mirror of
https://github.com/encounter/dawn-cmake.git
synced 2025-05-14 03:11:29 +00:00
The intrinsic methods were removed from the WGSL grammar and are treated as builtin functions. This Cl updates Tint to match. Bug: tint:41 Change-Id: I3f9ff6c17f1ca57ad159d883fd5a966657caeb4f Reviewed-on: https://dawn-review.googlesource.com/c/tint/+/22301 Reviewed-by: David Neto <dneto@google.com>
325 lines
10 KiB
C++
325 lines
10 KiB
C++
// Copyright 2020 The Tint Authors.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "gtest/gtest.h"
|
|
#include "src/ast/array_accessor_expression.h"
|
|
#include "src/ast/as_expression.h"
|
|
#include "src/ast/bool_literal.h"
|
|
#include "src/ast/cast_expression.h"
|
|
#include "src/ast/identifier_expression.h"
|
|
#include "src/ast/int_literal.h"
|
|
#include "src/ast/scalar_constructor_expression.h"
|
|
#include "src/ast/type/f32_type.h"
|
|
#include "src/ast/type/i32_type.h"
|
|
#include "src/ast/type_constructor_expression.h"
|
|
#include "src/ast/unary_op_expression.h"
|
|
#include "src/reader/wgsl/parser_impl.h"
|
|
#include "src/reader/wgsl/parser_impl_test_helper.h"
|
|
#include "src/type_manager.h"
|
|
|
|
namespace tint {
|
|
namespace reader {
|
|
namespace wgsl {
|
|
namespace {
|
|
|
|
TEST_F(ParserImplTest, PrimaryExpression_Ident) {
|
|
auto* p = parser("a");
|
|
auto e = p->primary_expression();
|
|
ASSERT_FALSE(p->has_error()) << p->error();
|
|
ASSERT_NE(e, nullptr);
|
|
ASSERT_TRUE(e->IsIdentifier());
|
|
auto* ident = e->AsIdentifier();
|
|
EXPECT_EQ(ident->name(), "a");
|
|
}
|
|
|
|
TEST_F(ParserImplTest, PrimaryExpression_Ident_WithNamespace) {
|
|
auto* p = parser("a::b::c::d");
|
|
auto e = p->primary_expression();
|
|
ASSERT_FALSE(p->has_error()) << p->error();
|
|
ASSERT_NE(e, nullptr);
|
|
ASSERT_TRUE(e->IsIdentifier());
|
|
auto* ident = e->AsIdentifier();
|
|
EXPECT_EQ(ident->path(), "a::b::c");
|
|
EXPECT_EQ(ident->name(), "d");
|
|
}
|
|
|
|
TEST_F(ParserImplTest, PrimaryExpression_Ident_MissingIdent) {
|
|
auto* p = parser("a::");
|
|
auto e = p->primary_expression();
|
|
ASSERT_TRUE(p->has_error());
|
|
ASSERT_EQ(e, nullptr);
|
|
EXPECT_EQ(p->error(), "1:4: identifier expected");
|
|
}
|
|
|
|
TEST_F(ParserImplTest, PrimaryExpression_TypeDecl) {
|
|
auto* p = parser("vec4<i32>(1, 2, 3, 4))");
|
|
auto e = p->primary_expression();
|
|
ASSERT_FALSE(p->has_error()) << p->error();
|
|
ASSERT_NE(e, nullptr);
|
|
ASSERT_TRUE(e->IsConstructor());
|
|
ASSERT_TRUE(e->AsConstructor()->IsTypeConstructor());
|
|
auto* ty = e->AsConstructor()->AsTypeConstructor();
|
|
|
|
ASSERT_EQ(ty->values().size(), 4u);
|
|
const auto& val = ty->values();
|
|
ASSERT_TRUE(val[0]->IsConstructor());
|
|
ASSERT_TRUE(val[0]->AsConstructor()->IsScalarConstructor());
|
|
auto* ident = val[0]->AsConstructor()->AsScalarConstructor();
|
|
ASSERT_TRUE(ident->literal()->IsInt());
