufferView.byteLength :
(iBuffer.data.size() - iBufferView.byteOffset);
auto oBuffer = device.CreateBufferBuilder()
.SetAllowedUsage(nxt::BufferUsageBit::Mapped | usage)
.SetInitialUsage(nxt::BufferUsageBit::Mapped)
.SetSize(iBufferViewSize)
.GetResult();
oBuffer.SetSubData(0, iBufferViewSize / sizeof(uint32_t),
reinterpret_cast<const uint32_t*>(&iBuffer.data.at(iBufferView.byteOffset)));
oBuffer.FreezeUsage(usage);
buffers[iBufferViewID] = std::move(oBuffer);
}
}
const MaterialInfo& getMaterial(const std::string& iMaterialID, uint32_t stridePos, uint32_t strideNor, uint32_t strideTxc) {
static std::map<std::tuple<std::string, uint32_t, uint32_t, uint32_t>, MaterialInfo> materials;
auto key = make_tuple(iMaterialID, stridePos, strideNor, strideTxc);
auto it = materials.find(key);
if (it != materials.end()) {
return it->second;
}
const auto& iMaterial = scene.materials.at(iMaterialID);
const auto& iTechnique = scene.techniques.at(iMaterial.technique);
const auto& iProgram = scene.programs.at(iTechnique.program);
auto oVSModule = CreateShaderModule(device, nxt::ShaderStage::Vertex, R"(
#version 450
layout(set = 0, binding = 0) uniform u_transform_block {
mat4 modelViewProj;
mat4 modelInvTr;
} u_transform;
layout(location = 0) in vec4 a_position;
layout(location = 1) in vec3 a_normal;
layout(location = 2) in vec2 a_texcoord;
layout(location = 0) out vec3 v_normal;
layout(location = 1) out vec2 v_texcoord;
void main() {
v_normal = (u_transform.modelInvTr * vec4(normalize(a_normal), 0)).rgb;
v_texcoord = a_texcoord;
gl_Position = u_transform.modelViewProj * a_position;
})");
auto oFSModule = CreateShaderModule(device, nxt::ShaderStage::Fragment, R"(
#version 450
layout(set = 0, binding = 1) uniform sampler u_samp;
layout(set = 0, binding = 2) uniform texture2D u_tex;
layout(location = 0) in vec3 v_normal;
layout(location = 1) in vec2 v_texcoord;
out vec4 fragcolor;
void main() {
const vec3 lightdir = normalize(vec3(-1, -2, 3));
vec3 normal = normalize(v_normal);
float diffuse = abs(dot(lightdir, normal));
float diffamb = diffuse * 0.85 + 0.15;
vec3 albedo = texture(sampler2D(u_tex, u_samp), v_texcoord).rgb;
fragcolor = vec4(diffamb * albedo, 1);
})");
nxt::InputStateBuilder builder = device.CreateInputStateBuilder();
std::bitset<3> slotsSet;
for (const auto& a : iTechnique.attributes) {
const auto iAttributeName = a.first;
const auto iParameter = iTechnique.parameters.at(a.second);
nxt::VertexFormat format;
if (!techniqueParameterTypeToVertexFormat(iParameter.type, &format)) {
fprintf(stderr, "unsupported technique parameter type %d\n", iParameter.type);
continue;
}
if (iParameter.semantic == "POSITION") {
builder.SetAttribute(0, 0, format, 0);
builder.SetInput(0, stridePos, nxt::InputStepMode::Vertex);
slotsSet.set(0);
} else if (iParameter.semantic == "NORMAL") {
builder.SetAttribute(1, 1, format, 0);
builder.SetInput(1, strideNor, nxt::InputStepMode::Vertex);
slotsSet.set(1);
} else if (iParameter.semantic == "TEXCOORD_0") {
builder.SetAttribute(2, 2, format, 0);
builder.SetInput(2, strideTxc, nxt::InputStepMode::Vertex);
slotsSet.set(2);
} else {
fprintf(stderr, "unsupported technique attribute semantic %s\n", iParameter.semantic.c_str());
}
// TODO: use iAttributeParameter.node?
