dawn-cmake/src/backend/metal/MetalBackend.mm
Kai Ninomiya 68df8b0a3a Introduce render passes
* First API design (many features missing, including input attachments)
* Metal implementation (no OpenGL yet)
* Render-to-texture demo (a little broken until we have depth buffers)
* Update examples to use render passes
2017-05-22 10:53:19 -07:00

1047 lines
41 KiB
Plaintext

// Copyright 2017 The NXT Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// TODO(kainino@chromium.org): split this backend into many files
#include "MetalBackend.h"
#include <spirv-cross/spirv_msl.hpp>
#include <sstream>
#include "common/Commands.h"
namespace backend {
namespace metal {
nxtProcTable GetNonValidatingProcs();
nxtProcTable GetValidatingProcs();
void Init(id<MTLDevice> metalDevice, nxtProcTable* procs, nxtDevice* device) {
*device = nullptr;
*procs = GetValidatingProcs();
*device = reinterpret_cast<nxtDevice>(new Device(metalDevice));
}
void SetNextDrawable(nxtDevice device, id<CAMetalDrawable> drawable) {
Device* backendDevice = reinterpret_cast<Device*>(device);
backendDevice->SetNextDrawable(drawable);
}
void Present(nxtDevice device) {
Device* backendDevice = reinterpret_cast<Device*>(device);
backendDevice->Present();
}
// Device
Device::Device(id<MTLDevice> mtlDevice) : mtlDevice(mtlDevice) {
[mtlDevice retain];
commandQueue = [mtlDevice newCommandQueue];
}
Device::~Device() {
[mtlDevice release];
mtlDevice = nil;
[commandQueue release];
commandQueue = nil;
[currentTexture release];
currentTexture = nil;
[currentDepthTexture release];
currentDepthTexture = nil;
}
BindGroupBase* Device::CreateBindGroup(BindGroupBuilder* builder) {
return new BindGroup(this, builder);
}
BindGroupLayoutBase* Device::CreateBindGroupLayout(BindGroupLayoutBuilder* builder) {
return new BindGroupLayout(this, builder);
}
BufferBase* Device::CreateBuffer(BufferBuilder* builder) {
return new Buffer(this, builder);
}
BufferViewBase* Device::CreateBufferView(BufferViewBuilder* builder) {
return new BufferView(this, builder);
}
CommandBufferBase* Device::CreateCommandBuffer(CommandBufferBuilder* builder) {
return new CommandBuffer(this, builder);
}
InputStateBase* Device::CreateInputState(InputStateBuilder* builder) {
return new InputState(this, builder);
}
FramebufferBase* Device::CreateFramebuffer(FramebufferBuilder* builder) {
return new Framebuffer(this, builder);
}
PipelineBase* Device::CreatePipeline(PipelineBuilder* builder) {
return new Pipeline(this, builder);
}
PipelineLayoutBase* Device::CreatePipelineLayout(PipelineLayoutBuilder* builder) {
return new PipelineLayout(this, builder);
}
QueueBase* Device::CreateQueue(QueueBuilder* builder) {
return new Queue(this, builder);
}
RenderPassBase* Device::CreateRenderPass(RenderPassBuilder* builder) {
return new RenderPass(this, builder);
}
SamplerBase* Device::CreateSampler(SamplerBuilder* builder) {
return new Sampler(this, builder);
}
ShaderModuleBase* Device::CreateShaderModule(ShaderModuleBuilder* builder) {
return new ShaderModule(this, builder);
}
TextureBase* Device::CreateTexture(TextureBuilder* builder) {
return new Texture(this, builder);
}
TextureViewBase* Device::CreateTextureView(TextureViewBuilder* builder) {
return new TextureView(this, builder);
}
void Device::SetNextDrawable(id<CAMetalDrawable> drawable) {
[currentDrawable release];
currentDrawable = drawable;
[currentDrawable retain];
[currentTexture release];
currentTexture = drawable.texture;
[currentTexture retain];
if (currentDepthTexture == nil ||
currentTexture.width != currentDepthTexture.width ||
currentTexture.height != currentDepthTexture.height) {
if (currentDepthTexture != nil) {
[currentDepthTexture release];
}
MTLTextureDescriptor* depthDescriptor = [MTLTextureDescriptor
texture2DDescriptorWithPixelFormat:MTLPixelFormatDepth32Float
width:currentTexture.width
height:currentTexture.height
mipmapped:NO];
