815 lines
29 KiB
C++
815 lines
29 KiB
C++
// Copyright 2020 The Tint Authors.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#ifndef SRC_TINT_CASTABLE_H_
|
|
#define SRC_TINT_CASTABLE_H_
|
|
|
|
#include <stdint.h>
|
|
#include <functional>
|
|
#include <tuple>
|
|
#include <utility>
|
|
|
|
#include "src/tint/traits.h"
|
|
#include "src/tint/utils/crc32.h"
|
|
|
|
#if defined(__clang__)
|
|
/// Temporarily disable certain warnings when using Castable API
|
|
#define TINT_CASTABLE_PUSH_DISABLE_WARNINGS() \
|
|
_Pragma("clang diagnostic push") /**/ \
|
|
_Pragma("clang diagnostic ignored \"-Wundefined-var-template\"") /**/ \
|
|
static_assert(true, "require extra semicolon")
|
|
|
|
/// Restore disabled warnings
|
|
#define TINT_CASTABLE_POP_DISABLE_WARNINGS() \
|
|
_Pragma("clang diagnostic pop") /**/ \
|
|
static_assert(true, "require extra semicolon")
|
|
#else
|
|
#define TINT_CASTABLE_PUSH_DISABLE_WARNINGS() \
|
|
static_assert(true, "require extra semicolon")
|
|
#define TINT_CASTABLE_POP_DISABLE_WARNINGS() \
|
|
static_assert(true, "require extra semicolon")
|
|
#endif
|
|
|
|
TINT_CASTABLE_PUSH_DISABLE_WARNINGS();
|
|
|
|
namespace tint {
|
|
|
|
// Forward declaration
|
|
class CastableBase;
|
|
|
|
/// Ignore is used as a special type used for skipping over types for trait
|
|
/// helper functions.
|
|
class Ignore {};
|
|
|
|
namespace detail {
|
|
template <typename T>
|
|
struct TypeInfoOf;
|
|
|
|
} // namespace detail
|
|
|
|
/// True if all template types that are not Ignore derive from CastableBase
|
|
template <typename... TYPES>
|
|
static constexpr bool IsCastable =
|
|
((traits::IsTypeOrDerived<TYPES, CastableBase> ||
|
|
std::is_same_v<TYPES, Ignore>)&&...) &&
|
|
!(std::is_same_v<TYPES, Ignore> && ...);
|
|
|
|
/// Helper macro to instantiate the TypeInfo<T> template for `CLASS`.
|
|
#define TINT_INSTANTIATE_TYPEINFO(CLASS) \
|
|
TINT_CASTABLE_PUSH_DISABLE_WARNINGS(); \
|
|
template <> \
|
|
const tint::TypeInfo tint::detail::TypeInfoOf<CLASS>::info{ \
|
|
&tint::detail::TypeInfoOf<CLASS::TrueBase>::info, \
|
|
#CLASS, \
|
|
tint::TypeInfo::HashCodeOf<CLASS>(), \
|
|
tint::TypeInfo::FullHashCodeOf<CLASS>(), \
|
|
}; \
|
|
TINT_CASTABLE_POP_DISABLE_WARNINGS()
|
|
|
|
/// Bit flags that can be passed to the template parameter `FLAGS` of Is() and
|
|
/// As().
|
|
enum CastFlags {
|
|
/// Disables the static_assert() inside Is(), that compile-time-verifies that
|
|
/// the cast is possible. This flag may be useful for highly-generic template
|
|
/// code that needs to compile for template permutations that generate
|
|
/// impossible casts.
|
|
kDontErrorOnImpossibleCast = 1,
|
|
};
|
|
|
|
/// TypeInfo holds type information for a Castable type.
|
|
struct TypeInfo {
|
|
/// The type of a hash code
|
|
using HashCode = uint64_t;
|
|
|
|
/// The base class of this type
|
|
const TypeInfo* base;
|
|
/// The type name
|
|
const char* name;
|
|
/// The type hash code
|
|
const HashCode hashcode;
|
|
/// The type hash code bitwise-or'd with all ancestor's hashcodes.
|
|
const HashCode full_hashcode;
|
|
|
|
/// @param type the test type info
|
|
/// @returns true if the class with this TypeInfo is of, or derives from the
|
|
/// class with the given TypeInfo.
|
|
inline bool Is(const tint::TypeInfo* type) const {
|
|
// Optimization: Check whether the all the bits of the type's hashcode can
|
|
// be found in the full_hashcode. If a single bit is missing, then we
|
|
// can quickly tell that that this TypeInfo does not derive from `type`.
|
|
if ((full_hashcode & type->hashcode) != type->hashcode) {
|
|
return false;
|
|
}
|
|
|
|
// Walk the base types, starting with this TypeInfo, to see if any of the
|
|
// pointers match `type`.
