1998 lines
74 KiB
C++
1998 lines
74 KiB
C++
// Copyright 2018 The Abseil Authors.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// https://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
//
|
|
// An open-addressing
|
|
// hashtable with quadratic probing.
|
|
//
|
|
// This is a low level hashtable on top of which different interfaces can be
|
|
// implemented, like flat_hash_set, node_hash_set, string_hash_set, etc.
|
|
//
|
|
// The table interface is similar to that of std::unordered_set. Notable
|
|
// differences are that most member functions support heterogeneous keys when
|
|
// BOTH the hash and eq functions are marked as transparent. They do so by
|
|
// providing a typedef called `is_transparent`.
|
|
//
|
|
// When heterogeneous lookup is enabled, functions that take key_type act as if
|
|
// they have an overload set like:
|
|
//
|
|
// iterator find(const key_type& key);
|
|
// template <class K>
|
|
// iterator find(const K& key);
|
|
//
|
|
// size_type erase(const key_type& key);
|
|
// template <class K>
|
|
// size_type erase(const K& key);
|
|
//
|
|
// std::pair<iterator, iterator> equal_range(const key_type& key);
|
|
// template <class K>
|
|
// std::pair<iterator, iterator> equal_range(const K& key);
|
|
//
|
|
// When heterogeneous lookup is disabled, only the explicit `key_type` overloads
|
|
// exist.
|
|
//
|
|
// find() also supports passing the hash explicitly:
|
|
//
|
|
// iterator find(const key_type& key, size_t hash);
|
|
// template <class U>
|
|
// iterator find(const U& key, size_t hash);
|
|
//
|
|
// In addition the pointer to element and iterator stability guarantees are
|
|
// weaker: all iterators and pointers are invalidated after a new element is
|
|
// inserted.
|
|
//
|
|
// IMPLEMENTATION DETAILS
|
|
//
|
|
// The table stores elements inline in a slot array. In addition to the slot
|
|
// array the table maintains some control state per slot. The extra state is one
|
|
// byte per slot and stores empty or deleted marks, or alternatively 7 bits from
|
|
// the hash of an occupied slot. The table is split into logical groups of
|
|
// slots, like so:
|
|
//
|
|
// Group 1 Group 2 Group 3
|
|
// +---------------+---------------+---------------+
|
|
// | | | | | | | | | | | | | | | | | | | | | | | | |
|
|
// +---------------+---------------+---------------+
|
|
//
|
|
// On lookup the hash is split into two parts:
|
|
// - H2: 7 bits (those stored in the control bytes)
|
|
// - H1: the rest of the bits
|
|
// The groups are probed using H1. For each group the slots are matched to H2 in
|
|
// parallel. Because H2 is 7 bits (128 states) and the number of slots per group
|
|
// is low (8 or 16) in almost all cases a match in H2 is also a lookup hit.
|
|
//
|
|
// On insert, once the right group is found (as in lookup), its slots are
|
|
// filled in order.
|
|
//
|
|
// On erase a slot is cleared. In case the group did not have any empty slots
|
|
// before the erase, the erased slot is marked as deleted.
|
|
//
|
|
// Groups without empty slots (but maybe with deleted slots) extend the probe
|
|
// sequence. The probing algorithm is quadratic. Given N the number of groups,
|
|
// the probing function for the i'th probe is:
|
|
//
|
|
// P(0) = H1 % N
|
|
//
|
|
// P(i) = (P(i - 1) + i) % N
|
|
//
|
|
// This probing function guarantees that after N probes, all the groups of the
|
|
// table will be probed exactly once.
|
|
|
|
#ifndef ABSL_CONTAINER_INTERNAL_RAW_HASH_SET_H_
|
|
#define ABSL_CONTAINER_INTERNAL_RAW_HASH_SET_H_
|
|
|
|
#include <algorithm>
|
|
#include <cmath>
|
|
#include <cstdint>
|
|
#include <cstring>
|
|
#include <iterator>
|
|
#include <limits>
|
|
#include <memory>
|
|
#include <tuple>
|
|
#include <type_traits>
|
|
#include <utility>
|
|
|
|
#include "absl/base/internal/endian.h"
|
|
#include "absl/base/optimization.h"
|
|
#include "absl/base/port.h"
|
|
#include "absl/container/internal/common.h"
|
|
#include "absl/container/internal/compressed_tuple.h"
|
|
#include "absl/container/internal/container_memory.h"
|
|
#include "absl/container/internal/hash_policy_traits.h"
|
|
#include "absl/container/internal/hashtable_debug_hooks.h"
|
|
#include "absl/container/internal/hashtablez_sampler.h"
|
|
#include "absl/container/internal/have_sse.h"
|
|
#include "absl/memory/memory.h"
|
|
#include "absl/meta/type_traits.h"
|
|
#include "absl/numeric/bits.h"
|
|
#include "absl/utility/utility.h"
|
|
|
|
namespace absl {
|
|
ABSL_NAMESPACE_BEGIN
|
|
namespace container_internal {
|
|
|
|
template <typename AllocType>
|
|
void SwapAlloc(AllocType& lhs, AllocType& rhs,
|
|
std::true_type /* propagate_on_container_swap */) {
|
|
using std::swap;
|
|
swap(lhs, rhs);
|
|
}
|
|
template <typename AllocType>
|
|
void SwapAlloc(AllocType& /*lhs*/, AllocType& /*rhs*/,
|
|
std::false_type /* propagate_on_container_swap */) {}
|
|
|
|
template <size_t Width>
|
|
class probe_seq {
|
|
public:
|
|
probe_seq(size_t hash, size_t mask) {
|
|
assert(((mask + 1) & mask) == 0 && "not a mask");
|
|
mask_ = mask;
|
|
offset_ = hash & mask_;
|
|
}
|
|
size_t offset() const { return offset_; }
|
|
size_t offset(size_t i) const { return (offset_ + i) & mask_; }
|
|
|
|
void next() {
|
|
index_ += Width;
|
|
offset_ += index_;
|
|
offset_ &= mask_;
|
|
}
|
|
// 0-based probe index. The i-th probe in the probe sequence.
|
|
size_t index() const { return index_; }
|
|
|
|
private:
|
|
size_t mask_;
|
|
size_t offset_;
|
|
size_t index_ = 0;
|
|
};
|
|
|
|
template <class ContainerKey, class Hash, class Eq>
|
|
struct RequireUsableKey {
|
|
template <class PassedKey, class... Args>
|
|
std::pair<
|
|
decltype(std::declval<const Hash&>()(std::declval<const PassedKey&>())),
|
|
decltype(std::declval<const Eq&>()(std::declval<const ContainerKey&>(),
|
|
std::declval<const PassedKey&>()))>*
|
|
operator()(const PassedKey&, const Args&...) const;
|
|
};
|
|
|
|
template <class E, class Policy, class Hash, class Eq, class... Ts>
|
|
struct IsDecomposable : std::false_type {};
|
|
|
|
template <class Policy, class Hash, class Eq, class... Ts>
|
|
struct IsDecomposable<
|
|
absl::void_t<decltype(
|
|
Policy::apply(RequireUsableKey<typename Policy::key_type, Hash, Eq>(),
|
|
std::declval<Ts>()...))>,
|
|
Policy, Hash, Eq, Ts...> : std::true_type {};
|
|
|
|
// TODO(alkis): Switch to std::is_nothrow_swappable when gcc/clang supports it.
|
|
template <class T>
|
|
constexpr bool IsNoThrowSwappable(std::true_type = {} /* is_swappable */) {
|
|
using std::swap;
|
|
return noexcept(swap(std::declval<T&>(), std::declval<T&>()));
|
|
}
|
|
template <class T>
|
|
constexpr bool IsNoThrowSwappable(std::false_type /* is_swappable */) {
|
|
return false;
|
|
}
|
|
|
|
template <typename T>
|
|
uint32_t TrailingZeros(T x) {
|
|
ABSL_INTERNAL_ASSUME(x != 0);
|
|
return countr_zero(x);
|
|
}
|
|
|
|
// An abstraction over a bitmask. It provides an easy way to iterate through the
|
|
// indexes of the set bits of a bitmask. When Shift=0 (platforms with SSE),
|
|
// this is a true bitmask. On non-SSE, platforms the arithematic used to
|
|
// emulate the SSE behavior works in bytes (Shift=3) and leaves each bytes as
|
|
// either 0x00 or 0x80.
|
|
//
|
|
// For example:
|
|
// for (int i : BitMask<uint32_t, 16>(0x5)) -> yields 0, 2
|
|
// for (int i : BitMask<uint64_t, 8, 3>(0x0000000080800000)) -> yields 2, 3
|
|
template <class T, int SignificantBits, int Shift = 0>
|
|
class BitMask {
|
|
static_assert(std::is_unsigned<T>::value, "");
|
|
static_assert(Shift == 0 || Shift == 3, "");
|
|
|
|
public:
|
|
// These are useful for unit tests (gunit).
|
|
using value_type = int;
|
|
using iterator = BitMask;
|
|
using const_iterator = BitMask;
|
|
|
|
explicit BitMask(T mask) : mask_(mask) {}
|
|
BitMask& operator++() {
|
|
mask_ &= (mask_ - 1);
|
|
return *this;
|
|
}
|
|
explicit operator bool() const { return mask_ != 0; }
|
|
int operator*() const { return LowestBitSet(); }
|
|
uint32_t LowestBitSet() const {
|
|
return container_internal::TrailingZeros(mask_) >> Shift;
|
|
}
|
|
uint32_t HighestBitSet() const {
|
|
return static_cast<uint32_t>((bit_width(mask_) - 1) >> Shift);
|
|
}
|
|
|
|
BitMask begin() const { return *this; }
|
|
BitMask end() const { return BitMask(0); }
|
|
|
|
uint32_t TrailingZeros() const {
|
|
return container_internal::TrailingZeros(mask_) >> Shift;
|
|
}
|
|
|
|
uint32_t LeadingZeros() const {
|
|
constexpr int total_significant_bits = SignificantBits << Shift;
|
|
constexpr int extra_bits = sizeof(T) * 8 - total_significant_bits;
|
|
return countl_zero(mask_ << extra_bits) >> Shift;
|
|
}
|
|
|
|
private:
|
|
friend bool operator==(const BitMask& a, const BitMask& b) {
|
|
return a.mask_ == b.mask_;
|
|
}
|
|
friend bool operator!=(const BitMask& a, const BitMask& b) {
|
|
return a.mask_ != b.mask_;
|
|
}
|
|
|
|
T mask_;
|
|
};
|
|
|
|
using h2_t = uint8_t;
|
|
|
|
// The values here are selected for maximum performance. See the static asserts
|
|
// below for details. We use an enum class so that when strict aliasing is
|
|
// enabled, the compiler knows ctrl_t doesn't alias other types.