}
for (size_t i = 0; i < slotsSet.size(); i++) {
if (slotsSet[i]) {
continue;
}
builder.SetAttribute(i, i, nxt::VertexFormat::FloatR32G32B32A32, 0);
builder.SetInput(i, 0, nxt::InputStepMode::Vertex);
}
auto inputState = builder.GetResult();
auto bindGroupLayout = device.CreateBindGroupLayoutBuilder()
.SetBindingsType(nxt::ShaderStageBit::Vertex, nxt::BindingType::UniformBuffer, 0, 1)
.SetBindingsType(nxt::ShaderStageBit::Fragment, nxt::BindingType::Sampler, 1, 1)
.SetBindingsType(nxt::ShaderStageBit::Fragment, nxt::BindingType::SampledTexture, 2, 1)
.GetResult();
auto depthStencilState = device.CreateDepthStencilStateBuilder()
.SetDepthCompareFunction(nxt::CompareFunction::Less)
.SetDepthWriteEnabled(true)
.GetResult();
auto pipelineLayout = device.CreatePipelineLayoutBuilder()
.SetBindGroupLayout(0, bindGroupLayout)
.GetResult();
auto pipeline = device.CreatePipelineBuilder()
.SetSubpass(renderpass, 0)
.SetLayout(pipelineLayout)
.SetStage(nxt::ShaderStage::Vertex, oVSModule, "main")
.SetStage(nxt::ShaderStage::Fragment, oFSModule, "main")
.SetInputState(inputState)
.SetDepthStencilState(depthStencilState)
.GetResult();
auto uniformBuffer = device.CreateBufferBuilder()
.SetAllowedUsage(nxt::BufferUsageBit::Mapped | nxt::BufferUsageBit::Uniform)
.SetInitialUsage(nxt::BufferUsageBit::Mapped)
.SetSize(sizeof(u_transform_block))
.GetResult();
auto uniformView = uniformBuffer.CreateBufferViewBuilder()
.SetExtent(0, sizeof(u_transform_block))
.GetResult();
auto bindGroupBuilder = device.CreateBindGroupBuilder();
bindGroupBuilder.SetLayout(bindGroupLayout)
.SetUsage(nxt::BindGroupUsage::Frozen)
.SetBufferViews(0, 1, &uniformView);
{
auto it = iMaterial.values.find("diffuse");
if (it != iMaterial.values.end() && !it->second.string_value.empty()) {
const auto& iTextureID = it->second.string_value;
const auto& textureView = textures[iTextureID];
const auto& iSamplerID = scene.textures[iTextureID].sampler;
bindGroupBuilder.SetSamplers(1, 1, &samplers[iSamplerID]);
bindGroupBuilder.SetTextureViews(2, 1, &textureView);
} else {
bindGroupBuilder.SetSamplers(1, 1, &defaultSampler);
bindGroupBuilder.SetTextureViews(2, 1, &defaultTexture);
}
}
MaterialInfo material = {
uniformBuffer.Get(),
pipeline.Get(),
bindGroupBuilder.GetResult(),
std::map<uint32_t, std::string>(),
};
materials[key] = std::move(material);
return materials.at(key);
}
void initSamplers() {
defaultSampler = device.CreateSamplerBuilder()
.SetFilterMode(nxt::FilterMode::Nearest, nxt::FilterMode::Nearest, nxt::FilterMode::Nearest)
// TODO: wrap modes
.GetResult();
for (const auto& s : scene.samplers) {
const auto& iSamplerID = s.first;
const auto& iSampler = s.second;
auto magFilter = nxt::FilterMode::Nearest;
auto minFilter = nxt::FilterMode::Nearest;
auto mipmapFilter = nxt::FilterMode::Nearest;
switch (iSampler.magFilter) {
case gl::Nearest:
magFilter = nxt::FilterMode::Nearest;
break;
case gl::Linear:
magFilter = nxt::FilterMode::Linear;
break;
default:
fprintf(stderr, "unsupported magFilter %d\n", iSampler.magFilter);
break;
}
switch (iSampler.minFilter) {
case gl::Nearest:
case gl::NearestMipmapNearest:
case gl::NearestMipmapLinear:
minFilter = nxt::FilterMode::Nearest;
break;
case gl::Linear:
case gl::LinearMipmapNearest:
case gl::LinearMipmapLinear:
minFilter = nxt::FilterMode::Linear;
break;
default:
fprintf(stderr, "unsupported minFilter %d\n", iSampler.magFilter);
break;
}
switch (iSampler.minFilter) {
case gl::NearestMipmapNearest:
case gl::LinearMipmapNearest:
mipmapFilter = nxt::FilterMode::Nearest;
break;
case gl::NearestMipmapLinear:
case gl::LinearMipmapLinear:
mipmapFilter = nxt::FilterMode::Linear;
break;
}
auto oSampler = device.CreateSamplerBuilder()
.SetFilterMode(magFilter, minFilter, mipmapFilter)
// TODO: wrap modes
.GetResult();
samplers[iSamplerID] = std::move(oSampler);
}
}
void initTextures() {
{
auto oTexture = device.CreateTextureBuilder()
.SetDimension(nxt::TextureDimension::e2D)
.SetExtent(1, 1, 1)
.SetFormat(nxt::TextureFormat::R8G8B8A8Unorm)
.SetMipLevels(1)
.SetAllowedUsage(nxt::TextureUsageBit::TransferDst | nxt::TextureUsageBit::Sampled)
.GetResult();
// TODO: release this texture
nxt::Buffer staging = device.CreateBufferBuilder()
.SetAllowedUsage(nxt::BufferUsageBit::Mapped | nxt::BufferUsageBit::TransferSrc)
.SetInitialUsage(nxt::BufferUsageBit::Mapped)
.SetSize(4)
.GetResult();
// TODO: release this buffer
uint32_t white = 0xffffffff;
staging.SetSubData(0, 1, &white);
staging.FreezeUsage(nxt::BufferUsageBit::TransferSrc);
auto cmdbuf = device.CreateCommandBufferBuilder()
.TransitionTextureUsage(oTexture, nxt::TextureUsageBit::TransferDst)
.CopyBufferToTexture(staging, 0, oTexture, 0, 0, 0, 1, 1, 1, 0)
.GetResult();
queue.Submit(1, &cmdbuf);
oTexture.FreezeUsage(nxt::TextureUsageBit::Sampled);
defaultTexture = oTexture.CreateTextureViewBuilder().GetResult();
}
for (const auto& t : scene.textures) {
const auto& iTextureID = t.first;
const auto& iTexture = t.second;
const auto& iImage = scene.images[iTexture.source];
nxt::TextureFormat format = nxt::TextureFormat::R8G8B8A8Unorm;
switch (iTexture.format) {
case gl::RGBA:
format = nxt::TextureFormat::R8G8B8A8Unorm;
break;
default:
fprintf(stderr, "unsupported texture format %d\n", iTexture.format);
continue;
}
auto oTexture = device.CreateTextureBuilder()
.SetDimension(nxt::TextureDimension::e2D)
.SetExtent(iImage.width, iImage.height, 1)
.SetFormat(format)
.SetMipLevels(1)
.SetAllowedUsage(nxt::TextureUsageBit::TransferDst | nxt::TextureUsageBit::Sampled)
.GetResult();
// TODO: release this texture
uint32_t numPixels = iImage.width * iImage.height;
const uint8_t* origData = iImage.image.data();
const uint8_t* data = nullptr;
std::vector<uint8_t> newData;
if (iImage.component == 4) {
data = origData;
} else if (iImage.component == 3) {
newData.resize(numPixels * 4);
for (size_t i = 0; i < numPixels; ++i) {
newData[4 * i + 0] = origData[3 * i + 0];
newData[4 * i + 1] = origData[3 * i + 1];
newData[4 * i + 2] = origData[3 * i + 2];
newData[4 * i + 3] = 255;
}
data = newData.data();
} else {
fprintf(stderr, "unsupported image.component %d\n", iImage.component);
}
nxt::Buffer staging = device.CreateBufferBuilder()
.SetAllowedUsage(nxt::BufferUsageBit::Mapped | nxt::BufferUsageBit::TransferSrc)
.SetInitialUsage(nxt::BufferUsageBit::Mapped)
.SetSize(numPixels * 4)
.GetResult();
// TODO: release this buffer
staging.SetSubData(0, numPixels,
reinterpret_cast<const uint32_t*>(data));