|
|
for (auto* ti = this; ti != nullptr; ti = ti->base) {
|
|
if (ti == type) {
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// @returns true if `type` derives from the class `TO`
|
|
/// @param type the object type to test from, which must be, or derive from
|
|
/// type `FROM`.
|
|
/// @see CastFlags
|
|
template <typename TO, typename FROM, int FLAGS = 0>
|
|
static inline bool Is(const tint::TypeInfo* type) {
|
|
constexpr const bool downcast = std::is_base_of<FROM, TO>::value;
|
|
constexpr const bool upcast = std::is_base_of<TO, FROM>::value;
|
|
constexpr const bool nocast = std::is_same<FROM, TO>::value;
|
|
constexpr const bool assert_is_castable =
|
|
(FLAGS & kDontErrorOnImpossibleCast) == 0;
|
|
|
|
static_assert(upcast || downcast || nocast || !assert_is_castable,
|
|
"impossible cast");
|
|
|
|
if (upcast || nocast) {
|
|
return true;
|
|
}
|
|
|
|
return type->Is(&Of<std::remove_cv_t<TO>>());
|
|
}
|
|
|
|
/// @returns the static TypeInfo for the type T
|
|
template <typename T>
|
|
static const TypeInfo& Of() {
|
|
return detail::TypeInfoOf<std::remove_cv_t<T>>::info;
|
|
}
|
|
|
|
/// @returns a compile-time hashcode for the type `T`.
|
|
/// @note the returned hashcode will have at most 2 bits set, as the hashes
|
|
/// are expected to be used in bloom-filters which will quickly saturate when
|
|
/// multiple hashcodes are bitwise-or'd together.
|
|
template <typename T>
|
|
static constexpr HashCode HashCodeOf() {
|
|
static_assert(IsCastable<T>, "T is not Castable");
|
|
static_assert(
|
|
std::is_same_v<T, std::remove_cv_t<T>>,
|
|
"Strip const / volatile decorations before calling HashCodeOf");
|
|
/// Use the compiler's "pretty" function name, which includes the template
|
|
/// type, to obtain a unique hash value.
|
|
#ifdef _MSC_VER
|
|
constexpr uint32_t crc = utils::CRC32(__FUNCSIG__);
|
|
#else
|
|
constexpr uint32_t crc = utils::CRC32(__PRETTY_FUNCTION__);
|
|
#endif
|
|
constexpr uint32_t bit_a = (crc & 63);
|
|
constexpr uint32_t bit_b = ((crc >> 6) & 63);
|
|
return (static_cast<HashCode>(1) << bit_a) |
|
|
(static_cast<HashCode>(1) << bit_b);
|
|
}
|
|
|
|
/// @returns the hashcode of the given type, bitwise-or'd with the hashcodes
|
|
/// of all base classes.
|
|
template <typename T>
|
|
static constexpr HashCode FullHashCodeOf() {
|
|
if constexpr (std::is_same_v<T, CastableBase>) {
|
|
return HashCodeOf<CastableBase>();
|
|
} else {
|
|
return HashCodeOf<T>() | FullHashCodeOf<typename T::TrueBase>();
|
|
}
|
|
}
|
|
|
|
/// @returns the bitwise-or'd hashcodes of all the types of the tuple `TUPLE`.
|
|
/// @see HashCodeOf
|
|
template <typename TUPLE>
|
|
static constexpr HashCode CombinedHashCodeOfTuple() {
|
|
constexpr auto kCount = std::tuple_size_v<TUPLE>;
|
|
if constexpr (kCount == 0) {
|
|
return 0;
|
|
} else if constexpr (kCount == 1) {
|
|
return HashCodeOf<std::remove_cv_t<std::tuple_element_t<0, TUPLE>>>();
|
|
} else {
|
|
constexpr auto kMid = kCount / 2;
|
|
return CombinedHashCodeOfTuple<traits::SliceTuple<0, kMid, TUPLE>>() |
|
|
CombinedHashCodeOfTuple<
|
|
traits::SliceTuple<kMid, kCount - kMid, TUPLE>>();
|
|
}
|
|
}
|
|
|
|
/// @returns the bitwise-or'd hashcodes of all the template parameter types.
|
|
/// @see HashCodeOf
|
|
template <typename... TYPES>
|
|
static constexpr HashCode CombinedHashCodeOf() {
|
|
return CombinedHashCodeOfTuple<std::tuple<TYPES...>>();
|
|
}
|
|
|
|
/// @returns true if this TypeInfo is of, or derives from any of the types in
|
|
/// `TUPLE`.