|
|
enum class ctrl_t : int8_t {
|
|
kEmpty = -128, // 0b10000000
|
|
kDeleted = -2, // 0b11111110
|
|
kSentinel = -1, // 0b11111111
|
|
};
|
|
static_assert(
|
|
(static_cast<int8_t>(ctrl_t::kEmpty) &
|
|
static_cast<int8_t>(ctrl_t::kDeleted) &
|
|
static_cast<int8_t>(ctrl_t::kSentinel) & 0x80) != 0,
|
|
"Special markers need to have the MSB to make checking for them efficient");
|
|
static_assert(
|
|
ctrl_t::kEmpty < ctrl_t::kSentinel && ctrl_t::kDeleted < ctrl_t::kSentinel,
|
|
"ctrl_t::kEmpty and ctrl_t::kDeleted must be smaller than "
|
|
"ctrl_t::kSentinel to make the SIMD test of IsEmptyOrDeleted() efficient");
|
|
static_assert(
|
|
ctrl_t::kSentinel == static_cast<ctrl_t>(-1),
|
|
"ctrl_t::kSentinel must be -1 to elide loading it from memory into SIMD "
|
|
"registers (pcmpeqd xmm, xmm)");
|
|
static_assert(ctrl_t::kEmpty == static_cast<ctrl_t>(-128),
|
|
"ctrl_t::kEmpty must be -128 to make the SIMD check for its "
|
|
"existence efficient (psignb xmm, xmm)");
|
|
static_assert(
|
|
(~static_cast<int8_t>(ctrl_t::kEmpty) &
|
|
~static_cast<int8_t>(ctrl_t::kDeleted) &
|
|
static_cast<int8_t>(ctrl_t::kSentinel) & 0x7F) != 0,
|
|
"ctrl_t::kEmpty and ctrl_t::kDeleted must share an unset bit that is not "
|
|
"shared by ctrl_t::kSentinel to make the scalar test for "
|
|
"MatchEmptyOrDeleted() efficient");
|
|
static_assert(ctrl_t::kDeleted == static_cast<ctrl_t>(-2),
|
|
"ctrl_t::kDeleted must be -2 to make the implementation of "
|
|
"ConvertSpecialToEmptyAndFullToDeleted efficient");
|
|
|
|
// A single block of empty control bytes for tables without any slots allocated.
|
|
// This enables removing a branch in the hot path of find().
|
|
ABSL_DLL extern const ctrl_t kEmptyGroup[16];
|
|
inline ctrl_t* EmptyGroup() {
|
|
return const_cast<ctrl_t*>(kEmptyGroup);
|
|
}
|
|
|
|
// Mixes a randomly generated per-process seed with `hash` and `ctrl` to
|
|
// randomize insertion order within groups.
|
|
bool ShouldInsertBackwards(size_t hash, const ctrl_t* ctrl);
|
|
|
|
// Returns a hash seed.
|
|
//
|
|
// The seed consists of the ctrl_ pointer, which adds enough entropy to ensure
|
|
// non-determinism of iteration order in most cases.
|
|
inline size_t HashSeed(const ctrl_t* ctrl) {
|
|
// The low bits of the pointer have little or no entropy because of
|
|
// alignment. We shift the pointer to try to use higher entropy bits. A
|
|
// good number seems to be 12 bits, because that aligns with page size.
|
|
return reinterpret_cast<uintptr_t>(ctrl) >> 12;
|
|
}
|
|
|
|
inline size_t H1(size_t hash, const ctrl_t* ctrl) {
|
|
return (hash >> 7) ^ HashSeed(ctrl);
|
|
}
|
|
inline h2_t H2(size_t hash) { return hash & 0x7F; }
|
|
|
|
inline bool IsEmpty(ctrl_t c) { return c == ctrl_t::kEmpty; }
|
|
inline bool IsFull(ctrl_t c) { return c >= static_cast<ctrl_t>(0); }
|
|
inline bool IsDeleted(ctrl_t c) { return c == ctrl_t::kDeleted; }
|
|
inline bool IsEmptyOrDeleted(ctrl_t c) { return c < ctrl_t::kSentinel; }
|
|
|
|
#if ABSL_INTERNAL_RAW_HASH_SET_HAVE_SSE2
|
|
|
|
// https://github.com/abseil/abseil-cpp/issues/209
|
|
// https://gcc.gnu.org/bugzilla/show_bug.cgi?id=87853
|
|
// _mm_cmpgt_epi8 is broken under GCC with -funsigned-char
|
|
// Work around this by using the portable implementation of Group
|
|
// when using -funsigned-char under GCC.
|
|
inline __m128i _mm_cmpgt_epi8_fixed(__m128i a, __m128i b) {
|
|
#if defined(__GNUC__) && !defined(__clang__)
|
|
if (std::is_unsigned<char>::value) {
|
|
const __m128i mask = _mm_set1_epi8(0x80);
|
|
const __m128i diff = _mm_subs_epi8(b, a);
|
|
return _mm_cmpeq_epi8(_mm_and_si128(diff, mask), mask);
|
|
}
|
|
#endif
|
|
return _mm_cmpgt_epi8(a, b);
|
|
}
|
|
|
|
struct GroupSse2Impl {
|
|
static constexpr size_t kWidth = 16; // the number of slots per group
|
|
|
|
explicit GroupSse2Impl(const ctrl_t* pos) {
|
|
ctrl = _mm_loadu_si128(reinterpret_cast<const __m128i*>(pos));
|
|
}
|
|
|
|
// Returns a bitmask representing the positions of slots that match hash.
|
|
BitMask<uint32_t, kWidth> Match(h2_t hash) const {
|
|
auto match = _mm_set1_epi8(hash);
|
|
return BitMask<uint32_t, kWidth>(
|
|
_mm_movemask_epi8(_mm_cmpeq_epi8(match, ctrl)));
|
|
}
|
|
|
|
// Returns a bitmask representing the positions of empty slots.
|
|
BitMask<uint32_t, kWidth> MatchEmpty() const {
|
|
#if ABSL_INTERNAL_RAW_HASH_SET_HAVE_SSSE3
|
|
// This only works because ctrl_t::kEmpty is -128.
|
|
return BitMask<uint32_t, kWidth>(
|
|
_mm_movemask_epi8(_mm_sign_epi8(ctrl, ctrl)));
|
|
#else
|
|
return Match(static_cast<h2_t>(ctrl_t::kEmpty));
|
|
#endif
|
|
}
|
|
|
|
// Returns a bitmask representing the positions of empty or deleted slots.
|
|
BitMask<uint32_t, kWidth> MatchEmptyOrDeleted() const {
|
|
auto special = _mm_set1_epi8(static_cast<int8_t>(ctrl_t::kSentinel));
|
|
return BitMask<uint32_t, kWidth>(
|
|
_mm_movemask_epi8(_mm_cmpgt_epi8_fixed(special, ctrl)));
|
|
}
|
|
|
|
// Returns the number of trailing empty or deleted elements in the group.
|
|
uint32_t CountLeadingEmptyOrDeleted() const {
|
|
auto special = _mm_set1_epi8(static_cast<int8_t>(ctrl_t::kSentinel));
|
|
return TrailingZeros(static_cast<uint32_t>(
|
|
_mm_movemask_epi8(_mm_cmpgt_epi8_fixed(special, ctrl)) + 1));
|
|
}
|
|
|
|
void ConvertSpecialToEmptyAndFullToDeleted(ctrl_t* dst) const {
|
|
auto msbs = _mm_set1_epi8(static_cast<char>(-128));
|
|
auto x126 = _mm_set1_epi8(126);
|
|
#if ABSL_INTERNAL_RAW_HASH_SET_HAVE_SSSE3
|
|
auto res = _mm_or_si128(_mm_shuffle_epi8(x126, ctrl), msbs);
|
|
#else
|
|
auto zero = _mm_setzero_si128();
|
|
auto special_mask = _mm_cmpgt_epi8_fixed(zero, ctrl);
|
|
auto res = _mm_or_si128(msbs, _mm_andnot_si128(special_mask, x126));
|
|
#endif
|
|
_mm_storeu_si128(reinterpret_cast<__m128i*>(dst), res);
|
|
}
|
|
|
|
__m128i ctrl;
|
|
};
|
|
#endif // ABSL_INTERNAL_RAW_HASH_SET_HAVE_SSE2
|
|
|
|
struct GroupPortableImpl {
|
|
static constexpr size_t kWidth = 8;
|
|
|
|
explicit GroupPortableImpl(const ctrl_t* pos)
|
|
: ctrl(little_endian::Load64(pos)) {}
|
|
|
|
BitMask<uint64_t, kWidth, 3> Match(h2_t hash) const {
|
|
// For the technique, see:
|
|
// http://graphics.stanford.edu/~seander/bithacks.html##ValueInWord
|
|
// (Determine if a word has a byte equal to n).
|
|
//
|
|
// Caveat: there are false positives but:
|
|
// - they only occur if there is a real match
|
|
// - they never occur on ctrl_t::kEmpty, ctrl_t::kDeleted, ctrl_t::kSentinel
|
|
// - they will be handled gracefully by subsequent checks in code
|
|
//
|
|
// Example:
|
|
// v = 0x1716151413121110
|
|
// hash = 0x12
|
|
// retval = (v - lsbs) & ~v & msbs = 0x0000000080800000
|
|
constexpr uint64_t msbs = 0x8080808080808080ULL;
|
|
constexpr uint64_t lsbs = 0x0101010101010101ULL;
|
|
auto x = ctrl ^ (lsbs * hash);
|
|
return BitMask<uint64_t, kWidth, 3>((x - lsbs) & ~x & msbs);
|
|
}
|
|
|
|
BitMask<uint64_t, kWidth, 3> MatchEmpty() const {
|
|
constexpr uint64_t msbs = 0x8080808080808080ULL;
|
|
return BitMask<uint64_t, kWidth, 3>((ctrl & (~ctrl << 6)) & msbs);
|
|
}
|
|
|
|
BitMask<uint64_t, kWidth, 3> MatchEmptyOrDeleted() const {
|
|
constexpr uint64_t msbs = 0x8080808080808080ULL;
|
|
return BitMask<uint64_t, kWidth, 3>((ctrl & (~ctrl << 7)) & msbs);
|
|
}
|
|
|
|
uint32_t CountLeadingEmptyOrDeleted() const {
|
|
constexpr uint64_t gaps = 0x00FEFEFEFEFEFEFEULL;
|
|
return (TrailingZeros(((~ctrl & (ctrl >> 7)) | gaps) + 1) + 7) >> 3;
|
|
}
|
|
|
|
void ConvertSpecialToEmptyAndFullToDeleted(ctrl_t* dst) const {
|
|
constexpr uint64_t msbs = 0x8080808080808080ULL;
|
|
constexpr uint64_t lsbs = 0x0101010101010101ULL;
|
|
auto x = ctrl & msbs;
|
|
auto res = (~x + (x >> 7)) & ~lsbs;
|
|
little_endian::Store64(dst, res);
|
|
}
|
|
|
|
uint64_t ctrl;
|
|
};
|
|
|
|
#if ABSL_INTERNAL_RAW_HASH_SET_HAVE_SSE2
|
|
using Group = GroupSse2Impl;
|
|
#else
|
|
using Group = GroupPortableImpl;
|
|
#endif
|
|
|
|
// The number of cloned control bytes that we copy from the beginning to the
|
|
// end of the control bytes array.
|
|
constexpr size_t NumClonedBytes() { return Group::kWidth - 1; }
|
|
|
|
template <class Policy, class Hash, class Eq, class Alloc>
|
|
class raw_hash_set;
|
|
|
|
inline bool IsValidCapacity(size_t n) { return ((n + 1) & n) == 0 && n > 0; }
|
|
|
|
// PRECONDITION:
|
|
// IsValidCapacity(capacity)
|
|
// ctrl[capacity] == ctrl_t::kSentinel
|
|
// ctrl[i] != ctrl_t::kSentinel for all i < capacity
|
|
// Applies mapping for every byte in ctrl:
|
|
// DELETED -> EMPTY
|
|
// EMPTY -> EMPTY
|
|
// FULL -> DELETED
|
|
void ConvertDeletedToEmptyAndFullToDeleted(ctrl_t* ctrl, size_t capacity);
|
|
|
|
// Rounds up the capacity to the next power of 2 minus 1, with a minimum of 1.
|
|
inline size_t NormalizeCapacity(size_t n) {
|
|
return n ? ~size_t{} >> countl_zero(n) : 1;
|
|
}
|
|
|
|
// General notes on capacity/growth methods below:
|
|
// - We use 7/8th as maximum load factor. For 16-wide groups, that gives an
|
|
// average of two empty slots per group.
|
|
// - For (capacity+1) >= Group::kWidth, growth is 7/8*capacity.