|
|
EXPECT_EQ(ident->literal()->AsInt()->value(), 1);
|
|
|
|
ASSERT_TRUE(val[1]->IsConstructor());
|
|
ASSERT_TRUE(val[1]->AsConstructor()->IsScalarConstructor());
|
|
ident = val[1]->AsConstructor()->AsScalarConstructor();
|
|
ASSERT_TRUE(ident->literal()->IsInt());
|
|
EXPECT_EQ(ident->literal()->AsInt()->value(), 2);
|
|
|
|
ASSERT_TRUE(val[2]->IsConstructor());
|
|
ASSERT_TRUE(val[2]->AsConstructor()->IsScalarConstructor());
|
|
ident = val[2]->AsConstructor()->AsScalarConstructor();
|
|
ASSERT_TRUE(ident->literal()->IsInt());
|
|
EXPECT_EQ(ident->literal()->AsInt()->value(), 3);
|
|
|
|
ASSERT_TRUE(val[3]->IsConstructor());
|
|
ASSERT_TRUE(val[3]->AsConstructor()->IsScalarConstructor());
|
|
ident = val[3]->AsConstructor()->AsScalarConstructor();
|
|
ASSERT_TRUE(ident->literal()->IsInt());
|
|
EXPECT_EQ(ident->literal()->AsInt()->value(), 4);
|
|
}
|
|
|
|
TEST_F(ParserImplTest, PrimaryExpression_TypeDecl_InvalidTypeDecl) {
|
|
auto* p = parser("vec4<if>(2., 3., 4., 5.)");
|
|
auto e = p->primary_expression();
|
|
ASSERT_TRUE(p->has_error());
|
|
ASSERT_EQ(e, nullptr);
|
|
EXPECT_EQ(p->error(), "1:6: unable to determine subtype for vector");
|
|
}
|
|
|
|
TEST_F(ParserImplTest, PrimaryExpression_TypeDecl_MissingLeftParen) {
|
|
auto* p = parser("vec4<f32> 2., 3., 4., 5.)");
|
|
auto e = p->primary_expression();
|
|
ASSERT_TRUE(p->has_error());
|
|
ASSERT_EQ(e, nullptr);
|
|
EXPECT_EQ(p->error(), "1:11: missing ( for type constructor");
|
|
}
|
|
|
|
TEST_F(ParserImplTest, PrimaryExpression_TypeDecl_MissingRightParen) {
|
|
auto* p = parser("vec4<f32>(2., 3., 4., 5.");
|
|
auto e = p->primary_expression();
|
|
ASSERT_TRUE(p->has_error());
|
|
ASSERT_EQ(e, nullptr);
|
|
EXPECT_EQ(p->error(), "1:25: missing ) for type constructor");
|
|
}
|
|
|
|
TEST_F(ParserImplTest, PrimaryExpression_TypeDecl_InvalidValue) {
|
|
auto* p = parser("i32(if(a) {})");
|
|
auto e = p->primary_expression();
|
|
ASSERT_TRUE(p->has_error());
|
|
ASSERT_EQ(e, nullptr);
|
|
EXPECT_EQ(p->error(), "1:5: unable to parse argument expression");
|
|
}
|
|
|
|
TEST_F(ParserImplTest, PrimaryExpression_ConstLiteral_True) {
|
|
auto* p = parser("true");
|
|
auto e = p->primary_expression();
|
|
ASSERT_FALSE(p->has_error());
|
|
ASSERT_NE(e, nullptr);
|
|
ASSERT_TRUE(e->IsConstructor());
|
|
ASSERT_TRUE(e->AsConstructor()->IsScalarConstructor());
|
|
auto* init = e->AsConstructor()->AsScalarConstructor();
|
|
ASSERT_TRUE(init->literal()->IsBool());
|
|
EXPECT_TRUE(init->literal()->AsBool()->IsTrue());
|
|
}
|
|
|
|
TEST_F(ParserImplTest, PrimaryExpression_ParenExpr) {
|
|
auto* p = parser("(a == b)");
|
|
auto e = p->primary_expression();
|
|
ASSERT_FALSE(p->has_error()) << p->error();
|
|
ASSERT_NE(e, nullptr);
|
|
ASSERT_TRUE(e->IsBinary());
|
|
}
|
|
|
|
TEST_F(ParserImplTest, PrimaryExpression_ParenExpr_MissingRightParen) {