|
|
template <typename TUPLE>
|
|
inline bool IsAnyOfTuple() const {
|
|
constexpr auto kCount = std::tuple_size_v<TUPLE>;
|
|
if constexpr (kCount == 0) {
|
|
return false;
|
|
} else if constexpr (kCount == 1) {
|
|
return Is(&Of<std::tuple_element_t<0, TUPLE>>());
|
|
} else if constexpr (kCount == 2) {
|
|
return Is(&Of<std::tuple_element_t<0, TUPLE>>()) ||
|
|
Is(&Of<std::tuple_element_t<1, TUPLE>>());
|
|
} else if constexpr (kCount == 3) {
|
|
return Is(&Of<std::tuple_element_t<0, TUPLE>>()) ||
|
|
Is(&Of<std::tuple_element_t<1, TUPLE>>()) ||
|
|
Is(&Of<std::tuple_element_t<2, TUPLE>>());
|
|
} else {
|
|
// Optimization: Compare the object's hashcode to the bitwise-or of all
|
|
// the tested type's hashcodes. If there's no intersection of bits in
|
|
// the two masks, then we can guarantee that the type is not in `TO`.
|
|
if (full_hashcode & TypeInfo::CombinedHashCodeOfTuple<TUPLE>()) {
|
|
// Possibly one of the types in `TUPLE`.
|
|
// Split the search in two, and scan each block.
|
|
static constexpr auto kMid = kCount / 2;
|
|
return IsAnyOfTuple<traits::SliceTuple<0, kMid, TUPLE>>() ||
|
|
IsAnyOfTuple<traits::SliceTuple<kMid, kCount - kMid, TUPLE>>();
|
|
}
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/// @returns true if this TypeInfo is of, or derives from any of the types in
|
|
/// `TYPES`.
|
|
template <typename... TYPES>
|
|
inline bool IsAnyOf() const {
|
|
return IsAnyOfTuple<std::tuple<TYPES...>>();
|
|
}
|
|
};
|
|
|
|
namespace detail {
|
|
|
|
/// TypeInfoOf contains a single TypeInfo field for the type T.
|
|
/// TINT_INSTANTIATE_TYPEINFO() must be defined in a .cpp file for each type
|
|
/// `T`.
|
|
template <typename T>
|
|
struct TypeInfoOf {
|
|
/// The unique TypeInfo for the type T.
|
|
static const TypeInfo info;
|
|
};
|
|
|
|
/// A placeholder structure used for template parameters that need a default
|
|
/// type, but can always be automatically inferred.
|
|
struct Infer;
|
|
|
|
} // namespace detail
|
|
|
|
/// @returns true if `obj` is a valid pointer, and is of, or derives from the
|
|
/// class `TO`
|
|
/// @param obj the object to test from
|
|
/// @see CastFlags
|
|
template <typename TO, int FLAGS = 0, typename FROM = detail::Infer>
|
|
inline bool Is(FROM* obj) {
|
|
if (obj == nullptr) {
|
|
return false;
|
|
}
|
|
return TypeInfo::Is<TO, FROM, FLAGS>(&obj->TypeInfo());
|
|
}
|
|
|
|
/// @returns true if `obj` is a valid pointer, and is of, or derives from the
|
|
/// type `TYPE`, and pred(const TYPE*) returns true
|
|
/// @param obj the object to test from
|
|
/// @param pred predicate function with signature `bool(const TYPE*)` called iff
|
|
/// object is of, or derives from the class `TYPE`.
|
|
/// @see CastFlags
|
|
template <typename TYPE,
|
|
int FLAGS = 0,
|
|
typename OBJ = detail::Infer,
|
|
typename Pred = detail::Infer>
|
|
inline bool Is(OBJ* obj, Pred&& pred) {
|
|
return Is<TYPE, FLAGS, OBJ>(obj) &&
|
|
pred(static_cast<std::add_const_t<TYPE>*>(obj));
|
|
}
|
|
|
|
/// @returns true if `obj` is a valid pointer, and is of, or derives from any of
|
|
/// the types in `TYPES`.OBJ
|
|
/// @param obj the object to query.
|
|
template <typename... TYPES, typename OBJ>
|
|
inline bool IsAnyOf(OBJ* obj) {
|
|
if (!obj) {
|
|
return false;
|
|
}
|
|
return obj->TypeInfo().template IsAnyOf<TYPES...>();
|
|
}
|
|
|
|
/// @returns obj dynamically cast to the type `TO` or `nullptr` if
|
|
/// this object does not derive from `TO`.
|
|
/// @param obj the object to cast from
|
|
/// @see CastFlags
|
|
template <typename TO, int FLAGS = 0, typename FROM = detail::Infer>
|
|
inline TO* As(FROM* obj) {
|
|
auto* as_castable = static_cast<CastableBase*>(obj);
|
|
return Is<TO, FLAGS>(obj) ? static_cast<TO*>(as_castable) : nullptr;
|
|
}
|
|
|
|
/// @returns obj dynamically cast to the type `TO` or `nullptr` if
|
|
/// this object does not derive from `TO`.