|
|
// - For (capacity+1) < Group::kWidth, growth == capacity. In this case, we
|
|
// never need to probe (the whole table fits in one group) so we don't need a
|
|
// load factor less than 1.
|
|
|
|
// Given `capacity` of the table, returns the size (i.e. number of full slots)
|
|
// at which we should grow the capacity.
|
|
inline size_t CapacityToGrowth(size_t capacity) {
|
|
assert(IsValidCapacity(capacity));
|
|
// `capacity*7/8`
|
|
if (Group::kWidth == 8 && capacity == 7) {
|
|
// x-x/8 does not work when x==7.
|
|
return 6;
|
|
}
|
|
return capacity - capacity / 8;
|
|
}
|
|
// From desired "growth" to a lowerbound of the necessary capacity.
|
|
// Might not be a valid one and requires NormalizeCapacity().
|
|
inline size_t GrowthToLowerboundCapacity(size_t growth) {
|
|
// `growth*8/7`
|
|
if (Group::kWidth == 8 && growth == 7) {
|
|
// x+(x-1)/7 does not work when x==7.
|
|
return 8;
|
|
}
|
|
return growth + static_cast<size_t>((static_cast<int64_t>(growth) - 1) / 7);
|
|
}
|
|
|
|
template <class InputIter>
|
|
size_t SelectBucketCountForIterRange(InputIter first, InputIter last,
|
|
size_t bucket_count) {
|
|
if (bucket_count != 0) {
|
|
return bucket_count;
|
|
}
|
|
using InputIterCategory =
|
|
typename std::iterator_traits<InputIter>::iterator_category;
|
|
if (std::is_base_of<std::random_access_iterator_tag,
|
|
InputIterCategory>::value) {
|
|
return GrowthToLowerboundCapacity(
|
|
static_cast<size_t>(std::distance(first, last)));
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
inline void AssertIsFull(ctrl_t* ctrl) {
|
|
ABSL_HARDENING_ASSERT((ctrl != nullptr && IsFull(*ctrl)) &&
|
|
"Invalid operation on iterator. The element might have "
|
|
"been erased, or the table might have rehashed.");
|
|
}
|
|
|
|
inline void AssertIsValid(ctrl_t* ctrl) {
|
|
ABSL_HARDENING_ASSERT((ctrl == nullptr || IsFull(*ctrl)) &&
|
|
"Invalid operation on iterator. The element might have "
|
|
"been erased, or the table might have rehashed.");
|
|
}
|
|
|
|
struct FindInfo {
|
|
size_t offset;
|
|
size_t probe_length;
|
|
};
|
|
|
|
// The representation of the object has two modes:
|
|
// - small: For capacities < kWidth-1
|
|
// - large: For the rest.
|
|
//
|
|
// Differences:
|
|
// - In small mode we are able to use the whole capacity. The extra control
|
|
// bytes give us at least one "empty" control byte to stop the iteration.
|
|
// This is important to make 1 a valid capacity.
|
|
//
|
|
// - In small mode only the first `capacity()` control bytes after the
|
|
// sentinel are valid. The rest contain dummy ctrl_t::kEmpty values that do not
|
|
// represent a real slot. This is important to take into account on
|
|
// find_first_non_full(), where we never try ShouldInsertBackwards() for
|
|
// small tables.
|
|
inline bool is_small(size_t capacity) { return capacity < Group::kWidth - 1; }
|
|
|
|
inline probe_seq<Group::kWidth> probe(const ctrl_t* ctrl, size_t hash,
|
|
size_t capacity) {
|
|
return probe_seq<Group::kWidth>(H1(hash, ctrl), capacity);
|
|
}
|
|
|
|
// Probes the raw_hash_set with the probe sequence for hash and returns the
|
|
// pointer to the first empty or deleted slot.
|
|
// NOTE: this function must work with tables having both ctrl_t::kEmpty and
|
|
// ctrl_t::kDeleted in one group. Such tables appears during
|
|
// drop_deletes_without_resize.
|
|
//
|
|
// This function is very useful when insertions happen and:
|
|
// - the input is already a set
|
|
// - there are enough slots
|
|
// - the element with the hash is not in the table
|
|
template <typename = void>
|
|
inline FindInfo find_first_non_full(const ctrl_t* ctrl, size_t hash,
|
|
size_t capacity) {
|
|
auto seq = probe(ctrl, hash, capacity);
|
|
while (true) {
|
|
Group g{ctrl + seq.offset()};
|
|
auto mask = g.MatchEmptyOrDeleted();
|
|
if (mask) {
|
|
#if !defined(NDEBUG)
|
|
// We want to add entropy even when ASLR is not enabled.
|
|
// In debug build we will randomly insert in either the front or back of
|
|
// the group.
|
|
// TODO(kfm,sbenza): revisit after we do unconditional mixing
|
|
if (!is_small(capacity) && ShouldInsertBackwards(hash, ctrl)) {
|
|
return {seq.offset(mask.HighestBitSet()), seq.index()};
|
|
}
|
|
#endif
|
|
return {seq.offset(mask.LowestBitSet()), seq.index()};
|
|
}
|
|
seq.next();
|
|
assert(seq.index() <= capacity && "full table!");
|
|
}
|
|
}
|
|
|
|
// Extern template for inline function keep possibility of inlining.
|
|
// When compiler decided to not inline, no symbols will be added to the
|
|
// corresponding translation unit.
|
|
extern template FindInfo find_first_non_full(const ctrl_t*, size_t, size_t);
|
|
|
|
// Reset all ctrl bytes back to ctrl_t::kEmpty, except the sentinel.
|
|
inline void ResetCtrl(size_t capacity, ctrl_t* ctrl, const void* slot,
|
|
size_t slot_size) {
|
|
std::memset(ctrl, static_cast<int8_t>(ctrl_t::kEmpty),
|
|
capacity + 1 + NumClonedBytes());
|
|
ctrl[capacity] = ctrl_t::kSentinel;
|
|
SanitizerPoisonMemoryRegion(slot, slot_size * capacity);
|
|
}
|
|
|
|
// Sets the control byte, and if `i < NumClonedBytes()`, set the cloned byte
|
|
// at the end too.
|
|
inline void SetCtrl(size_t i, ctrl_t h, size_t capacity, ctrl_t* ctrl,
|
|
const void* slot, size_t slot_size) {
|
|
assert(i < capacity);
|
|
|
|
auto* slot_i = static_cast<const char*>(slot) + i * slot_size;
|
|
if (IsFull(h)) {
|
|
SanitizerUnpoisonMemoryRegion(slot_i, slot_size);
|
|
} else {
|
|
SanitizerPoisonMemoryRegion(slot_i, slot_size);
|
|
}
|
|
|
|
ctrl[i] = h;
|
|
ctrl[((i - NumClonedBytes()) & capacity) + (NumClonedBytes() & capacity)] = h;
|
|
}
|
|
|
|
inline void SetCtrl(size_t i, h2_t h, size_t capacity, ctrl_t* ctrl,
|
|
const void* slot, size_t slot_size) {
|
|
SetCtrl(i, static_cast<ctrl_t>(h), capacity, ctrl, slot, slot_size);
|
|
}
|
|
|
|
// The allocated block consists of `capacity + 1 + NumClonedBytes()` control
|
|
// bytes followed by `capacity` slots, which must be aligned to `slot_align`.
|
|
// SlotOffset returns the offset of the slots into the allocated block.
|
|
inline size_t SlotOffset(size_t capacity, size_t slot_align) {
|
|
assert(IsValidCapacity(capacity));
|
|
const size_t num_control_bytes = capacity + 1 + NumClonedBytes();
|
|
return (num_control_bytes + slot_align - 1) & (~slot_align + 1);
|
|
}
|
|
|
|
// Returns the size of the allocated block. See also above comment.
|
|
inline size_t AllocSize(size_t capacity, size_t slot_size, size_t slot_align) {
|
|
return SlotOffset(capacity, slot_align) + capacity * slot_size;
|
|
}
|
|
|
|
// Policy: a policy defines how to perform different operations on
|
|
// the slots of the hashtable (see hash_policy_traits.h for the full interface
|
|
// of policy).
|
|
//
|
|
// Hash: a (possibly polymorphic) functor that hashes keys of the hashtable. The
|
|
// functor should accept a key and return size_t as hash. For best performance
|
|
// it is important that the hash function provides high entropy across all bits
|
|
// of the hash.
|
|
//
|
|
// Eq: a (possibly polymorphic) functor that compares two keys for equality. It
|
|
// should accept two (of possibly different type) keys and return a bool: true
|
|
// if they are equal, false if they are not. If two keys compare equal, then
|
|
// their hash values as defined by Hash MUST be equal.
|
|
//
|
|
// Allocator: an Allocator
|
|
// [https://en.cppreference.com/w/cpp/named_req/Allocator] with which
|
|
// the storage of the hashtable will be allocated and the elements will be
|
|
// constructed and destroyed.
|
|
template <class Policy, class Hash, class Eq, class Alloc>
|
|
class raw_hash_set {
|
|
using PolicyTraits = hash_policy_traits<Policy>;
|
|
using KeyArgImpl =
|
|
KeyArg<IsTransparent<Eq>::value && IsTransparent<Hash>::value>;
|
|
|
|
public:
|
|
using init_type = typename PolicyTraits::init_type;
|
|
using key_type = typename PolicyTraits::key_type;
|
|
// TODO(sbenza): Hide slot_type as it is an implementation detail. Needs user
|
|
// code fixes!
|
|
using slot_type = typename PolicyTraits::slot_type;
|
|
using allocator_type = Alloc;
|
|
using size_type = size_t;
|
|
using difference_type = ptrdiff_t;
|
|
using hasher = Hash;
|
|
using key_equal = Eq;
|
|
using policy_type = Policy;
|
|
using value_type = typename PolicyTraits::value_type;
|
|
using reference = value_type&;
|
|
using const_reference = const value_type&;
|
|
using pointer = typename absl::allocator_traits<
|
|
allocator_type>::template rebind_traits<value_type>::pointer;
|
|
using const_pointer = typename absl::allocator_traits<
|
|
allocator_type>::template rebind_traits<value_type>::const_pointer;
|
|
|
|
// Alias used for heterogeneous lookup functions.
|
|
// `key_arg<K>` evaluates to `K` when the functors are transparent and to
|
|
// `key_type` otherwise. It permits template argument deduction on `K` for the
|
|
// transparent case.
|
|
template <class K>
|
|
using key_arg = typename KeyArgImpl::template type<K, key_type>;
|
|
|
|
private:
|
|
// Give an early error when key_type is not hashable/eq.
|
|
auto KeyTypeCanBeHashed(const Hash& h, const key_type& k) -> decltype(h(k));
|
|
auto KeyTypeCanBeEq(const Eq& eq, const key_type& k) -> decltype(eq(k, k));
|
|
|
|
using AllocTraits = absl::allocator_traits<allocator_type>;
|
|
using SlotAlloc = typename absl::allocator_traits<
|
|
allocator_type>::template rebind_alloc<slot_type>;
|
|
using SlotAllocTraits = typename absl::allocator_traits<
|
|
allocator_type>::template rebind_traits<slot_type>;
|
|
|
|
static_assert(std::is_lvalue_reference<reference>::value,
|
|
"Policy::element() must return a reference");
|
|
|
|
template <typename T>
|
|
struct SameAsElementReference
|
|
: std::is_same<typename std::remove_cv<
|
|
typename std::remove_reference<reference>::type>::type,
|
|
typename std::remove_cv<
|
|
typename std::remove_reference<T>::type>::type> {};
|
|
|
|
// An enabler for insert(T&&): T must be convertible to init_type or be the
|
|
// same as [cv] value_type [ref].
|
|
// Note: we separate SameAsElementReference into its own type to avoid using
|
|
// reference unless we need to. MSVC doesn't seem to like it in some
|
|
// cases.
