dawn-cmake/src/dawn_native/RingBuffer.cpp

148 lines
6.2 KiB
C++

// Copyright 2018 The Dawn Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "dawn_native/RingBuffer.h"
#include "dawn_native/Device.h"
// Note: Current RingBuffer implementation uses two indices (start and end) to implement a circular
// queue. However, this approach defines a full queue when one element is still unused.
//
// For example, [E,E,E,E] would be equivelent to [U,U,U,U].
// ^ ^
// S=E=1 S=E=1
//
// The latter case is eliminated by counting used bytes >= capacity. This definition prevents
// (the last) byte and requires an extra variable to count used bytes. Alternatively, we could use
// only two indices that keep increasing (unbounded) but can be still indexed using bit masks.
// However, this 1) requires the size to always be a power-of-two and 2) remove tests that check
// used bytes.
// TODO(b-brber): Follow-up with ringbuffer optimization.
namespace dawn_native {
static constexpr size_t INVALID_OFFSET = std::numeric_limits<size_t>::max();
RingBuffer::RingBuffer(DeviceBase* device, size_t size) : mBufferSize(size), mDevice(device) {
}
MaybeError RingBuffer::Initialize() {
DAWN_TRY_ASSIGN(mStagingBuffer, mDevice->CreateStagingBuffer(mBufferSize));
DAWN_TRY(mStagingBuffer->Initialize());
return {};
}
// Record allocations in a request when serial advances.
// This method has been split from Tick() for testing.
void RingBuffer::Track() {
if (mCurrentRequestSize == 0)
return;
const Serial currentSerial = mDevice->GetPendingCommandSerial();
if (mInflightRequests.Empty() || currentSerial > mInflightRequests.LastSerial()) {
Request request;
request.endOffset = mUsedEndOffset;
request.size = mCurrentRequestSize;
mInflightRequests.Enqueue(std::move(request), currentSerial);
mCurrentRequestSize = 0; // reset
}
}
void RingBuffer::Tick(Serial lastCompletedSerial) {
Track();
// Reclaim memory from previously recorded blocks.
for (Request& request : mInflightRequests.IterateUpTo(lastCompletedSerial)) {
mUsedStartOffset = request.endOffset;
mUsedSize -= request.size;
}
// Dequeue previously recorded requests.
mInflightRequests.ClearUpTo(lastCompletedSerial);
}
size_t RingBuffer::GetSize() const {
return mBufferSize;
}
size_t RingBuffer::GetUsedSize() const {
return mUsedSize;
}
bool RingBuffer::Empty() const {
return mInflightRequests.Empty();
}
StagingBufferBase* RingBuffer::GetStagingBuffer() const {
ASSERT(mStagingBuffer != nullptr);
return mStagingBuffer.get();
}
// Sub-allocate the ring-buffer by requesting a chunk of the specified size.
// This is a serial-based resource scheme, the life-span of resources (and the allocations) get
// tracked by GPU progress via serials. Memory can be reused by determining if the GPU has
// completed up to a given serial. Each sub-allocation request is tracked in the serial offset
// queue, which identifies an existing (or new) frames-worth of resources. Internally, the
// ring-buffer maintains offsets of 3 "memory" states: Free, Reclaimed, and Used. This is done
// in FIFO order as older frames would free resources before newer ones.
UploadHandle RingBuffer::SubAllocate(size_t allocSize) {
ASSERT(mStagingBuffer != nullptr);
// Check if the buffer is full by comparing the used size.
// If the buffer is not split where waste occurs (e.g. cannot fit new sub-alloc in front), a
// subsequent sub-alloc could fail where the used size was previously adjusted to include
// the wasted.
if (mUsedSize >= mBufferSize)
return UploadHandle{};
size_t startOffset = INVALID_OFFSET;
// Check if the buffer is NOT split (i.e sub-alloc on ends)
if (mUsedStartOffset <= mUsedEndOffset) {
// Order is important (try to sub-alloc at end first).
// This is due to FIFO order where sub-allocs are inserted from left-to-right (when not
// wrapped).
if (mUsedEndOffset + allocSize <= mBufferSize) {
startOffset = mUsedEndOffset;
mUsedEndOffset += allocSize;
mUsedSize += allocSize;
mCurrentRequestSize += allocSize;
} else if (allocSize <= mUsedStartOffset) { // Try to sub-alloc at front.
// Count the space at front in the request size so that a subsequent
// sub-alloc cannot not succeed when the buffer is full.
const size_t requestSize = (mBufferSize - mUsedEndOffset) + allocSize;
startOffset = 0;
mUsedEndOffset = allocSize;
mUsedSize += requestSize;
mCurrentRequestSize += requestSize;
}
} else if (mUsedEndOffset + allocSize <=
mUsedStartOffset) { // Otherwise, buffer is split where sub-alloc must be
// in-between.
startOffset = mUsedEndOffset;
mUsedEndOffset += allocSize;
mUsedSize += allocSize;
mCurrentRequestSize += allocSize;
}
if (startOffset == INVALID_OFFSET)
return UploadHandle{};
UploadHandle uploadHandle;
uploadHandle.mappedBuffer =
static_cast<uint8_t*>(mStagingBuffer->GetMappedPointer()) + startOffset;
uploadHandle.startOffset = startOffset;
return uploadHandle;
}
} // namespace dawn_native