|
|
/// @param obj the object to cast from
|
|
/// @see CastFlags
|
|
template <typename TO, int FLAGS = 0, typename FROM = detail::Infer>
|
|
inline const TO* As(const FROM* obj) {
|
|
auto* as_castable = static_cast<const CastableBase*>(obj);
|
|
return Is<TO, FLAGS>(obj) ? static_cast<const TO*>(as_castable) : nullptr;
|
|
}
|
|
|
|
/// CastableBase is the base class for all Castable objects.
|
|
/// It is not encouraged to directly derive from CastableBase without using the
|
|
/// Castable helper template.
|
|
/// @see Castable
|
|
class CastableBase {
|
|
public:
|
|
/// Copy constructor
|
|
CastableBase(const CastableBase&) = default;
|
|
|
|
/// Destructor
|
|
virtual ~CastableBase() = default;
|
|
|
|
/// Copy assignment
|
|
/// @param other the CastableBase to copy
|
|
/// @returns the new CastableBase
|
|
CastableBase& operator=(const CastableBase& other) = default;
|
|
|
|
/// @returns the TypeInfo of the object
|
|
virtual const tint::TypeInfo& TypeInfo() const = 0;
|
|
|
|
/// @returns true if this object is of, or derives from the class `TO`
|
|
template <typename TO>
|
|
inline bool Is() const {
|
|
return tint::Is<TO>(this);
|
|
}
|
|
|
|
/// @returns true if this object is of, or derives from the class `TO` and
|
|
/// pred(const TO*) returns true
|
|
/// @param pred predicate function with signature `bool(const TO*)` called iff
|
|
/// object is of, or derives from the class `TO`.
|
|
template <typename TO, int FLAGS = 0, typename Pred = detail::Infer>
|
|
inline bool Is(Pred&& pred) const {
|
|
return tint::Is<TO, FLAGS>(this, std::forward<Pred>(pred));
|
|
}
|
|
|
|
/// @returns true if this object is of, or derives from any of the `TO`
|
|
/// classes.
|
|
template <typename... TO>
|
|
inline bool IsAnyOf() const {
|
|
return tint::IsAnyOf<TO...>(this);
|
|
}
|
|
|
|
/// @returns this object dynamically cast to the type `TO` or `nullptr` if
|
|
/// this object does not derive from `TO`.
|
|
/// @see CastFlags
|
|
template <typename TO, int FLAGS = 0>
|
|
inline TO* As() {
|
|
return tint::As<TO, FLAGS>(this);
|
|
}
|
|
|
|
/// @returns this object dynamically cast to the type `TO` or `nullptr` if
|
|
/// this object does not derive from `TO`.
|
|
/// @see CastFlags
|
|
template <typename TO, int FLAGS = 0>
|
|
inline const TO* As() const {
|
|
return tint::As<const TO, FLAGS>(this);
|
|
}
|
|
|
|
protected:
|
|
CastableBase() = default;
|
|
};
|
|
|
|
/// Castable is a helper to derive `CLASS` from `BASE`, automatically
|
|
/// implementing the Is() and As() methods, along with a #Base type alias.
|
|
///
|
|
/// Example usage:
|
|
///
|
|
/// ```
|
|
/// class Animal : public Castable<Animal> {};
|
|
///
|
|
/// class Sheep : public Castable<Sheep, Animal> {};
|
|
///
|
|
/// Sheep* cast_to_sheep(Animal* animal) {
|
|
/// // You can query whether a Castable is of the given type with Is<T>():
|
|
/// printf("animal is a sheep? %s", animal->Is<Sheep>() ? "yes" : "no");
|
|
///
|
|
/// // You can always just try the cast with As<T>().
|
|
/// // If the object is not of the correct type, As<T>() will return nullptr:
|
|
/// return animal->As<Sheep>();
|
|
/// }
|
|
/// ```
|
|
template <typename CLASS, typename BASE = CastableBase>
|
|
class Castable : public BASE {
|
|
public:
|
|
// Inherit the `BASE` class constructors.
|
|
using BASE::BASE;
|
|
|
|
/// A type alias for `CLASS` to easily access the `BASE` class members.
|
|
/// Base actually aliases to the Castable instead of `BASE` so that you can
|
|
/// use Base in the `CLASS` constructor.
|
|
using Base = Castable;
|
|
|
|
/// A type alias for `BASE`.