|
|
template <class T>
|
|
using RequiresInsertable = typename std::enable_if<
|
|
absl::disjunction<std::is_convertible<T, init_type>,
|
|
SameAsElementReference<T>>::value,
|
|
int>::type;
|
|
|
|
// RequiresNotInit is a workaround for gcc prior to 7.1.
|
|
// See https://godbolt.org/g/Y4xsUh.
|
|
template <class T>
|
|
using RequiresNotInit =
|
|
typename std::enable_if<!std::is_same<T, init_type>::value, int>::type;
|
|
|
|
template <class... Ts>
|
|
using IsDecomposable = IsDecomposable<void, PolicyTraits, Hash, Eq, Ts...>;
|
|
|
|
public:
|
|
static_assert(std::is_same<pointer, value_type*>::value,
|
|
"Allocators with custom pointer types are not supported");
|
|
static_assert(std::is_same<const_pointer, const value_type*>::value,
|
|
"Allocators with custom pointer types are not supported");
|
|
|
|
class iterator {
|
|
friend class raw_hash_set;
|
|
|
|
public:
|
|
using iterator_category = std::forward_iterator_tag;
|
|
using value_type = typename raw_hash_set::value_type;
|
|
using reference =
|
|
absl::conditional_t<PolicyTraits::constant_iterators::value,
|
|
const value_type&, value_type&>;
|
|
using pointer = absl::remove_reference_t<reference>*;
|
|
using difference_type = typename raw_hash_set::difference_type;
|
|
|
|
iterator() {}
|
|
|
|
// PRECONDITION: not an end() iterator.
|
|
reference operator*() const {
|
|
AssertIsFull(ctrl_);
|
|
return PolicyTraits::element(slot_);
|
|
}
|
|
|
|
// PRECONDITION: not an end() iterator.
|
|
pointer operator->() const { return &operator*(); }
|
|
|
|
// PRECONDITION: not an end() iterator.
|
|
iterator& operator++() {
|
|
AssertIsFull(ctrl_);
|
|
++ctrl_;
|
|
++slot_;
|
|
skip_empty_or_deleted();
|
|
return *this;
|
|
}
|
|
// PRECONDITION: not an end() iterator.
|
|
iterator operator++(int) {
|
|
auto tmp = *this;
|
|
++*this;
|
|
return tmp;
|
|
}
|
|
|
|
friend bool operator==(const iterator& a, const iterator& b) {
|
|
AssertIsValid(a.ctrl_);
|
|
AssertIsValid(b.ctrl_);
|
|
return a.ctrl_ == b.ctrl_;
|
|
}
|
|
friend bool operator!=(const iterator& a, const iterator& b) {
|
|
return !(a == b);
|
|
}
|
|
|
|
private:
|
|
iterator(ctrl_t* ctrl, slot_type* slot) : ctrl_(ctrl), slot_(slot) {
|
|
// This assumption helps the compiler know that any non-end iterator is
|
|
// not equal to any end iterator.
|
|
ABSL_INTERNAL_ASSUME(ctrl != nullptr);
|
|
}
|
|
|
|
void skip_empty_or_deleted() {
|
|
while (IsEmptyOrDeleted(*ctrl_)) {
|
|
uint32_t shift = Group{ctrl_}.CountLeadingEmptyOrDeleted();
|
|
ctrl_ += shift;
|
|
slot_ += shift;
|
|
}
|
|
if (ABSL_PREDICT_FALSE(*ctrl_ == ctrl_t::kSentinel)) ctrl_ = nullptr;
|
|
}
|
|
|
|
ctrl_t* ctrl_ = nullptr;
|
|
// To avoid uninitialized member warnings, put slot_ in an anonymous union.
|
|
// The member is not initialized on singleton and end iterators.
|
|
union {
|
|
slot_type* slot_;
|
|
};
|
|
};
|
|
|
|
class const_iterator {
|
|
friend class raw_hash_set;
|
|
|
|
public:
|
|
using iterator_category = typename iterator::iterator_category;
|
|
using value_type = typename raw_hash_set::value_type;
|
|
using reference = typename raw_hash_set::const_reference;
|
|
using pointer = typename raw_hash_set::const_pointer;
|
|
using difference_type = typename raw_hash_set::difference_type;
|
|
|
|
const_iterator() {}
|
|
// Implicit construction from iterator.
|
|
const_iterator(iterator i) : inner_(std::move(i)) {}
|
|
|
|
reference operator*() const { return *inner_; }
|
|
pointer operator->() const { return inner_.operator->(); }
|
|
|
|
const_iterator& operator++() {
|
|
++inner_;
|
|
return *this;
|
|
}
|
|
const_iterator operator++(int) { return inner_++; }
|
|
|
|
friend bool operator==(const const_iterator& a, const const_iterator& b) {
|
|
return a.inner_ == b.inner_;
|
|
}
|
|
friend bool operator!=(const const_iterator& a, const const_iterator& b) {
|
|
return !(a == b);
|
|
}
|
|
|
|
private:
|
|
const_iterator(const ctrl_t* ctrl, const slot_type* slot)
|
|
: inner_(const_cast<ctrl_t*>(ctrl), const_cast<slot_type*>(slot)) {}
|
|
|
|
iterator inner_;
|
|
};
|
|
|
|
using node_type = node_handle<Policy, hash_policy_traits<Policy>, Alloc>;
|
|
using insert_return_type = InsertReturnType<iterator, node_type>;
|
|
|
|
raw_hash_set() noexcept(
|
|
std::is_nothrow_default_constructible<hasher>::value&&
|
|
std::is_nothrow_default_constructible<key_equal>::value&&
|
|
std::is_nothrow_default_constructible<allocator_type>::value) {}
|
|
|
|
explicit raw_hash_set(size_t bucket_count, const hasher& hash = hasher(),
|
|
const key_equal& eq = key_equal(),
|
|
const allocator_type& alloc = allocator_type())
|
|
: ctrl_(EmptyGroup()),
|
|
settings_(0, HashtablezInfoHandle(), hash, eq, alloc) {
|
|
if (bucket_count) {
|
|
capacity_ = NormalizeCapacity(bucket_count);
|
|
initialize_slots();
|
|
}
|
|
}
|
|
|
|
raw_hash_set(size_t bucket_count, const hasher& hash,
|
|
const allocator_type& alloc)
|
|
: raw_hash_set(bucket_count, hash, key_equal(), alloc) {}
|
|
|
|
raw_hash_set(size_t bucket_count, const allocator_type& alloc)
|
|
: raw_hash_set(bucket_count, hasher(), key_equal(), alloc) {}
|
|
|
|
explicit raw_hash_set(const allocator_type& alloc)
|
|
: raw_hash_set(0, hasher(), key_equal(), alloc) {}
|
|
|
|
template <class InputIter>
|
|
raw_hash_set(InputIter first, InputIter last, size_t bucket_count = 0,
|
|
const hasher& hash = hasher(), const key_equal& eq = key_equal(),
|
|
const allocator_type& alloc = allocator_type())
|
|
: raw_hash_set(SelectBucketCountForIterRange(first, last, bucket_count),
|
|
hash, eq, alloc) {
|
|
insert(first, last);
|
|
}
|
|
|
|
template <class InputIter>
|
|
raw_hash_set(InputIter first, InputIter last, size_t bucket_count,
|
|
const hasher& hash, const allocator_type& alloc)
|
|
: raw_hash_set(first, last, bucket_count, hash, key_equal(), alloc) {}
|
|
|
|
template <class InputIter>
|
|
raw_hash_set(InputIter first, InputIter last, size_t bucket_count,
|
|
const allocator_type& alloc)
|
|
: raw_hash_set(first, last, bucket_count, hasher(), key_equal(), alloc) {}
|
|
|
|
template <class InputIter>
|
|
raw_hash_set(InputIter first, InputIter last, const allocator_type& alloc)
|
|
: raw_hash_set(first, last, 0, hasher(), key_equal(), alloc) {}
|
|
|
|
// Instead of accepting std::initializer_list<value_type> as the first
|
|
// argument like std::unordered_set<value_type> does, we have two overloads
|
|
// that accept std::initializer_list<T> and std::initializer_list<init_type>.
|
|
// This is advantageous for performance.
|
|
//
|
|
// // Turns {"abc", "def"} into std::initializer_list<std::string>, then
|
|
// // copies the strings into the set.
|
|
// std::unordered_set<std::string> s = {"abc", "def"};
|
|
//
|
|
// // Turns {"abc", "def"} into std::initializer_list<const char*>, then
|
|
// // copies the strings into the set.
|
|
// absl::flat_hash_set<std::string> s = {"abc", "def"};
|
|
//
|
|
// The same trick is used in insert().
|
|
//
|
|
// The enabler is necessary to prevent this constructor from triggering where
|
|
// the copy constructor is meant to be called.
|
|
//
|
|
// absl::flat_hash_set<int> a, b{a};
|
|
//
|
|
// RequiresNotInit<T> is a workaround for gcc prior to 7.1.
|
|
template <class T, RequiresNotInit<T> = 0, RequiresInsertable<T> = 0>
|
|
raw_hash_set(std::initializer_list<T> init, size_t bucket_count = 0,
|
|
const hasher& hash = hasher(), const key_equal& eq = key_equal(),
|
|
const allocator_type& alloc = allocator_type())
|
|
: raw_hash_set(init.begin(), init.end(), bucket_count, hash, eq, alloc) {}
|
|
|
|
raw_hash_set(std::initializer_list<init_type> init, size_t bucket_count = 0,
|
|
const hasher& hash = hasher(), const key_equal& eq = key_equal(),
|
|
const allocator_type& alloc = allocator_type())
|
|
: raw_hash_set(init.begin(), init.end(), bucket_count, hash, eq, alloc) {}
|
|
|
|
template <class T, RequiresNotInit<T> = 0, RequiresInsertable<T> = 0>
|
|
raw_hash_set(std::initializer_list<T> init, size_t bucket_count,
|
|
const hasher& hash, const allocator_type& alloc)
|
|
: raw_hash_set(init, bucket_count, hash, key_equal(), alloc) {}
|
|
|
|
raw_hash_set(std::initializer_list<init_type> init, size_t bucket_count,
|
|
const hasher& hash, const allocator_type& alloc)
|
|
: raw_hash_set(init, bucket_count, hash, key_equal(), alloc) {}
|
|
|
|
template <class T, RequiresNotInit<T> = 0, RequiresInsertable<T> = 0>
|
|
raw_hash_set(std::initializer_list<T> init, size_t bucket_count,
|
|
const allocator_type& alloc)
|
|
: raw_hash_set(init, bucket_count, hasher(), key_equal(), alloc) {}
|
|
|
|
raw_hash_set(std::initializer_list<init_type> init, size_t bucket_count,
|
|
const allocator_type& alloc)
|
|
: raw_hash_set(init, bucket_count, hasher(), key_equal(), alloc) {}
|
|
|
|
template <class T, RequiresNotInit<T> = 0, RequiresInsertable<T> = 0>
|
|
raw_hash_set(std::initializer_list<T> init, const allocator_type& alloc)
|
|
: raw_hash_set(init, 0, hasher(), key_equal(), alloc) {}
|
|
|
|
raw_hash_set(std::initializer_list<init_type> init,
|
|
const allocator_type& alloc)
|
|
: raw_hash_set(init, 0, hasher(), key_equal(), alloc) {}
|
|
|
|
raw_hash_set(const raw_hash_set& that)
|
|
: raw_hash_set(that, AllocTraits::select_on_container_copy_construction(
|
|
that.alloc_ref())) {}
|
|
|
|
raw_hash_set(const raw_hash_set& that, const allocator_type& a)
|
|
: raw_hash_set(0, that.hash_ref(), that.eq_ref(), a) {
|
|
reserve(that.size());
|
|
// Because the table is guaranteed to be empty, we can do something faster
|
|
// than a full `insert`.