staging.FreezeUsage(nxt::BufferUsageBit::TransferSrc);
auto cmdbuf = device.CreateCommandBufferBuilder()
.TransitionTextureUsage(oTexture, nxt::TextureUsageBit::TransferDst)
.CopyBufferToTexture(staging, 0, oTexture, 0, 0, 0, iImage.width, iImage.height, 1, 0)
.GetResult();
queue.Submit(1, &cmdbuf);
oTexture.FreezeUsage(nxt::TextureUsageBit::Sampled);
textures[iTextureID] = oTexture.CreateTextureViewBuilder().GetResult();
}
}
void init() {
device = CreateCppNXTDevice();
queue = device.CreateQueueBuilder().GetResult();
renderpass = device.CreateRenderPassBuilder()
.SetAttachmentCount(1)
.AttachmentSetFormat(0, nxt::TextureFormat::R8G8B8A8Unorm)
.SetSubpassCount(1)
.SubpassSetColorAttachment(0, 0, 0)
.GetResult();
framebuffer = device.CreateFramebufferBuilder()
.SetRenderPass(renderpass)
// attachment 0 -> back buffer
// (implicit) // TODO(kainino@chromium.org): use the texture provided by WSI
.SetDimensions(640, 480)
.GetResult();
initBuffers();
initSamplers();
initTextures();
}
}
// Drawing
namespace {
void drawMesh(const tinygltf::Mesh& iMesh, const glm::mat4& model) {
nxt::CommandBufferBuilder cmd = device.CreateCommandBufferBuilder();
for (const auto& iPrim : iMesh.primitives) {
if (iPrim.mode != gl::Triangles) {
fprintf(stderr, "unsupported primitive mode %d\n", iPrim.mode);
continue;
}
u_transform_block transforms = {
(projection * camera.view() * model),
glm::inverseTranspose(model),
};
uint32_t strides[3] = {0};
for (const auto& s : slotSemantics) {
if (s.first < 3) {
auto it = iPrim.attributes.find(s.second);
if (it == iPrim.attributes.end()) {
continue;
}
const auto& iAccessorName = it->second;
strides[s.first] = scene.accessors.at(iAccessorName).byteStride;
}
}
const MaterialInfo& material = getMaterial(iPrim.material, strides[0], strides[1], strides[2]);
material.uniformBuffer.TransitionUsage(nxt::BufferUsageBit::Mapped);
material.uniformBuffer.SetSubData(0,
sizeof(u_transform_block) / sizeof(uint32_t),
reinterpret_cast<const uint32_t*>(&transforms));
cmd.BeginRenderPass(renderpass, framebuffer);
cmd.SetPipeline(material.pipeline);
cmd.TransitionBufferUsage(material.uniformBuffer, nxt::BufferUsageBit::Uniform);
cmd.SetBindGroup(0, material.bindGroup0);
uint32_t vertexCount = 0;
for (const auto& s : slotSemantics) {
uint32_t slot = s.first;
const auto& iSemantic = s.second;
auto it = iPrim.attributes.find(s.second);
if (it == iPrim.attributes.end()) {
uint32_t zero = 0;
cmd.SetVertexBuffers(slot, 1, &defaultBuffer, &zero);
continue;
}
const auto& iAccessor = scene.accessors.at(it->second);
if (iAccessor.componentType != gl::Float ||
(iAccessor.type != TINYGLTF_TYPE_VEC4 && iAccessor.type != TINYGLTF_TYPE_VEC3 && iAccessor.type != TINYGLTF_TYPE_VEC2)) {
fprintf(stderr, "unsupported vertex accessor component type %d and type %d\n", iAccessor.componentType, iAccessor.type);
continue;
}
if (!vertexCount) {
vertexCount = iAccessor.count;
}
const auto& oBuffer = buffers.at(iAccessor.bufferView);
uint32_t iBufferOffset = iAccessor.byteOffset;
cmd.SetVertexBuffers(slot, 1, &oBuffer, &iBufferOffset);
}
if (!iPrim.indices.empty()) {
const auto& iIndices = scene.accessors.at(iPrim.indices);
// DrawElements
