mirror of
https://github.com/encounter/dawn-cmake.git
synced 2025-06-19 21:13:30 +00:00
D3D debug layer uses the descriptor size (width) to validate CBV bounds when directly allocating UBOs. This causes validation failure when the buffer size is misaligned (ie. not a multiple of 256B) even through the underlying resource heap size is always 64KB aligned. This change always aligns the buffer size to be 256B to avoid such validation error should sub-allocation fail. BUG=dawn:506 Change-Id: Ic9072934cac65cfd25d0e2a20cb364bd3ca88e3b Reviewed-on: https://dawn-review.googlesource.com/c/dawn/+/26820 Reviewed-by: Austin Eng <enga@chromium.org> Commit-Queue: Bryan Bernhart <bryan.bernhart@intel.com>
155 lines
4.6 KiB
C++
155 lines
4.6 KiB
C++
// Copyright 2017 The Dawn Authors
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "common/Math.h"
|
|
|
|
#include "common/Assert.h"
|
|
#include "common/Platform.h"
|
|
|
|
#include <algorithm>
|
|
#include <cmath>
|
|
#include <limits>
|
|
|
|
#if defined(DAWN_COMPILER_MSVC)
|
|
# include <intrin.h>
|
|
#endif
|
|
|
|
uint32_t ScanForward(uint32_t bits) {
|
|
ASSERT(bits != 0);
|
|
#if defined(DAWN_COMPILER_MSVC)
|
|
unsigned long firstBitIndex = 0ul;
|
|
unsigned char ret = _BitScanForward(&firstBitIndex, bits);
|
|
ASSERT(ret != 0);
|
|
return firstBitIndex;
|
|
#else
|
|
return static_cast<uint32_t>(__builtin_ctz(bits));
|
|
#endif
|
|
}
|
|
|
|
uint32_t Log2(uint32_t value) {
|
|
ASSERT(value != 0);
|
|
#if defined(DAWN_COMPILER_MSVC)
|
|
unsigned long firstBitIndex = 0ul;
|
|
unsigned char ret = _BitScanReverse(&firstBitIndex, value);
|
|
ASSERT(ret != 0);
|
|
return firstBitIndex;
|
|
#else
|
|
return 31 - static_cast<uint32_t>(__builtin_clz(value));
|
|
#endif
|
|
}
|
|
|
|
uint32_t Log2(uint64_t value) {
|
|
ASSERT(value != 0);
|
|
#if defined(DAWN_COMPILER_MSVC)
|
|
# if defined(DAWN_PLATFORM_64_BIT)
|
|
unsigned long firstBitIndex = 0ul;
|
|
unsigned char ret = _BitScanReverse64(&firstBitIndex, value);
|
|
ASSERT(ret != 0);
|
|
return firstBitIndex;
|
|
# else // defined(DAWN_PLATFORM_64_BIT)
|
|
unsigned long firstBitIndex = 0ul;
|
|
if (_BitScanReverse(&firstBitIndex, value >> 32)) {
|
|
return firstBitIndex + 32;
|
|
}
|
|
unsigned char ret = _BitScanReverse(&firstBitIndex, value & 0xFFFFFFFF);
|
|
ASSERT(ret != 0);
|
|
return firstBitIndex;
|
|
# endif // defined(DAWN_PLATFORM_64_BIT)
|
|
#else // defined(DAWN_COMPILER_MSVC)
|
|
return 63 - static_cast<uint32_t>(__builtin_clzll(value));
|
|
#endif // defined(DAWN_COMPILER_MSVC)
|
|
}
|
|
|
|
uint64_t NextPowerOfTwo(uint64_t n) {
|
|
if (n <= 1) {
|
|
return 1;
|
|
}
|
|
|
|
return 1ull << (Log2(n - 1) + 1);
|
|
}
|
|
|
|
bool IsPowerOfTwo(uint64_t n) {
|
|
ASSERT(n != 0);
|
|
return (n & (n - 1)) == 0;
|
|
}
|
|
|
|
bool IsPtrAligned(const void* ptr, size_t alignment) {
|
|
ASSERT(IsPowerOfTwo(alignment));
|
|
ASSERT(alignment != 0);
|
|
return (reinterpret_cast<size_t>(ptr) & (alignment - 1)) == 0;
|
|
}
|
|
|
|
bool IsAligned(uint32_t value, size_t alignment) {
|
|
ASSERT(alignment <= UINT32_MAX);
|
|
ASSERT(IsPowerOfTwo(alignment));
|
|
ASSERT(alignment != 0);
|
|
uint32_t alignment32 = static_cast<uint32_t>(alignment);
|
|
return (value & (alignment32 - 1)) == 0;
|
|
}
|
|
|
|
uint16_t Float32ToFloat16(float fp32) {
|
|
uint32_t fp32i = BitCast<uint32_t>(fp32);
|
|
uint32_t sign16 = (fp32i & 0x80000000) >> 16;
|
|
uint32_t mantissaAndExponent = fp32i & 0x7FFFFFFF;
|
|
|
|
if (mantissaAndExponent > 0x7F800000) { // NaN
|
|
return 0x7FFF;
|
|
} else if (mantissaAndExponent > 0x47FFEFFF) { // Infinity
|
|
return static_cast<uint16_t>(sign16 | 0x7C00);
|
|
} else if (mantissaAndExponent < 0x38800000) { // Denormal
|
|
uint32_t mantissa = (mantissaAndExponent & 0x007FFFFF) | 0x00800000;
|
|
int32_t exponent = 113 - (mantissaAndExponent >> 23);
|
|
|
|
if (exponent < 24) {
|
|
mantissaAndExponent = mantissa >> exponent;
|
|
} else {
|
|
mantissaAndExponent = 0;
|
|
}
|
|
|
|
return static_cast<uint16_t>(
|
|
sign16 | (mantissaAndExponent + 0x00000FFF + ((mantissaAndExponent >> 13) & 1)) >> 13);
|
|
} else {
|
|
return static_cast<uint16_t>(sign16 | (mantissaAndExponent + 0xC8000000 + 0x00000FFF +
|
|
((mantissaAndExponent >> 13) & 1)) >>
|
|
13);
|
|
}
|
|
}
|
|
|
|
bool IsFloat16NaN(uint16_t fp16) {
|
|
return (fp16 & 0x7FFF) > 0x7C00;
|
|
}
|
|
|
|
// Based on the Khronos Data Format Specification 1.2 Section 13.3 sRGB transfer functions
|
|
float SRGBToLinear(float srgb) {
|
|
// sRGB is always used in unsigned normalized formats so clamp to [0.0, 1.0]
|
|
if (srgb <= 0.0f) {
|
|
return 0.0f;
|
|
} else if (srgb > 1.0f) {
|
|
return 1.0f;
|
|
}
|
|
|
|
if (srgb < 0.04045f) {
|
|
return srgb / 12.92f;
|
|
} else {
|
|
return std::pow((srgb + 0.055f) / 1.055f, 2.4f);
|
|
}
|
|
}
|
|
|
|
uint64_t RoundUp(uint64_t n, uint64_t m) {
|
|
ASSERT(m > 0);
|
|
ASSERT(n > 0);
|
|
ASSERT(m <= std::numeric_limits<uint64_t>::max() - n);
|
|
return ((n + m - 1) / m) * m;
|
|
}
|