|
|
using TrueBase = BASE;
|
|
|
|
/// @returns the TypeInfo of the object
|
|
const tint::TypeInfo& TypeInfo() const override {
|
|
return TypeInfo::Of<CLASS>();
|
|
}
|
|
|
|
/// @returns true if this object is of, or derives from the class `TO`
|
|
/// @see CastFlags
|
|
template <typename TO, int FLAGS = 0>
|
|
inline bool Is() const {
|
|
return tint::Is<TO, FLAGS>(static_cast<const CLASS*>(this));
|
|
}
|
|
|
|
/// @returns true if this object is of, or derives from the class `TO` and
|
|
/// pred(const TO*) returns true
|
|
/// @param pred predicate function with signature `bool(const TO*)` called iff
|
|
/// object is of, or derives from the class `TO`.
|
|
template <int FLAGS = 0, typename Pred = detail::Infer>
|
|
inline bool Is(Pred&& pred) const {
|
|
using TO =
|
|
typename std::remove_pointer<traits::ParameterType<Pred, 0>>::type;
|
|
return tint::Is<TO, FLAGS>(static_cast<const CLASS*>(this),
|
|
std::forward<Pred>(pred));
|
|
}
|
|
|
|
/// @returns true if this object is of, or derives from any of the `TO`
|
|
/// classes.
|
|
template <typename... TO>
|
|
inline bool IsAnyOf() const {
|
|
return tint::IsAnyOf<TO...>(static_cast<const CLASS*>(this));
|
|
}
|
|
|
|
/// @returns this object dynamically cast to the type `TO` or `nullptr` if
|
|
/// this object does not derive from `TO`.
|
|
/// @see CastFlags
|
|
template <typename TO, int FLAGS = 0>
|
|
inline TO* As() {
|
|
return tint::As<TO, FLAGS>(this);
|
|
}
|
|
|
|
/// @returns this object dynamically cast to the type `TO` or `nullptr` if
|
|
/// this object does not derive from `TO`.
|
|
/// @see CastFlags
|
|
template <typename TO, int FLAGS = 0>
|
|
inline const TO* As() const {
|
|
return tint::As<const TO, FLAGS>(this);
|
|
}
|
|
};
|
|
|
|
namespace detail {
|
|
/// <code>typename CastableCommonBaseImpl<TYPES>::type</code> resolves to the
|
|
/// common base class for all of TYPES.
|
|
template <typename... TYPES>
|
|
struct CastableCommonBaseImpl {};
|
|
|
|
/// Alias to typename CastableCommonBaseImpl<TYPES>::type
|
|
template <typename... TYPES>
|
|
using CastableCommonBase =
|
|
typename detail::CastableCommonBaseImpl<TYPES...>::type;
|
|
|
|
/// CastableCommonBaseImpl template specialization for a single type
|
|
template <typename T>
|
|
struct CastableCommonBaseImpl<T> {
|
|
/// Common base class of a single type is itself
|
|
using type = T;
|
|
};
|
|
|
|
/// CastableCommonBaseImpl A <-> CastableBase specialization
|
|
template <typename A>
|
|
struct CastableCommonBaseImpl<A, CastableBase> {
|
|
/// Common base class for A and CastableBase is CastableBase
|
|
using type = CastableBase;
|
|
};
|
|
|
|
/// CastableCommonBaseImpl T <-> Ignore specialization
|
|
template <typename T>
|
|
struct CastableCommonBaseImpl<T, Ignore> {
|
|
/// Resolves to T as the other type is ignored
|
|
using type = T;
|
|
};
|
|
|
|
/// CastableCommonBaseImpl Ignore <-> T specialization
|
|
template <typename T>
|
|
struct CastableCommonBaseImpl<Ignore, T> {
|
|
/// Resolves to T as the other type is ignored
|
|
using type = T;
|
|
};
|
|
|
|
/// CastableCommonBaseImpl A <-> B specialization
|
|
template <typename A, typename B>
|
|
struct CastableCommonBaseImpl<A, B> {
|
|
/// The common base class for A, B and OTHERS
|
|
using type = std::conditional_t<traits::IsTypeOrDerived<A, B>,
|
|
B, // A derives from B
|
|
CastableCommonBase<A, typename B::TrueBase>>;
|
|
};
|
|
|
|
/// CastableCommonBaseImpl 3+ types specialization
|
|
template <typename A, typename B, typename... OTHERS>
|
|
struct CastableCommonBaseImpl<A, B, OTHERS...> {
|
|
/// The common base class for A, B and OTHERS
|
|
using type = CastableCommonBase<CastableCommonBase<A, B>, OTHERS...>;
|
|
};
|
|
|
|
} // namespace detail
|
|
|
|
/// Resolves to the common most derived type that each of the types in `TYPES`
|
|
/// derives from.