|
|
for (const auto& v : that) {
|
|
const size_t hash = PolicyTraits::apply(HashElement{hash_ref()}, v);
|
|
auto target = find_first_non_full(ctrl_, hash, capacity_);
|
|
SetCtrl(target.offset, H2(hash), capacity_, ctrl_, slots_,
|
|
sizeof(slot_type));
|
|
emplace_at(target.offset, v);
|
|
infoz().RecordInsert(hash, target.probe_length);
|
|
}
|
|
size_ = that.size();
|
|
growth_left() -= that.size();
|
|
}
|
|
|
|
raw_hash_set(raw_hash_set&& that) noexcept(
|
|
std::is_nothrow_copy_constructible<hasher>::value&&
|
|
std::is_nothrow_copy_constructible<key_equal>::value&&
|
|
std::is_nothrow_copy_constructible<allocator_type>::value)
|
|
: ctrl_(absl::exchange(that.ctrl_, EmptyGroup())),
|
|
slots_(absl::exchange(that.slots_, nullptr)),
|
|
size_(absl::exchange(that.size_, 0)),
|
|
capacity_(absl::exchange(that.capacity_, 0)),
|
|
// Hash, equality and allocator are copied instead of moved because
|
|
// `that` must be left valid. If Hash is std::function<Key>, moving it
|
|
// would create a nullptr functor that cannot be called.
|
|
settings_(absl::exchange(that.growth_left(), 0),
|
|
absl::exchange(that.infoz(), HashtablezInfoHandle()),
|
|
that.hash_ref(), that.eq_ref(), that.alloc_ref()) {}
|
|
|
|
raw_hash_set(raw_hash_set&& that, const allocator_type& a)
|
|
: ctrl_(EmptyGroup()),
|
|
slots_(nullptr),
|
|
size_(0),
|
|
capacity_(0),
|
|
settings_(0, HashtablezInfoHandle(), that.hash_ref(), that.eq_ref(),
|
|
a) {
|
|
if (a == that.alloc_ref()) {
|
|
std::swap(ctrl_, that.ctrl_);
|
|
std::swap(slots_, that.slots_);
|
|
std::swap(size_, that.size_);
|
|
std::swap(capacity_, that.capacity_);
|
|
std::swap(growth_left(), that.growth_left());
|
|
std::swap(infoz(), that.infoz());
|
|
} else {
|
|
reserve(that.size());
|
|
// Note: this will copy elements of dense_set and unordered_set instead of
|
|
// moving them. This can be fixed if it ever becomes an issue.
|
|
for (auto& elem : that) insert(std::move(elem));
|
|
}
|
|
}
|
|
|
|
raw_hash_set& operator=(const raw_hash_set& that) {
|
|
raw_hash_set tmp(that,
|
|
AllocTraits::propagate_on_container_copy_assignment::value
|
|
? that.alloc_ref()
|
|
: alloc_ref());
|
|
swap(tmp);
|
|
return *this;
|
|
}
|
|
|
|
raw_hash_set& operator=(raw_hash_set&& that) noexcept(
|
|
absl::allocator_traits<allocator_type>::is_always_equal::value&&
|
|
std::is_nothrow_move_assignable<hasher>::value&&
|
|
std::is_nothrow_move_assignable<key_equal>::value) {
|
|
// TODO(sbenza): We should only use the operations from the noexcept clause
|
|
// to make sure we actually adhere to that contract.
|
|
return move_assign(
|
|
std::move(that),
|
|
typename AllocTraits::propagate_on_container_move_assignment());
|
|
}
|
|
|
|
~raw_hash_set() { destroy_slots(); }
|
|
|
|
iterator begin() {
|
|
auto it = iterator_at(0);
|
|
it.skip_empty_or_deleted();
|
|
return it;
|
|
}
|
|
iterator end() { return {}; }
|
|
|
|
const_iterator begin() const {
|
|
return const_cast<raw_hash_set*>(this)->begin();
|
|
}
|
|
const_iterator end() const { return {}; }
|
|
const_iterator cbegin() const { return begin(); }
|
|
const_iterator cend() const { return end(); }
|
|
|
|
bool empty() const { return !size(); }
|
|
size_t size() const { return size_; }
|
|
size_t capacity() const { return capacity_; }
|
|
size_t max_size() const { return (std::numeric_limits<size_t>::max)(); }
|
|
|
|
ABSL_ATTRIBUTE_REINITIALIZES void clear() {
|
|
// Iterating over this container is O(bucket_count()). When bucket_count()
|
|
// is much greater than size(), iteration becomes prohibitively expensive.
|
|
// For clear() it is more important to reuse the allocated array when the
|
|
// container is small because allocation takes comparatively long time
|
|
// compared to destruction of the elements of the container. So we pick the
|
|
// largest bucket_count() threshold for which iteration is still fast and
|
|
// past that we simply deallocate the array.
|
|
if (capacity_ > 127) {
|
|
destroy_slots();
|
|
} else if (capacity_) {
|
|
for (size_t i = 0; i != capacity_; ++i) {
|
|
if (IsFull(ctrl_[i])) {
|
|
PolicyTraits::destroy(&alloc_ref(), slots_ + i);
|
|
}
|
|
}
|
|
size_ = 0;
|
|
ResetCtrl(capacity_, ctrl_, slots_, sizeof(slot_type));
|
|
reset_growth_left();
|
|
}
|
|
assert(empty());
|
|
infoz().RecordStorageChanged(0, capacity_);
|
|
}
|
|
|
|
// This overload kicks in when the argument is an rvalue of insertable and
|
|
// decomposable type other than init_type.
|
|
//
|
|
// flat_hash_map<std::string, int> m;
|
|
// m.insert(std::make_pair("abc", 42));
|
|
// TODO(cheshire): A type alias T2 is introduced as a workaround for the nvcc
|
|
// bug.
|
|
template <class T, RequiresInsertable<T> = 0,
|
|
class T2 = T,
|
|
typename std::enable_if<IsDecomposable<T2>::value, int>::type = 0,
|
|
T* = nullptr>
|
|
std::pair<iterator, bool> insert(T&& value) {
|
|
return emplace(std::forward<T>(value));
|
|
}
|
|
|
|
// This overload kicks in when the argument is a bitfield or an lvalue of
|
|
// insertable and decomposable type.
|
|
//
|
|
// union { int n : 1; };
|
|
// flat_hash_set<int> s;
|
|
// s.insert(n);
|
|
//
|
|
// flat_hash_set<std::string> s;
|
|
// const char* p = "hello";
|
|
// s.insert(p);
|
|
//
|
|
// TODO(romanp): Once we stop supporting gcc 5.1 and below, replace
|
|
// RequiresInsertable<T> with RequiresInsertable<const T&>.
|
|
// We are hitting this bug: https://godbolt.org/g/1Vht4f.
|
|
template <
|
|
class T, RequiresInsertable<T> = 0,
|
|
typename std::enable_if<IsDecomposable<const T&>::value, int>::type = 0>
|
|
std::pair<iterator, bool> insert(const T& value) {
|
|
return emplace(value);
|
|
}
|
|
|
|
// This overload kicks in when the argument is an rvalue of init_type. Its
|
|
// purpose is to handle brace-init-list arguments.
|
|
//
|
|
// flat_hash_map<std::string, int> s;
|
|
// s.insert({"abc", 42});
|
|
std::pair<iterator, bool> insert(init_type&& value) {
|
|
return emplace(std::move(value));
|
|
}
|
|
|
|
// TODO(cheshire): A type alias T2 is introduced as a workaround for the nvcc
|
|
// bug.
|
|
template <class T, RequiresInsertable<T> = 0, class T2 = T,
|
|
typename std::enable_if<IsDecomposable<T2>::value, int>::type = 0,
|
|
T* = nullptr>
|
|
iterator insert(const_iterator, T&& value) {
|
|
return insert(std::forward<T>(value)).first;
|
|
}
|
|
|
|
// TODO(romanp): Once we stop supporting gcc 5.1 and below, replace
|
|
// RequiresInsertable<T> with RequiresInsertable<const T&>.
|
|
// We are hitting this bug: https://godbolt.org/g/1Vht4f.
|
|
template <
|
|
class T, RequiresInsertable<T> = 0,
|
|
typename std::enable_if<IsDecomposable<const T&>::value, int>::type = 0>
|
|
iterator insert(const_iterator, const T& value) {
|
|
return insert(value).first;
|
|
}
|
|
|
|
iterator insert(const_iterator, init_type&& value) {
|
|
return insert(std::move(value)).first;
|
|
}
|
|
|
|
template <class InputIt>
|
|
void insert(InputIt first, InputIt last) {
|
|
for (; first != last; ++first) emplace(*first);
|
|
}
|
|
|
|
template <class T, RequiresNotInit<T> = 0, RequiresInsertable<const T&> = 0>
|
|
void insert(std::initializer_list<T> ilist) {
|
|
insert(ilist.begin(), ilist.end());
|
|
}
|
|
|
|
void insert(std::initializer_list<init_type> ilist) {
|
|
insert(ilist.begin(), ilist.end());
|
|
}
|
|
|
|
insert_return_type insert(node_type&& node) {
|
|
if (!node) return {end(), false, node_type()};
|
|
const auto& elem = PolicyTraits::element(CommonAccess::GetSlot(node));
|
|
auto res = PolicyTraits::apply(
|
|
InsertSlot<false>{*this, std::move(*CommonAccess::GetSlot(node))},
|
|
elem);
|
|
if (res.second) {
|
|
CommonAccess::Reset(&node);
|
|
return {res.first, true, node_type()};
|
|
} else {
|
|
return {res.first, false, std::move(node)};
|
|
}
|
|
}
|
|
|
|
iterator insert(const_iterator, node_type&& node) {
|
|
auto res = insert(std::move(node));
|
|
node = std::move(res.node);
|
|
return res.position;
|
|
}
|
|
|
|
// This overload kicks in if we can deduce the key from args. This enables us
|
|
// to avoid constructing value_type if an entry with the same key already
|
|
// exists.
|
|
//
|
|
// For example:
|
|
//
|
|
// flat_hash_map<std::string, std::string> m = {{"abc", "def"}};
|
|
// // Creates no std::string copies and makes no heap allocations.
|
|
// m.emplace("abc", "xyz");
|
|
template <class... Args, typename std::enable_if<
|
|
IsDecomposable<Args...>::value, int>::type = 0>
|
|
std::pair<iterator, bool> emplace(Args&&... args) {
|
|
return PolicyTraits::apply(EmplaceDecomposable{*this},
|
|
std::forward<Args>(args)...);
|
|
}
|
|
|
|
// This overload kicks in if we cannot deduce the key from args. It constructs
|
|
// value_type unconditionally and then either moves it into the table or
|
|
// destroys.
|
|
template <class... Args, typename std::enable_if<
|
|
!IsDecomposable<Args...>::value, int>::type = 0>
|
|
std::pair<iterator, bool> emplace(Args&&... args) {
|
|
alignas(slot_type) unsigned char raw[sizeof(slot_type)];
|
|
slot_type* slot = reinterpret_cast<slot_type*>(&raw);
|
|
|
|
PolicyTraits::construct(&alloc_ref(), slot, std::forward<Args>(args)...);
|
|
const auto& elem = PolicyTraits::element(slot);
|
|
return PolicyTraits::apply(InsertSlot<true>{*this, std::move(*slot)}, elem);
|
|
}
|
|
|
|
template <class... Args>
|
|
iterator emplace_hint(const_iterator, Args&&... args) {
|
|
return emplace(std::forward<Args>(args)...).first;
|
|
}
|
|
|
|
// Extension API: support for lazy emplace.
|
|
//
|
|
// Looks up key in the table. If found, returns the iterator to the element.
|
|
// Otherwise calls `f` with one argument of type `raw_hash_set::constructor`.