|
|
auto* p = parser("(a == b");
|
|
auto e = p->primary_expression();
|
|
ASSERT_TRUE(p->has_error());
|
|
ASSERT_EQ(e, nullptr);
|
|
EXPECT_EQ(p->error(), "1:8: expected )");
|
|
}
|
|
|
|
TEST_F(ParserImplTest, PrimaryExpression_ParenExpr_MissingExpr) {
|
|
auto* p = parser("()");
|
|
auto e = p->primary_expression();
|
|
ASSERT_TRUE(p->has_error());
|
|
ASSERT_EQ(e, nullptr);
|
|
EXPECT_EQ(p->error(), "1:2: unable to parse expression");
|
|
}
|
|
|
|
TEST_F(ParserImplTest, PrimaryExpression_ParenExpr_InvalidExpr) {
|
|
auto* p = parser("(if (a) {})");
|
|
auto e = p->primary_expression();
|
|
ASSERT_TRUE(p->has_error());
|
|
ASSERT_EQ(e, nullptr);
|
|
EXPECT_EQ(p->error(), "1:2: unable to parse expression");
|
|
}
|
|
|
|
TEST_F(ParserImplTest, PrimaryExpression_Cast) {
|
|
auto* f32_type = tm()->Get(std::make_unique<ast::type::F32Type>());
|
|
|
|
auto* p = parser("cast<f32>(1)");
|
|
auto e = p->primary_expression();
|
|
ASSERT_FALSE(p->has_error()) << p->error();
|
|
ASSERT_NE(e, nullptr);
|
|
ASSERT_TRUE(e->IsCast());
|
|
|
|
auto* c = e->AsCast();
|
|
ASSERT_EQ(c->type(), f32_type);
|
|
|
|
ASSERT_TRUE(c->expr()->IsConstructor());
|
|
ASSERT_TRUE(c->expr()->AsConstructor()->IsScalarConstructor());
|
|
}
|
|
|
|
TEST_F(ParserImplTest, PrimaryExpression_Cast_MissingGreaterThan) {
|
|
auto* p = parser("cast<f32(1)");
|
|
auto e = p->primary_expression();
|
|
ASSERT_TRUE(p->has_error());
|
|
ASSERT_EQ(e, nullptr);
|
|
EXPECT_EQ(p->error(), "1:9: missing > for cast expression");
|
|
}
|
|
|
|
TEST_F(ParserImplTest, PrimaryExpression_Cast_MissingType) {
|
|
auto* p = parser("cast<>(1)");
|
|
auto e = p->primary_expression();
|
|
ASSERT_TRUE(p->has_error());
|
|
ASSERT_EQ(e, nullptr);
|
|
EXPECT_EQ(p->error(), "1:6: missing type for cast expression");
|
|
}
|
|
|
|
TEST_F(ParserImplTest, PrimaryExpression_Cast_InvalidType) {
|
|
auto* p = parser("cast<invalid>(1)");
|
|
auto e = p->primary_expression();
|
|
ASSERT_TRUE(p->has_error());
|
|
ASSERT_EQ(e, nullptr);
|
|
EXPECT_EQ(p->error(), "1:6: unknown type alias 'invalid'");
|
|
}
|
|
|
|
TEST_F(ParserImplTest, PrimaryExpression_Cast_MissingLeftParen) {
|
|
auto* p = parser("cast<f32>1)");
|
|
auto e = p->primary_expression();
|
|
ASSERT_TRUE(p->has_error());
|
|
ASSERT_EQ(e, nullptr);
|
|
EXPECT_EQ(p->error(), "1:10: expected (");
|
|
}
|
|
|
|
TEST_F(ParserImplTest, PrimaryExpression_Cast_MissingRightParen) {
|
|
auto* p = parser("cast<f32>(1");
|
|
auto e = p->primary_expression();
|
|
ASSERT_TRUE(p->has_error());
|
|
ASSERT_EQ(e, nullptr);
|
|
EXPECT_EQ(p->error(), "1:12: expected )");
|
|
}
|
|
|
|
TEST_F(ParserImplTest, PrimaryExpression_Cast_MissingExpression) {
|
|
auto* p = parser("cast<f32>()");
|
|
auto e = p->primary_expression();
|
|
ASSERT_TRUE(p->has_error());
|
|
ASSERT_EQ(e, nullptr);
|
|