|
|
template <typename... TYPES>
|
|
using CastableCommonBase = detail::CastableCommonBase<TYPES...>;
|
|
|
|
/// Default can be used as the default case for a Switch(), when all previous
|
|
/// cases failed to match.
|
|
///
|
|
/// Example:
|
|
/// ```
|
|
/// Switch(object,
|
|
/// [&](TypeA*) { /* ... */ },
|
|
/// [&](TypeB*) { /* ... */ },
|
|
/// [&](Default) { /* If not TypeA or TypeB */ });
|
|
/// ```
|
|
struct Default {};
|
|
|
|
namespace detail {
|
|
|
|
/// Evaluates to the Switch case type being matched by the switch case function
|
|
/// `FN`.
|
|
/// @note does not handle the Default case
|
|
/// @see Switch().
|
|
template <typename FN>
|
|
using SwitchCaseType = std::remove_pointer_t<
|
|
traits::ParameterType<std::remove_reference_t<FN>, 0>>;
|
|
|
|
/// Evaluates to true if the function `FN` has the signature of a Default case
|
|
/// in a Switch().
|
|
/// @see Switch().
|
|
template <typename FN>
|
|
inline constexpr bool IsDefaultCase =
|
|
std::is_same_v<traits::ParameterType<std::remove_reference_t<FN>, 0>,
|
|
Default>;
|
|
|
|
/// Searches the list of Switch cases for a Default case, returning the index of
|
|
/// the Default case. If the a Default case is not found in the tuple, then -1
|
|
/// is returned.
|
|
template <typename TUPLE, std::size_t START_IDX = 0>
|
|
constexpr int IndexOfDefaultCase() {
|
|
if constexpr (START_IDX < std::tuple_size_v<TUPLE>) {
|
|
return IsDefaultCase<std::tuple_element_t<START_IDX, TUPLE>>
|
|
? static_cast<int>(START_IDX)
|
|
: IndexOfDefaultCase<TUPLE, START_IDX + 1>();
|
|
} else {
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
/// The implementation of Switch() for non-Default cases.
|
|
/// Switch splits the cases into two a low and high block of cases, and quickly
|
|
/// rules out blocks that cannot match by comparing the TypeInfo::HashCode of
|
|
/// the object and the cases in the block. If a block of cases may match the
|
|
/// given object's type, then that block is split into two, and the process
|
|
/// recurses. When NonDefaultCases() is called with a single case, then As<>
|
|
/// will be used to dynamically cast to the case type and if the cast succeeds,
|
|
/// then the case handler is called.
|
|
/// @returns true if a case handler was found, otherwise false.
|
|
template <typename T, typename RETURN_TYPE, typename... CASES>
|
|
inline bool NonDefaultCases(T* object,
|
|
const TypeInfo* type,
|
|
RETURN_TYPE* result,
|
|
std::tuple<CASES...>&& cases) {
|
|
using Cases = std::tuple<CASES...>;
|
|
|
|
(void)result; // Not always used, avoid warning.
|
|
|
|
static constexpr bool kHasReturnType = !std::is_same_v<RETURN_TYPE, void>;
|
|
static constexpr size_t kNumCases = sizeof...(CASES);
|
|
|
|
if constexpr (kNumCases == 0) {
|
|
// No cases. Nothing to do.
|
|
return false;
|
|
} else if constexpr (kNumCases == 1) { // NOLINT: cpplint doesn't understand
|
|
// `else if constexpr`
|
|
// Single case.
|
|
using CaseFunc = std::tuple_element_t<0, Cases>;
|
|
static_assert(!IsDefaultCase<CaseFunc>,
|
|
"NonDefaultCases called with a Default case");
|
|
// Attempt to dynamically cast the object to the handler type. If that
|
|
// succeeds, call the case handler with the cast object.
|
|
using CaseType = SwitchCaseType<CaseFunc>;
|
|
if (type->Is(&TypeInfo::Of<CaseType>())) {
|
|
auto* ptr = static_cast<CaseType*>(object);
|
|
if constexpr (kHasReturnType) {
|
|
*result = static_cast<RETURN_TYPE>(std::get<0>(cases)(ptr));
|
|
} else {
|
|
std::get<0>(cases)(ptr);
|
|
}
|
|
return true;
|
|
}
|
|
return false;
|
|
} else {
|
|
// Multiple cases.
|
|
// Check the hashcode bits to see if there's any possibility of a case
|
|
// matching in these cases. If there isn't, we can skip all these cases.
|
|
if (type->full_hashcode &
|
|
TypeInfo::CombinedHashCodeOf<SwitchCaseType<CASES>...>()) {
|
|
// There's a possibility. We need to scan further.
|
|
// Split the cases into two, and recurse.