|
|
//
|
|
// `f` must abide by several restrictions:
|
|
// - it MUST call `raw_hash_set::constructor` with arguments as if a
|
|
// `raw_hash_set::value_type` is constructed,
|
|
// - it MUST NOT access the container before the call to
|
|
// `raw_hash_set::constructor`, and
|
|
// - it MUST NOT erase the lazily emplaced element.
|
|
// Doing any of these is undefined behavior.
|
|
//
|
|
// For example:
|
|
//
|
|
// std::unordered_set<ArenaString> s;
|
|
// // Makes ArenaStr even if "abc" is in the map.
|
|
// s.insert(ArenaString(&arena, "abc"));
|
|
//
|
|
// flat_hash_set<ArenaStr> s;
|
|
// // Makes ArenaStr only if "abc" is not in the map.
|
|
// s.lazy_emplace("abc", [&](const constructor& ctor) {
|
|
// ctor(&arena, "abc");
|
|
// });
|
|
//
|
|
// WARNING: This API is currently experimental. If there is a way to implement
|
|
// the same thing with the rest of the API, prefer that.
|
|
class constructor {
|
|
friend class raw_hash_set;
|
|
|
|
public:
|
|
template <class... Args>
|
|
void operator()(Args&&... args) const {
|
|
assert(*slot_);
|
|
PolicyTraits::construct(alloc_, *slot_, std::forward<Args>(args)...);
|
|
*slot_ = nullptr;
|
|
}
|
|
|
|
private:
|
|
constructor(allocator_type* a, slot_type** slot) : alloc_(a), slot_(slot) {}
|
|
|
|
allocator_type* alloc_;
|
|
slot_type** slot_;
|
|
};
|
|
|
|
template <class K = key_type, class F>
|
|
iterator lazy_emplace(const key_arg<K>& key, F&& f) {
|
|
auto res = find_or_prepare_insert(key);
|
|
if (res.second) {
|
|
slot_type* slot = slots_ + res.first;
|
|
std::forward<F>(f)(constructor(&alloc_ref(), &slot));
|
|
assert(!slot);
|
|
}
|
|
return iterator_at(res.first);
|
|
}
|
|
|
|
// Extension API: support for heterogeneous keys.
|
|
//
|
|
// std::unordered_set<std::string> s;
|
|
// // Turns "abc" into std::string.
|
|
// s.erase("abc");
|
|
//
|
|
// flat_hash_set<std::string> s;
|
|
// // Uses "abc" directly without copying it into std::string.
|
|
// s.erase("abc");
|
|
template <class K = key_type>
|
|
size_type erase(const key_arg<K>& key) {
|
|
auto it = find(key);
|
|
if (it == end()) return 0;
|
|
erase(it);
|
|
return 1;
|
|
}
|
|
|
|
// Erases the element pointed to by `it`. Unlike `std::unordered_set::erase`,
|
|
// this method returns void to reduce algorithmic complexity to O(1). The
|
|
// iterator is invalidated, so any increment should be done before calling
|
|
// erase. In order to erase while iterating across a map, use the following
|
|
// idiom (which also works for standard containers):
|
|
//
|
|
// for (auto it = m.begin(), end = m.end(); it != end;) {
|
|
// // `erase()` will invalidate `it`, so advance `it` first.
|
|
// auto copy_it = it++;
|
|
// if (<pred>) {
|
|
// m.erase(copy_it);
|
|
// }
|
|
// }
|
|
void erase(const_iterator cit) { erase(cit.inner_); }
|
|
|
|
// This overload is necessary because otherwise erase<K>(const K&) would be
|
|
// a better match if non-const iterator is passed as an argument.
|
|
void erase(iterator it) {
|
|
AssertIsFull(it.ctrl_);
|
|
PolicyTraits::destroy(&alloc_ref(), it.slot_);
|
|
erase_meta_only(it);
|
|
}
|
|
|
|
iterator erase(const_iterator first, const_iterator last) {
|
|
while (first != last) {
|
|
erase(first++);
|
|
}
|
|
return last.inner_;
|
|
}
|
|
|
|
// Moves elements from `src` into `this`.
|
|
// If the element already exists in `this`, it is left unmodified in `src`.
|
|
template <typename H, typename E>
|
|
void merge(raw_hash_set<Policy, H, E, Alloc>& src) { // NOLINT
|
|
assert(this != &src);
|
|
for (auto it = src.begin(), e = src.end(); it != e;) {
|
|
auto next = std::next(it);
|
|
if (PolicyTraits::apply(InsertSlot<false>{*this, std::move(*it.slot_)},
|
|
PolicyTraits::element(it.slot_))
|
|
.second) {
|
|
src.erase_meta_only(it);
|
|
}
|
|
it = next;
|
|
}
|
|
}
|
|
|
|
template <typename H, typename E>
|
|
void merge(raw_hash_set<Policy, H, E, Alloc>&& src) {
|
|
merge(src);
|
|
}
|
|
|
|
node_type extract(const_iterator position) {
|
|
AssertIsFull(position.inner_.ctrl_);
|
|
auto node =
|
|
CommonAccess::Transfer<node_type>(alloc_ref(), position.inner_.slot_);
|
|
erase_meta_only(position);
|
|
return node;
|
|
}
|
|
|
|
template <
|
|
class K = key_type,
|
|
typename std::enable_if<!std::is_same<K, iterator>::value, int>::type = 0>
|
|
node_type extract(const key_arg<K>& key) {
|
|
auto it = find(key);
|
|
return it == end() ? node_type() : extract(const_iterator{it});
|
|
}
|
|
|
|
void swap(raw_hash_set& that) noexcept(
|
|
IsNoThrowSwappable<hasher>() && IsNoThrowSwappable<key_equal>() &&
|
|
IsNoThrowSwappable<allocator_type>(
|
|
typename AllocTraits::propagate_on_container_swap{})) {
|
|
using std::swap;
|
|
swap(ctrl_, that.ctrl_);
|
|
swap(slots_, that.slots_);
|
|
swap(size_, that.size_);
|
|
swap(capacity_, that.capacity_);
|
|
swap(growth_left(), that.growth_left());
|
|
swap(hash_ref(), that.hash_ref());
|
|
swap(eq_ref(), that.eq_ref());
|
|
swap(infoz(), that.infoz());
|
|
SwapAlloc(alloc_ref(), that.alloc_ref(),
|
|
typename AllocTraits::propagate_on_container_swap{});
|
|
}
|
|
|
|
void rehash(size_t n) {
|
|
if (n == 0 && capacity_ == 0) return;
|
|
if (n == 0 && size_ == 0) {
|
|
destroy_slots();
|
|
infoz().RecordStorageChanged(0, 0);
|
|
return;
|
|
}
|
|
// bitor is a faster way of doing `max` here. We will round up to the next
|
|
// power-of-2-minus-1, so bitor is good enough.
|
|
auto m = NormalizeCapacity(n | GrowthToLowerboundCapacity(size()));
|
|
// n == 0 unconditionally rehashes as per the standard.
|
|
if (n == 0 || m > capacity_) {
|
|
resize(m);
|
|
}
|
|
}
|
|
|
|
void reserve(size_t n) {
|
|
if (n > size() + growth_left()) {
|
|
size_t m = GrowthToLowerboundCapacity(n);
|
|
resize(NormalizeCapacity(m));
|
|
}
|
|
}
|
|
|
|
// Extension API: support for heterogeneous keys.
|
|
//
|
|
// std::unordered_set<std::string> s;
|
|
// // Turns "abc" into std::string.
|
|
// s.count("abc");
|
|
//
|
|
// ch_set<std::string> s;
|
|
// // Uses "abc" directly without copying it into std::string.
|
|
// s.count("abc");
|
|
template <class K = key_type>
|
|
size_t count(const key_arg<K>& key) const {
|
|
return find(key) == end() ? 0 : 1;
|
|
}
|
|
|
|
// Issues CPU prefetch instructions for the memory needed to find or insert
|
|
// a key. Like all lookup functions, this support heterogeneous keys.
|
|
//
|
|
// NOTE: This is a very low level operation and should not be used without
|
|
// specific benchmarks indicating its importance.
|
|
template <class K = key_type>
|
|
void prefetch(const key_arg<K>& key) const {
|
|
(void)key;
|
|
#if defined(__GNUC__)
|
|
auto seq = probe(ctrl_, hash_ref()(key), capacity_);
|
|
__builtin_prefetch(static_cast<const void*>(ctrl_ + seq.offset()));
|
|
__builtin_prefetch(static_cast<const void*>(slots_ + seq.offset()));
|
|
#endif // __GNUC__
|
|
}
|
|
|
|
// The API of find() has two extensions.
|
|
//
|
|
// 1. The hash can be passed by the user. It must be equal to the hash of the
|
|
// key.
|
|
//
|
|
// 2. The type of the key argument doesn't have to be key_type. This is so
|
|
// called heterogeneous key support.
|
|
template <class K = key_type>
|
|
iterator find(const key_arg<K>& key, size_t hash) {
|
|
auto seq = probe(ctrl_, hash, capacity_);
|
|
while (true) {
|
|
Group g{ctrl_ + seq.offset()};
|
|
for (int i : g.Match(H2(hash))) {
|
|
if (ABSL_PREDICT_TRUE(PolicyTraits::apply(
|
|
EqualElement<K>{key, eq_ref()},
|
|
PolicyTraits::element(slots_ + seq.offset(i)))))
|
|
return iterator_at(seq.offset(i));
|
|
}
|
|
if (ABSL_PREDICT_TRUE(g.MatchEmpty())) return end();
|
|
seq.next();
|
|
assert(seq.index() <= capacity_ && "full table!");
|
|
}
|
|
}
|
|
template <class K = key_type>
|
|
iterator find(const key_arg<K>& key) {
|
|
return find(key, hash_ref()(key));
|
|
}
|
|
|
|
template <class K = key_type>
|
|
const_iterator find(const key_arg<K>& key, size_t hash) const {
|
|
return const_cast<raw_hash_set*>(this)->find(key, hash);
|
|
}
|
|
template <class K = key_type>
|
|
const_iterator find(const key_arg<K>& key) const {
|
|
return find(key, hash_ref()(key));
|
|
}
|
|
|
|
template <class K = key_type>
|
|
bool contains(const key_arg<K>& key) const {
|
|
return find(key) != end();
|
|
}
|
|
|
|
template <class K = key_type>
|
|
std::pair<iterator, iterator> equal_range(const key_arg<K>& key) {
|
|
auto it = find(key);
|
|
if (it != end()) return {it, std::next(it)};
|
|
return {it, it};
|
|
}
|
|
template <class K = key_type>
|
|
std::pair<const_iterator, const_iterator> equal_range(
|
|
const key_arg<K>& key) const {
|
|
auto it = find(key);
|
|
if (it != end()) return {it, std::next(it)};
|
|
return {it, it};
|
|
}
|
|
|
|
size_t bucket_count() const { return capacity_; }
|
|
float load_factor() const {
|
|
return capacity_ ? static_cast<double>(size()) / capacity_ : 0.0;
|
|
}
|
|
float max_load_factor() const { return 1.0f; }
|
|
void max_load_factor(float) {
|
|
// Does nothing.