EXPECT_EQ(p->error(), "1:11: unable to parse expression");
|
|
}
|
|
|
|
TEST_F(ParserImplTest, PrimaryExpression_Cast_InvalidExpression) {
|
|
auto* p = parser("cast<f32>(if (a) {})");
|
|
auto e = p->primary_expression();
|
|
ASSERT_TRUE(p->has_error());
|
|
ASSERT_EQ(e, nullptr);
|
|
EXPECT_EQ(p->error(), "1:11: unable to parse expression");
|
|
}
|
|
|
|
TEST_F(ParserImplTest, PrimaryExpression_As) {
|
|
auto* f32_type = tm()->Get(std::make_unique<ast::type::F32Type>());
|
|
|
|
auto* p = parser("as<f32>(1)");
|
|
auto e = p->primary_expression();
|
|
ASSERT_FALSE(p->has_error()) << p->error();
|
|
ASSERT_NE(e, nullptr);
|
|
ASSERT_TRUE(e->IsAs());
|
|
|
|
auto* c = e->AsAs();
|
|
ASSERT_EQ(c->type(), f32_type);
|
|
|
|
ASSERT_TRUE(c->expr()->IsConstructor());
|
|
ASSERT_TRUE(c->expr()->AsConstructor()->IsScalarConstructor());
|
|
}
|
|
|
|
TEST_F(ParserImplTest, PrimaryExpression_As_MissingGreaterThan) {
|
|
auto* p = parser("as<f32(1)");
|
|
auto e = p->primary_expression();
|
|
ASSERT_TRUE(p->has_error());
|
|
ASSERT_EQ(e, nullptr);
|
|
EXPECT_EQ(p->error(), "1:7: missing > for as expression");
|
|
}
|
|
|
|
TEST_F(ParserImplTest, PrimaryExpression_As_MissingType) {
|
|
auto* p = parser("as<>(1)");
|
|
auto e = p->primary_expression();
|
|
ASSERT_TRUE(p->has_error());
|
|
ASSERT_EQ(e, nullptr);
|
|
EXPECT_EQ(p->error(), "1:4: missing type for as expression");
|
|
}
|
|
|
|
TEST_F(ParserImplTest, PrimaryExpression_As_InvalidType) {
|
|
auto* p = parser("as<invalid>(1)");
|
|
auto e = p->primary_expression();
|
|
ASSERT_TRUE(p->has_error());
|
|
ASSERT_EQ(e, nullptr);
|
|
EXPECT_EQ(p->error(), "1:4: unknown type alias 'invalid'");
|
|
}
|
|
|
|
TEST_F(ParserImplTest, PrimaryExpression_As_MissingLeftParen) {
|
|
auto* p = parser("as<f32>1)");
|
|
auto e = p->primary_expression();
|
|
ASSERT_TRUE(p->has_error());
|
|
ASSERT_EQ(e, nullptr);
|
|
EXPECT_EQ(p->error(), "1:8: expected (");
|
|
}
|
|
|
|
TEST_F(ParserImplTest, PrimaryExpression_As_MissingRightParen) {
|
|
auto* p = parser("as<f32>(1");
|
|
auto e = p->primary_expression();
|
|
ASSERT_TRUE(p->has_error());
|
|
ASSERT_EQ(e, nullptr);
|
|
EXPECT_EQ(p->error(), "1:10: expected )");
|
|
}
|
|
|
|
TEST_F(ParserImplTest, PrimaryExpression_As_MissingExpression) {
|
|
auto* p = parser("as<f32>()");
|
|
auto e = p->primary_expression();
|
|
ASSERT_TRUE(p->has_error());
|
|
ASSERT_EQ(e, nullptr);
|
|
EXPECT_EQ(p->error(), "1:9: unable to parse expression");
|
|
}
|
|
|
|
TEST_F(ParserImplTest, PrimaryExpression_As_InvalidExpression) {
|
|
auto* p = parser("as<f32>(if (a) {})");
|
|
auto e = p->primary_expression();
|
|
ASSERT_TRUE(p->has_error());
|
|
ASSERT_EQ(e, nullptr);
|
|
EXPECT_EQ(p->error(), "1:9: unable to parse expression");
|
|
}
|
|
|
|
} // namespace
|
|
} // namespace wgsl
|
|
} // namespace reader
|
|
} // namespace tint
|