|
|
constexpr size_t kMid = kNumCases / 2;
|
|
return NonDefaultCases(object, type, result,
|
|
traits::Slice<0, kMid>(cases)) ||
|
|
NonDefaultCases(object, type, result,
|
|
traits::Slice<kMid, kNumCases - kMid>(cases));
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
/// The implementation of Switch() for all cases.
|
|
/// @see NonDefaultCases
|
|
template <typename T, typename RETURN_TYPE, typename... CASES>
|
|
inline void SwitchCases(T* object,
|
|
RETURN_TYPE* result,
|
|
std::tuple<CASES...>&& cases) {
|
|
using Cases = std::tuple<CASES...>;
|
|
static constexpr int kDefaultIndex = detail::IndexOfDefaultCase<Cases>();
|
|
static_assert(kDefaultIndex == -1 || std::tuple_size_v<Cases> - 1,
|
|
"Default case must be last in Switch()");
|
|
static constexpr bool kHasDefaultCase = kDefaultIndex >= 0;
|
|
static constexpr bool kHasReturnType = !std::is_same_v<RETURN_TYPE, void>;
|
|
|
|
if (object) {
|
|
auto* type = &object->TypeInfo();
|
|
if constexpr (kHasDefaultCase) {
|
|
// Evaluate non-default cases.
|
|
if (!detail::NonDefaultCases<T>(object, type, result,
|
|
traits::Slice<0, kDefaultIndex>(cases))) {
|
|
// Nothing matched. Evaluate default case.
|
|
if constexpr (kHasReturnType) {
|
|
*result =
|
|
static_cast<RETURN_TYPE>(std::get<kDefaultIndex>(cases)({}));
|
|
} else {
|
|
std::get<kDefaultIndex>(cases)({});
|
|
}
|
|
}
|
|
} else {
|
|
detail::NonDefaultCases<T>(object, type, result, std::move(cases));
|
|
}
|
|
} else {
|
|
// Object is nullptr, so no cases can match
|
|
if constexpr (kHasDefaultCase) {
|
|
// Evaluate default case.
|
|
if constexpr (kHasReturnType) {
|
|
*result = static_cast<RETURN_TYPE>(std::get<kDefaultIndex>(cases)({}));
|
|
} else {
|
|
std::get<kDefaultIndex>(cases)({});
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Resolves to T if T is not nullptr_t, otherwise resolves to Ignore.
|
|
template <typename T>
|
|
using NullptrToIgnore =
|
|
std::conditional_t<std::is_same_v<T, std::nullptr_t>, Ignore, T>;
|
|
|
|
/// Resolves to `const TYPE` if any of `CASE_RETURN_TYPES` are const or
|
|
/// pointer-to-const, otherwise resolves to TYPE.
|
|
template <typename TYPE, typename... CASE_RETURN_TYPES>
|
|
using PropagateReturnConst = std::conditional_t<
|
|
// Are any of the pointer-stripped types const?
|
|
(std::is_const_v<std::remove_pointer_t<CASE_RETURN_TYPES>> || ...),
|
|
const TYPE, // Yes: Apply const to TYPE
|
|
TYPE>; // No: Passthrough
|
|
|
|
/// SwitchReturnTypeImpl is the implementation of SwitchReturnType
|
|
template <bool IS_CASTABLE,
|
|
typename REQUESTED_TYPE,
|
|
typename... CASE_RETURN_TYPES>
|
|
struct SwitchReturnTypeImpl;
|
|
|
|
/// SwitchReturnTypeImpl specialization for non-castable case types and an
|
|
/// explicitly specified return type.
|
|
template <typename REQUESTED_TYPE, typename... CASE_RETURN_TYPES>
|
|
struct SwitchReturnTypeImpl</*IS_CASTABLE*/ false,
|
|
REQUESTED_TYPE,
|
|
CASE_RETURN_TYPES...> {
|
|
/// Resolves to `REQUESTED_TYPE`
|
|
using type = REQUESTED_TYPE;
|
|
};
|
|
|
|
/// SwitchReturnTypeImpl specialization for non-castable case types and an
|
|
/// inferred return type.
|
|
template <typename... CASE_RETURN_TYPES>
|
|
struct SwitchReturnTypeImpl</*IS_CASTABLE*/ false,
|
|
Infer,
|
|
CASE_RETURN_TYPES...> {
|
|
/// Resolves to the common type for all the cases return types.
|
|
using type = std::common_type_t<CASE_RETURN_TYPES...>;
|
|
};
|
|
|
|
/// SwitchReturnTypeImpl specialization for castable case types and an
|
|
/// explicitly specified return type.