|
|
}
|
|
|
|
hasher hash_function() const { return hash_ref(); }
|
|
key_equal key_eq() const { return eq_ref(); }
|
|
allocator_type get_allocator() const { return alloc_ref(); }
|
|
|
|
friend bool operator==(const raw_hash_set& a, const raw_hash_set& b) {
|
|
if (a.size() != b.size()) return false;
|
|
const raw_hash_set* outer = &a;
|
|
const raw_hash_set* inner = &b;
|
|
if (outer->capacity() > inner->capacity()) std::swap(outer, inner);
|
|
for (const value_type& elem : *outer)
|
|
if (!inner->has_element(elem)) return false;
|
|
return true;
|
|
}
|
|
|
|
friend bool operator!=(const raw_hash_set& a, const raw_hash_set& b) {
|
|
return !(a == b);
|
|
}
|
|
|
|
friend void swap(raw_hash_set& a,
|
|
raw_hash_set& b) noexcept(noexcept(a.swap(b))) {
|
|
a.swap(b);
|
|
}
|
|
|
|
private:
|
|
template <class Container, typename Enabler>
|
|
friend struct absl::container_internal::hashtable_debug_internal::
|
|
HashtableDebugAccess;
|
|
|
|
struct FindElement {
|
|
template <class K, class... Args>
|
|
const_iterator operator()(const K& key, Args&&...) const {
|
|
return s.find(key);
|
|
}
|
|
const raw_hash_set& s;
|
|
};
|
|
|
|
struct HashElement {
|
|
template <class K, class... Args>
|
|
size_t operator()(const K& key, Args&&...) const {
|
|
return h(key);
|
|
}
|
|
const hasher& h;
|
|
};
|
|
|
|
template <class K1>
|
|
struct EqualElement {
|
|
template <class K2, class... Args>
|
|
bool operator()(const K2& lhs, Args&&...) const {
|
|
return eq(lhs, rhs);
|
|
}
|
|
const K1& rhs;
|
|
const key_equal& eq;
|
|
};
|
|
|
|
struct EmplaceDecomposable {
|
|
template <class K, class... Args>
|
|
std::pair<iterator, bool> operator()(const K& key, Args&&... args) const {
|
|
auto res = s.find_or_prepare_insert(key);
|
|
if (res.second) {
|
|
s.emplace_at(res.first, std::forward<Args>(args)...);
|
|
}
|
|
return {s.iterator_at(res.first), res.second};
|
|
}
|
|
raw_hash_set& s;
|
|
};
|
|
|
|
template <bool do_destroy>
|
|
struct InsertSlot {
|
|
template <class K, class... Args>
|
|
std::pair<iterator, bool> operator()(const K& key, Args&&...) && {
|
|
auto res = s.find_or_prepare_insert(key);
|
|
if (res.second) {
|
|
PolicyTraits::transfer(&s.alloc_ref(), s.slots_ + res.first, &slot);
|
|
} else if (do_destroy) {
|
|
PolicyTraits::destroy(&s.alloc_ref(), &slot);
|
|
}
|
|
return {s.iterator_at(res.first), res.second};
|
|
}
|
|
raw_hash_set& s;
|
|
// Constructed slot. Either moved into place or destroyed.
|
|
slot_type&& slot;
|
|
};
|
|
|
|
// "erases" the object from the container, except that it doesn't actually
|
|
// destroy the object. It only updates all the metadata of the class.
|
|
// This can be used in conjunction with Policy::transfer to move the object to
|
|
// another place.
|
|
void erase_meta_only(const_iterator it) {
|
|
assert(IsFull(*it.inner_.ctrl_) && "erasing a dangling iterator");
|
|
--size_;
|
|
const size_t index = it.inner_.ctrl_ - ctrl_;
|
|
const size_t index_before = (index - Group::kWidth) & capacity_;
|
|
const auto empty_after = Group(it.inner_.ctrl_).MatchEmpty();
|
|
const auto empty_before = Group(ctrl_ + index_before).MatchEmpty();
|
|
|
|
// We count how many consecutive non empties we have to the right and to the
|
|
// left of `it`. If the sum is >= kWidth then there is at least one probe
|
|
// window that might have seen a full group.
|
|
bool was_never_full =
|
|
empty_before && empty_after &&
|
|
static_cast<size_t>(empty_after.TrailingZeros() +
|
|
empty_before.LeadingZeros()) < Group::kWidth;
|
|
|
|
SetCtrl(index, was_never_full ? ctrl_t::kEmpty : ctrl_t::kDeleted,
|
|
capacity_, ctrl_, slots_, sizeof(slot_type));
|
|
growth_left() += was_never_full;
|
|
infoz().RecordErase();
|
|
}
|
|
|
|
void initialize_slots() {
|
|
assert(capacity_);
|
|
// Folks with custom allocators often make unwarranted assumptions about the
|
|
// behavior of their classes vis-a-vis trivial destructability and what
|
|
// calls they will or wont make. Avoid sampling for people with custom
|
|
// allocators to get us out of this mess. This is not a hard guarantee but
|
|
// a workaround while we plan the exact guarantee we want to provide.
|
|
//
|
|
// People are often sloppy with the exact type of their allocator (sometimes
|
|
// it has an extra const or is missing the pair, but rebinds made it work
|
|
// anyway). To avoid the ambiguity, we work off SlotAlloc which we have
|
|
// bound more carefully.
|
|
if (std::is_same<SlotAlloc, std::allocator<slot_type>>::value &&
|
|
slots_ == nullptr) {
|
|
infoz() = Sample();
|
|
}
|
|
|
|
char* mem = static_cast<char*>(Allocate<alignof(slot_type)>(
|
|
&alloc_ref(),
|
|
AllocSize(capacity_, sizeof(slot_type), alignof(slot_type))));
|
|
ctrl_ = reinterpret_cast<ctrl_t*>(mem);
|
|
slots_ = reinterpret_cast<slot_type*>(
|
|
mem + SlotOffset(capacity_, alignof(slot_type)));
|
|
ResetCtrl(capacity_, ctrl_, slots_, sizeof(slot_type));
|
|
reset_growth_left();
|
|
infoz().RecordStorageChanged(size_, capacity_);
|
|
}
|
|
|
|
void destroy_slots() {
|
|
if (!capacity_) return;
|
|
for (size_t i = 0; i != capacity_; ++i) {
|
|
if (IsFull(ctrl_[i])) {
|
|
PolicyTraits::destroy(&alloc_ref(), slots_ + i);
|
|
}
|
|
}
|
|
// Unpoison before returning the memory to the allocator.
|
|
SanitizerUnpoisonMemoryRegion(slots_, sizeof(slot_type) * capacity_);
|
|
Deallocate<alignof(slot_type)>(
|
|
&alloc_ref(), ctrl_,
|
|
AllocSize(capacity_, sizeof(slot_type), alignof(slot_type)));
|
|
ctrl_ = EmptyGroup();
|
|
slots_ = nullptr;
|
|
size_ = 0;
|
|
capacity_ = 0;
|
|
growth_left() = 0;
|
|
}
|
|
|
|
void resize(size_t new_capacity) {
|
|
assert(IsValidCapacity(new_capacity));
|
|
auto* old_ctrl = ctrl_;
|
|
auto* old_slots = slots_;
|
|
const size_t old_capacity = capacity_;
|
|
capacity_ = new_capacity;
|
|
initialize_slots();
|
|
|
|
size_t total_probe_length = 0;
|
|
for (size_t i = 0; i != old_capacity; ++i) {
|
|
if (IsFull(old_ctrl[i])) {
|
|
size_t hash = PolicyTraits::apply(HashElement{hash_ref()},
|
|
PolicyTraits::element(old_slots + i));
|
|
auto target = find_first_non_full(ctrl_, hash, capacity_);
|
|
size_t new_i = target.offset;
|
|
total_probe_length += target.probe_length;
|
|
SetCtrl(new_i, H2(hash), capacity_, ctrl_, slots_, sizeof(slot_type));
|
|
PolicyTraits::transfer(&alloc_ref(), slots_ + new_i, old_slots + i);
|
|
}
|
|
}
|
|
if (old_capacity) {
|
|
SanitizerUnpoisonMemoryRegion(old_slots,
|
|
sizeof(slot_type) * old_capacity);
|
|
Deallocate<alignof(slot_type)>(
|
|
&alloc_ref(), old_ctrl,
|
|
AllocSize(old_capacity, sizeof(slot_type), alignof(slot_type)));
|
|
}
|
|
infoz().RecordRehash(total_probe_length);
|
|
}
|
|
|
|
void drop_deletes_without_resize() ABSL_ATTRIBUTE_NOINLINE {
|
|
assert(IsValidCapacity(capacity_));
|
|
assert(!is_small(capacity_));
|
|
// Algorithm:
|
|
// - mark all DELETED slots as EMPTY
|
|
// - mark all FULL slots as DELETED
|
|
// - for each slot marked as DELETED
|
|
// hash = Hash(element)
|
|
// target = find_first_non_full(hash)
|
|
// if target is in the same group
|
|
// mark slot as FULL
|
|
// else if target is EMPTY
|
|
// transfer element to target
|
|
// mark slot as EMPTY
|
|
// mark target as FULL
|
|
// else if target is DELETED
|
|
// swap current element with target element
|
|
// mark target as FULL
|
|
// repeat procedure for current slot with moved from element (target)
|
|
ConvertDeletedToEmptyAndFullToDeleted(ctrl_, capacity_);
|
|
alignas(slot_type) unsigned char raw[sizeof(slot_type)];
|
|
size_t total_probe_length = 0;
|
|
slot_type* slot = reinterpret_cast<slot_type*>(&raw);
|
|
for (size_t i = 0; i != capacity_; ++i) {
|
|
if (!IsDeleted(ctrl_[i])) continue;
|
|
const size_t hash = PolicyTraits::apply(
|
|
HashElement{hash_ref()}, PolicyTraits::element(slots_ + i));
|
|
const FindInfo target = find_first_non_full(ctrl_, hash, capacity_);
|
|
const size_t new_i = target.offset;
|
|
total_probe_length += target.probe_length;
|
|
|
|
// Verify if the old and new i fall within the same group wrt the hash.
|
|
// If they do, we don't need to move the object as it falls already in the
|
|
// best probe we can.
|
|
const size_t probe_offset = probe(ctrl_, hash, capacity_).offset();
|
|
const auto probe_index = [probe_offset, this](size_t pos) {
|
|
return ((pos - probe_offset) & capacity_) / Group::kWidth;
|
|
};
|
|
|
|
// Element doesn't move.
|
|
if (ABSL_PREDICT_TRUE(probe_index(new_i) == probe_index(i))) {
|
|
SetCtrl(i, H2(hash), capacity_, ctrl_, slots_, sizeof(slot_type));
|
|
continue;
|
|
}
|
|
if (IsEmpty(ctrl_[new_i])) {
|
|
// Transfer element to the empty spot.
|
|
// SetCtrl poisons/unpoisons the slots so we have to call it at the
|
|
// right time.
|
|
SetCtrl(new_i, H2(hash), capacity_, ctrl_, slots_, sizeof(slot_type));
|
|
PolicyTraits::transfer(&alloc_ref(), slots_ + new_i, slots_ + i);
|
|
SetCtrl(i, ctrl_t::kEmpty, capacity_, ctrl_, slots_, sizeof(slot_type));
|
|
} else {
|
|
assert(IsDeleted(ctrl_[new_i]));
|
|
SetCtrl(new_i, H2(hash), capacity_, ctrl_, slots_, sizeof(slot_type));
|
|
// Until we are done rehashing, DELETED marks previously FULL slots.
|
|
// Swap i and new_i elements.
|
|
PolicyTraits::transfer(&alloc_ref(), slot, slots_ + i);
|
|
PolicyTraits::transfer(&alloc_ref(), slots_ + i, slots_ + new_i);
|
|
PolicyTraits::transfer(&alloc_ref(), slots_ + new_i, slot);
|
|
--i; // repeat
|
|
}
|
|
}
|
|
reset_growth_left();
|
|
infoz().RecordRehash(total_probe_length);
|
|
}
|
|
|
|
void rehash_and_grow_if_necessary() {
|
|
if (capacity_ == 0) {
|
|
resize(1);
|
|
} else if (capacity_ > Group::kWidth &&
|
|
// Do these calcuations in 64-bit to avoid overflow.
|
|
size() * uint64_t{32} <= capacity_ * uint64_t{25}) {
|
|
// Squash DELETED without growing if there is enough capacity.