depthDescriptor.textureType = MTLTextureType2D;
depthDescriptor.usage = MTLTextureUsageRenderTarget;
depthDescriptor.storageMode = MTLStorageModePrivate;
currentDepthTexture = [mtlDevice newTextureWithDescriptor:depthDescriptor];
}
MTLRenderPassDescriptor* passDescriptor = [MTLRenderPassDescriptor renderPassDescriptor];
passDescriptor.colorAttachments[0].texture = currentTexture;
passDescriptor.colorAttachments[0].loadAction = MTLLoadActionClear;
passDescriptor.colorAttachments[0].storeAction = MTLStoreActionStore;
passDescriptor.colorAttachments[0].clearColor = MTLClearColorMake(0.0, 0.0, 0.0, 1.0);
passDescriptor.depthAttachment.texture = currentDepthTexture;
passDescriptor.depthAttachment.loadAction = MTLLoadActionClear;
passDescriptor.depthAttachment.storeAction = MTLStoreActionStore;
passDescriptor.depthAttachment.clearDepth = 1.0;
id<MTLCommandBuffer> commandBuffer = [commandQueue commandBuffer];
id<MTLRenderCommandEncoder> commandEncoder = [commandBuffer
renderCommandEncoderWithDescriptor:passDescriptor];
[commandEncoder endEncoding];
[commandBuffer commit];
}
void Device::Present() {
id<MTLCommandBuffer> commandBuffer = [commandQueue commandBuffer];
[commandBuffer presentDrawable: currentDrawable];
[commandBuffer commit];
}
id<MTLDevice> Device::GetMTLDevice() {
return mtlDevice;
}
id<MTLTexture> Device::GetCurrentTexture() {
return currentTexture;
}
id<MTLTexture> Device::GetCurrentDepthTexture() {
return currentDepthTexture;
}
void Device::Reference() {
}
void Device::Release() {
}
// Bind Group
BindGroup::BindGroup(Device* device, BindGroupBuilder* builder)
: BindGroupBase(builder), device(device) {
}
// Bind Group Layout
BindGroupLayout::BindGroupLayout(Device* device, BindGroupLayoutBuilder* builder)
: BindGroupLayoutBase(builder), device(device) {
}
// Buffer
Buffer::Buffer(Device* device, BufferBuilder* builder)
: BufferBase(builder), device(device) {
mtlBuffer = [device->GetMTLDevice() newBufferWithLength:GetSize()
options:MTLResourceStorageModeManaged];
}
Buffer::~Buffer() {
std::lock_guard<std::mutex> lock(mutex);
[mtlBuffer release];
mtlBuffer = nil;
}
id<MTLBuffer> Buffer::GetMTLBuffer() {
return mtlBuffer;
}
std::mutex& Buffer::GetMutex() {
return mutex;
}
void Buffer::SetSubDataImpl(uint32_t start, uint32_t count, const uint32_t* data) {
uint32_t* dest = reinterpret_cast<uint32_t*>([mtlBuffer contents]);
{
std::lock_guard<std::mutex> lock(mutex);
memcpy(&dest[start], data, count * sizeof(uint32_t));
}
[mtlBuffer didModifyRange:NSMakeRange(start * sizeof(uint32_t), count * sizeof(uint32_t))];
}
// BufferView
BufferView::BufferView(Device* device, BufferViewBuilder* builder)
: BufferViewBase(builder), device(device) {
}
// CommandBuffer
static MTLIndexType IndexFormatType(nxt::IndexFormat format) {
switch (format) {
case nxt::IndexFormat::Uint16:
return MTLIndexTypeUInt16;
case nxt::IndexFormat::Uint32:
return MTLIndexTypeUInt32;
}
}
CommandBuffer::CommandBuffer(Device* device, CommandBufferBuilder* builder)
: CommandBufferBase(builder), device(device), commands(builder->AcquireCommands()) {
}
CommandBuffer::~CommandBuffer() {
FreeCommands(&commands);
}
namespace {
struct CurrentEncoders {
Device* device;
id<MTLBlitCommandEncoder> blit = nil;
id<MTLComputeCommandEncoder> compute = nil;
id<MTLRenderCommandEncoder> render = nil;
BeginRenderPassCmd* currentRenderPass = nullptr;
void FinishEncoders() {
ASSERT(render == nil);
if (blit != nil) {
[blit endEncoding];
blit = nil;
}
if (compute != nil) {
[compute endEncoding];
compute = nil;
}
}
void EnsureBlit(id<MTLCommandBuffer> commandBuffer) {
if (blit == nil) {
FinishEncoders();
blit = [commandBuffer blitCommandEncoder];
}
}
void EnsureCompute(id<MTLCommandBuffer> commandBuffer) {
if (compute == nil) {
FinishEncoders();
compute = [commandBuffer computeCommandEncoder];
// TODO(cwallez@chromium.org): does any state need to be reset?