|
|
template <typename REQUESTED_TYPE, typename... CASE_RETURN_TYPES>
|
|
struct SwitchReturnTypeImpl</*IS_CASTABLE*/ true,
|
|
REQUESTED_TYPE,
|
|
CASE_RETURN_TYPES...> {
|
|
public:
|
|
/// Resolves to `const REQUESTED_TYPE*` or `REQUESTED_TYPE*`
|
|
using type = PropagateReturnConst<std::remove_pointer_t<REQUESTED_TYPE>,
|
|
CASE_RETURN_TYPES...>*;
|
|
};
|
|
|
|
/// SwitchReturnTypeImpl specialization for castable case types and an infered
|
|
/// return type.
|
|
template <typename... CASE_RETURN_TYPES>
|
|
struct SwitchReturnTypeImpl</*IS_CASTABLE*/ true, Infer, CASE_RETURN_TYPES...> {
|
|
private:
|
|
using InferredType = CastableCommonBase<
|
|
detail::NullptrToIgnore<std::remove_pointer_t<CASE_RETURN_TYPES>>...>;
|
|
|
|
public:
|
|
/// `const T*` or `T*`, where T is the common base type for all the castable
|
|
/// case types.
|
|
using type = PropagateReturnConst<InferredType, CASE_RETURN_TYPES...>*;
|
|
};
|
|
|
|
/// Resolves to the return type for a Switch() with the requested return type
|
|
/// `REQUESTED_TYPE` and case statement return types. If `REQUESTED_TYPE` is
|
|
/// Infer then the return type will be inferred from the case return types.
|
|
template <typename REQUESTED_TYPE, typename... CASE_RETURN_TYPES>
|
|
using SwitchReturnType = typename SwitchReturnTypeImpl<
|
|
IsCastable<NullptrToIgnore<std::remove_pointer_t<CASE_RETURN_TYPES>>...>,
|
|
REQUESTED_TYPE,
|
|
CASE_RETURN_TYPES...>::type;
|
|
|
|
} // namespace detail
|
|
|
|
/// Switch is used to dispatch one of the provided callback case handler
|
|
/// functions based on the type of `object` and the parameter type of the case
|
|
/// handlers. Switch will sequentially check the type of `object` against each
|
|
/// of the switch case handler functions, and will invoke the first case handler
|
|
/// function which has a parameter type that matches the object type. When a
|
|
/// case handler is matched, it will be called with the single argument of
|
|
/// `object` cast to the case handler's parameter type. Switch will invoke at
|
|
/// most one case handler. Each of the case functions must have the signature
|
|
/// `R(T*)` or `R(const T*)`, where `T` is the type matched by that case and `R`
|
|
/// is the return type, consistent across all case handlers.
|
|
///
|
|
/// An optional default case function with the signature `R(Default)` can be
|
|
/// used as the last case. This default case will be called if all previous
|
|
/// cases failed to match.
|
|
///
|
|
/// If `object` is nullptr and a default case is provided, then the default case
|
|
/// will be called. If `object` is nullptr and no default case is provided, then
|
|
/// no cases will be called.
|
|
///
|
|
/// Example:
|
|
/// ```
|
|
/// Switch(object,
|
|
/// [&](TypeA*) { /* ... */ },
|
|
/// [&](TypeB*) { /* ... */ });
|
|
///
|
|
/// Switch(object,
|
|
/// [&](TypeA*) { /* ... */ },
|
|
/// [&](TypeB*) { /* ... */ },
|
|
/// [&](Default) { /* Called if object is not TypeA or TypeB */ });
|
|
/// ```
|
|
///
|
|
/// @param object the object who's type is used to
|
|
/// @param cases the switch cases
|
|
/// @return the value returned by the called case. If no cases matched, then the
|
|
/// zero value for the consistent case type.
|
|
template <typename RETURN_TYPE = detail::Infer,
|
|
typename T = CastableBase,
|
|
typename... CASES>
|
|
inline auto Switch(T* object, CASES&&... cases) {
|
|
using ReturnType =
|
|
detail::SwitchReturnType<RETURN_TYPE, traits::ReturnType<CASES>...>;
|
|
static constexpr bool kHasReturnType = !std::is_same_v<ReturnType, void>;
|
|
|
|
if constexpr (kHasReturnType) {
|
|
ReturnType res = {};
|
|
detail::SwitchCases(object, &res,
|
|
std::forward_as_tuple(std::forward<CASES>(cases)...));
|
|
return res;
|
|
} else {
|
|
detail::SwitchCases<T, void>(
|
|
object, nullptr, std::forward_as_tuple(std::forward<CASES>(cases)...));
|
|
}
|
|
}
|
|
|
|
} // namespace tint
|
|
|
|
TINT_CASTABLE_POP_DISABLE_WARNINGS();
|
|
|
|
#endif // SRC_TINT_CASTABLE_H_
|