if (iIndices.componentType != gl::UnsignedShort || iIndices.type != TINYGLTF_TYPE_SCALAR) {
fprintf(stderr, "unsupported index accessor component type %d and type %d\n", iIndices.componentType, iIndices.type);
continue;
}
const auto& oIndicesBuffer = buffers.at(iIndices.bufferView);
cmd.SetIndexBuffer(oIndicesBuffer, iIndices.byteOffset, nxt::IndexFormat::Uint16);
cmd.DrawElements(iIndices.count, 1, 0, 0);
} else {
// DrawArrays
cmd.DrawArrays(vertexCount, 1, 0, 0);
}
cmd.EndRenderPass();
}
auto commands = cmd.GetResult();
queue.Submit(1, &commands);
}
void drawNode(const tinygltf::Node& node, const glm::mat4& parent = glm::mat4()) {
glm::mat4 model;
if (node.matrix.size() == 16) {
model = glm::make_mat4(node.matrix.data());
} else {
if (node.scale.size() == 3) {
glm::vec3 scale = glm::make_vec3(node.scale.data());
model = glm::scale(model, scale);
}
if (node.rotation.size() == 4) {
glm::quat rotation = glm::make_quat(node.rotation.data());
model = glm::mat4_cast(rotation) * model;
}
if (node.translation.size() == 3) {
glm::vec3 translation = glm::make_vec3(node.translation.data());
model = glm::translate(model, translation);
}
}
model = parent * model;
for (const auto& meshID : node.meshes) {
drawMesh(scene.meshes[meshID], model);
}
for (const auto& child : node.children) {
drawNode(scene.nodes.at(child), model);
}
}
void frame() {
const auto& defaultSceneNodes = scene.scenes.at(scene.defaultScene);
for (const auto& n : defaultSceneNodes) {
const auto& node = scene.nodes.at(n);
drawNode(node);
}
DoSwapBuffers();
}
}
// Mouse camera control
namespace {
bool buttons[GLFW_MOUSE_BUTTON_LAST + 1] = {0};
void mouseButtonCallback(GLFWwindow *window, int button, int action, int mods) {
buttons[button] = (action == GLFW_PRESS);
}
void cursorPosCallback(GLFWwindow *window, double mouseX, double mouseY) {
static float oldX, oldY;
float dX = mouseX - oldX;
float dY = mouseY - oldY;
oldX = mouseX;
oldY = mouseY;
if (buttons[2] || (buttons[0] && buttons[1])) {
camera.pan(-dX * 0.002, dY * 0.002);
} else if (buttons[0]) {
camera.rotate(dX * -0.01, dY * 0.01);
} else if (buttons[1]) {
camera.zoom(dY * -0.005);
}
}
void scrollCallback(GLFWwindow *window, double xoffset, double yoffset) {
camera.zoom(yoffset * 0.04);
}
}
int main(int argc, const char* argv[]) {
if (!InitUtils(argc, argv)) {
return 1;
}
if (argc < 2) {
fprintf(stderr, "Usage: %s model.gltf [... NXT Options]\n", argv[0]);
return 1;
}
tinygltf::TinyGLTFLoader loader;
std::string err;
std::string input_filename(argv[1]);
std::string ext = getFilePathExtension(input_filename);
bool ret = false;
if (ext.compare("glb") == 0) {
// assume binary glTF.
ret = loader.LoadBinaryFromFile(&scene, &err, input_filename.c_str());
} else {
// assume ascii glTF.
ret = loader.LoadASCIIFromFile(&scene, &err, input_filename.c_str());
}
if (!err.empty()) {
fprintf(stderr, "ERR: %s\n", err.c_str());
}
if (!ret) {
fprintf(stderr, "Failed to load .glTF : %s\n", argv[1]);
exit(-1);
}
init();
GLFWwindow* window = GetGLFWWindow();
glfwSetMouseButtonCallback(window, mouseButtonCallback);
glfwSetCursorPosCallback(window, cursorPosCallback);
glfwSetScrollCallback(window, scrollCallback);
while (!ShouldQuit()) {
frame();
USleep(16000);
}
// TODO release stuff
}