|
|
//
|
|
// Rehash in place if the current size is <= 25/32 of capacity_.
|
|
// Rationale for such a high factor: 1) drop_deletes_without_resize() is
|
|
// faster than resize, and 2) it takes quite a bit of work to add
|
|
// tombstones. In the worst case, seems to take approximately 4
|
|
// insert/erase pairs to create a single tombstone and so if we are
|
|
// rehashing because of tombstones, we can afford to rehash-in-place as
|
|
// long as we are reclaiming at least 1/8 the capacity without doing more
|
|
// than 2X the work. (Where "work" is defined to be size() for rehashing
|
|
// or rehashing in place, and 1 for an insert or erase.) But rehashing in
|
|
// place is faster per operation than inserting or even doubling the size
|
|
// of the table, so we actually afford to reclaim even less space from a
|
|
// resize-in-place. The decision is to rehash in place if we can reclaim
|
|
// at about 1/8th of the usable capacity (specifically 3/28 of the
|
|
// capacity) which means that the total cost of rehashing will be a small
|
|
// fraction of the total work.
|
|
//
|
|
// Here is output of an experiment using the BM_CacheInSteadyState
|
|
// benchmark running the old case (where we rehash-in-place only if we can
|
|
// reclaim at least 7/16*capacity_) vs. this code (which rehashes in place
|
|
// if we can recover 3/32*capacity_).
|
|
//
|
|
// Note that although in the worst-case number of rehashes jumped up from
|
|
// 15 to 190, but the number of operations per second is almost the same.
|
|
//
|
|
// Abridged output of running BM_CacheInSteadyState benchmark from
|
|
// raw_hash_set_benchmark. N is the number of insert/erase operations.
|
|
//
|
|
// | OLD (recover >= 7/16 | NEW (recover >= 3/32)
|
|
// size | N/s LoadFactor NRehashes | N/s LoadFactor NRehashes
|
|
// 448 | 145284 0.44 18 | 140118 0.44 19
|
|
// 493 | 152546 0.24 11 | 151417 0.48 28
|
|
// 538 | 151439 0.26 11 | 151152 0.53 38
|
|
// 583 | 151765 0.28 11 | 150572 0.57 50
|
|
// 628 | 150241 0.31 11 | 150853 0.61 66
|
|
// 672 | 149602 0.33 12 | 150110 0.66 90
|
|
// 717 | 149998 0.35 12 | 149531 0.70 129
|
|
// 762 | 149836 0.37 13 | 148559 0.74 190
|
|
// 807 | 149736 0.39 14 | 151107 0.39 14
|
|
// 852 | 150204 0.42 15 | 151019 0.42 15
|
|
drop_deletes_without_resize();
|
|
} else {
|
|
// Otherwise grow the container.
|
|
resize(capacity_ * 2 + 1);
|
|
}
|
|
}
|
|
|
|
bool has_element(const value_type& elem) const {
|
|
size_t hash = PolicyTraits::apply(HashElement{hash_ref()}, elem);
|
|
auto seq = probe(ctrl_, hash, capacity_);
|
|
while (true) {
|
|
Group g{ctrl_ + seq.offset()};
|
|
for (int i : g.Match(H2(hash))) {
|
|
if (ABSL_PREDICT_TRUE(PolicyTraits::element(slots_ + seq.offset(i)) ==
|
|
elem))
|
|
return true;
|
|
}
|
|
if (ABSL_PREDICT_TRUE(g.MatchEmpty())) return false;
|
|
seq.next();
|
|
assert(seq.index() <= capacity_ && "full table!");
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// TODO(alkis): Optimize this assuming *this and that don't overlap.
|
|
raw_hash_set& move_assign(raw_hash_set&& that, std::true_type) {
|
|
raw_hash_set tmp(std::move(that));
|
|
swap(tmp);
|
|
return *this;
|
|
}
|
|
raw_hash_set& move_assign(raw_hash_set&& that, std::false_type) {
|
|
raw_hash_set tmp(std::move(that), alloc_ref());
|
|
swap(tmp);
|
|
return *this;
|
|
}
|
|
|
|
protected:
|
|
template <class K>
|
|
std::pair<size_t, bool> find_or_prepare_insert(const K& key) {
|
|
auto hash = hash_ref()(key);
|
|
auto seq = probe(ctrl_, hash, capacity_);
|
|
while (true) {
|
|
Group g{ctrl_ + seq.offset()};
|
|
for (int i : g.Match(H2(hash))) {
|
|
if (ABSL_PREDICT_TRUE(PolicyTraits::apply(
|
|
EqualElement<K>{key, eq_ref()},
|
|
PolicyTraits::element(slots_ + seq.offset(i)))))
|
|
return {seq.offset(i), false};
|
|
}
|
|
if (ABSL_PREDICT_TRUE(g.MatchEmpty())) break;
|
|
seq.next();
|
|
assert(seq.index() <= capacity_ && "full table!");
|
|
}
|
|
return {prepare_insert(hash), true};
|
|
}
|
|
|
|
size_t prepare_insert(size_t hash) ABSL_ATTRIBUTE_NOINLINE {
|
|
auto target = find_first_non_full(ctrl_, hash, capacity_);
|
|
if (ABSL_PREDICT_FALSE(growth_left() == 0 &&
|
|
!IsDeleted(ctrl_[target.offset]))) {
|
|
rehash_and_grow_if_necessary();
|
|
target = find_first_non_full(ctrl_, hash, capacity_);
|
|
}
|
|
++size_;
|
|
growth_left() -= IsEmpty(ctrl_[target.offset]);
|
|
SetCtrl(target.offset, H2(hash), capacity_, ctrl_, slots_,
|
|
sizeof(slot_type));
|
|
infoz().RecordInsert(hash, target.probe_length);
|
|
return target.offset;
|
|
}
|
|
|
|
// Constructs the value in the space pointed by the iterator. This only works
|
|
// after an unsuccessful find_or_prepare_insert() and before any other
|
|
// modifications happen in the raw_hash_set.
|
|
//
|
|
// PRECONDITION: i is an index returned from find_or_prepare_insert(k), where
|
|
// k is the key decomposed from `forward<Args>(args)...`, and the bool
|
|
// returned by find_or_prepare_insert(k) was true.
|
|
// POSTCONDITION: *m.iterator_at(i) == value_type(forward<Args>(args)...).
|
|
template <class... Args>
|
|
void emplace_at(size_t i, Args&&... args) {
|
|
PolicyTraits::construct(&alloc_ref(), slots_ + i,
|
|
std::forward<Args>(args)...);
|
|
|
|
assert(PolicyTraits::apply(FindElement{*this}, *iterator_at(i)) ==
|
|
iterator_at(i) &&
|
|
"constructed value does not match the lookup key");
|
|
}
|
|
|
|
iterator iterator_at(size_t i) { return {ctrl_ + i, slots_ + i}; }
|
|
const_iterator iterator_at(size_t i) const { return {ctrl_ + i, slots_ + i}; }
|
|
|
|
private:
|
|
friend struct RawHashSetTestOnlyAccess;
|
|
|
|
void reset_growth_left() {
|
|
growth_left() = CapacityToGrowth(capacity()) - size_;
|
|
}
|
|
|
|
size_t& growth_left() { return settings_.template get<0>(); }
|
|
|
|
HashtablezInfoHandle& infoz() { return settings_.template get<1>(); }
|
|
|
|
hasher& hash_ref() { return settings_.template get<2>(); }
|
|
const hasher& hash_ref() const { return settings_.template get<2>(); }
|
|
key_equal& eq_ref() { return settings_.template get<3>(); }
|
|
const key_equal& eq_ref() const { return settings_.template get<3>(); }
|
|
allocator_type& alloc_ref() { return settings_.template get<4>(); }
|
|
const allocator_type& alloc_ref() const {
|
|
return settings_.template get<4>();
|
|
}
|
|
|
|
// TODO(alkis): Investigate removing some of these fields:
|
|
// - ctrl/slots can be derived from each other
|
|
// - size can be moved into the slot array
|
|
ctrl_t* ctrl_ = EmptyGroup(); // [(capacity + 1 + NumClonedBytes()) * ctrl_t]
|
|
slot_type* slots_ = nullptr; // [capacity * slot_type]
|
|
size_t size_ = 0; // number of full slots
|
|
size_t capacity_ = 0; // total number of slots
|
|
absl::container_internal::CompressedTuple<size_t /* growth_left */,
|
|
HashtablezInfoHandle, hasher,
|
|
key_equal, allocator_type>
|
|
settings_{0, HashtablezInfoHandle{}, hasher{}, key_equal{},
|
|
allocator_type{}};
|
|
};
|
|
|
|
// Erases all elements that satisfy the predicate `pred` from the container `c`.
|
|
template <typename P, typename H, typename E, typename A, typename Predicate>
|
|
void EraseIf(Predicate& pred, raw_hash_set<P, H, E, A>* c) {
|
|
for (auto it = c->begin(), last = c->end(); it != last;) {
|
|
if (pred(*it)) {
|
|
c->erase(it++);
|
|
} else {
|
|
++it;
|
|
}
|
|
}
|
|
}
|
|
|
|
namespace hashtable_debug_internal {
|
|
template <typename Set>
|
|
struct HashtableDebugAccess<Set, absl::void_t<typename Set::raw_hash_set>> {
|
|
using Traits = typename Set::PolicyTraits;
|
|
using Slot = typename Traits::slot_type;
|
|
|
|
static size_t GetNumProbes(const Set& set,
|
|
const typename Set::key_type& key) {
|
|
size_t num_probes = 0;
|
|
size_t hash = set.hash_ref()(key);
|
|
auto seq = probe(set.ctrl_, hash, set.capacity_);
|
|
while (true) {
|
|
container_internal::Group g{set.ctrl_ + seq.offset()};
|
|
for (int i : g.Match(container_internal::H2(hash))) {
|
|
if (Traits::apply(
|
|
typename Set::template EqualElement<typename Set::key_type>{
|
|
key, set.eq_ref()},
|
|
Traits::element(set.slots_ + seq.offset(i))))
|
|
return num_probes;
|
|
++num_probes;
|
|
}
|
|
if (g.MatchEmpty()) return num_probes;
|
|
seq.next();
|
|
++num_probes;
|
|
}
|
|
}
|
|
|
|
static size_t AllocatedByteSize(const Set& c) {
|
|
size_t capacity = c.capacity_;
|
|
if (capacity == 0) return 0;
|
|
size_t m = AllocSize(capacity, sizeof(Slot), alignof(Slot));
|
|
|
|
size_t per_slot = Traits::space_used(static_cast<const Slot*>(nullptr));
|
|
if (per_slot != ~size_t{}) {
|
|
m += per_slot * c.size();
|
|
} else {
|
|
for (size_t i = 0; i != capacity; ++i) {
|
|
if (container_internal::IsFull(c.ctrl_[i])) {
|
|
m += Traits::space_used(c.slots_ + i);
|
|
}
|
|
}
|
|
}
|
|
return m;
|
|
}
|
|
|
|
static size_t LowerBoundAllocatedByteSize(size_t size) {
|
|
size_t capacity = GrowthToLowerboundCapacity(size);
|
|
if (capacity == 0) return 0;
|
|
size_t m =
|
|
AllocSize(NormalizeCapacity(capacity), sizeof(Slot), alignof(Slot));
|
|
size_t per_slot = Traits::space_used(static_cast<const Slot*>(nullptr));
|
|
if (per_slot != ~size_t{}) {
|
|
m += per_slot * size;
|
|
}
|
|
return m;
|
|
}
|
|
};
|
|
|
|
} // namespace hashtable_debug_internal
|
|
} // namespace container_internal
|
|
ABSL_NAMESPACE_END
|
|
} // namespace absl
|
|
|
|
#endif // ABSL_CONTAINER_INTERNAL_RAW_HASH_SET_H_
|