}
}
void BeginSubpass(id<MTLCommandBuffer> commandBuffer, uint32_t subpass) {
ASSERT(currentRenderPass);
if (render != nil) {
[render endEncoding];
render = nil;
}
const auto& info = currentRenderPass->renderPass->GetSubpassInfo(subpass);
auto& framebuffer = currentRenderPass->framebuffer;
MTLRenderPassDescriptor* descriptor = [MTLRenderPassDescriptor renderPassDescriptor];
bool usingBackbuffer = false; // HACK(kainino@chromium.org): workaround for not having depth attachments
for (uint32_t index = 0; index < info.colorAttachments.size(); ++index) {
uint32_t attachment = info.colorAttachments[index];
// TODO(kainino@chromium.org): currently a 'null' texture view
// falls back to the 'back buffer' but this should go away
// when we have WSI.
id<MTLTexture> texture = nil;
if (auto textureView = framebuffer->GetTextureView(attachment)) {
texture = ToBackend(textureView->GetTexture())->GetMTLTexture();
} else {
texture = device->GetCurrentTexture();
usingBackbuffer = true;
}
descriptor.colorAttachments[index].texture = texture;
descriptor.colorAttachments[index].loadAction = MTLLoadActionLoad;
descriptor.colorAttachments[index].storeAction = MTLStoreActionStore;
}
// TODO(kainino@chromium.org): load depth attachment from subpass
if (usingBackbuffer) {
descriptor.depthAttachment.texture = device->GetCurrentDepthTexture();
descriptor.depthAttachment.loadAction = MTLLoadActionLoad;
descriptor.depthAttachment.storeAction = MTLStoreActionStore;
}
render = [commandBuffer renderCommandEncoderWithDescriptor:descriptor];
// TODO(cwallez@chromium.org): does any state need to be reset?
}
void EndRenderPass() {
ASSERT(render != nil);
[render endEncoding];
render = nil;
}
};
}
void CommandBuffer::FillCommands(id<MTLCommandBuffer> commandBuffer, std::unordered_set<std::mutex*>* mutexes) {
Command type;
Pipeline* lastPipeline = nullptr;
id<MTLBuffer> indexBuffer = nil;
uint32_t indexBufferOffset = 0;
MTLIndexType indexType = MTLIndexTypeUInt32;
CurrentEncoders encoders;
encoders.device = device;
uint32_t currentSubpass = 0;
id<MTLRenderCommandEncoder> renderEncoder = nil;
while (commands.NextCommandId(&type)) {
switch (type) {
case Command::AdvanceSubpass:
{
commands.NextCommand<AdvanceSubpassCmd>();
currentSubpass += 1;
encoders.BeginSubpass(commandBuffer, currentSubpass);
}
break;
case Command::BeginRenderPass:
{
encoders.currentRenderPass = commands.NextCommand<BeginRenderPassCmd>();
encoders.FinishEncoders();
currentSubpass = 0;
encoders.BeginSubpass(commandBuffer, currentSubpass);
}
break;
case Command::CopyBufferToTexture:
{
CopyBufferToTextureCmd* copy = commands.NextCommand<CopyBufferToTextureCmd>();
Buffer* buffer = ToBackend(copy->buffer.Get());
Texture* texture = ToBackend(copy->texture.Get());
unsigned rowSize = copy->width * TextureFormatPixelSize(texture->GetFormat());
MTLOrigin origin;
origin.x = copy->x;
origin.y = copy->y;
origin.z = copy->z;
MTLSize size;
size.width = copy->width;
size.height = copy->height;
size.depth = copy->depth;
encoders.EnsureBlit(commandBuffer);
[encoders.blit
copyFromBuffer:buffer->GetMTLBuffer()
sourceOffset:copy->bufferOffset
sourceBytesPerRow:rowSize
sourceBytesPerImage:(rowSize * copy->height)
sourceSize:size
toTexture:texture->GetMTLTexture()
destinationSlice:0
destinationLevel:copy->level
destinationOrigin:origin];
}
break;
case Command::Dispatch:
{
DispatchCmd* dispatch = commands.NextCommand<DispatchCmd>();
encoders.EnsureCompute(commandBuffer);
ASSERT(lastPipeline->IsCompute());
[encoders.compute dispatchThreadgroups:MTLSizeMake(dispatch->x, dispatch->y, dispatch->z)
threadsPerThreadgroup: lastPipeline->GetLocalWorkGroupSize()];
}
break;
case Command::DrawArrays:
{
DrawArraysCmd* draw = commands.NextCommand<DrawArraysCmd>();
ASSERT(encoders.render);
[encoders.render
drawPrimitives:MTLPrimitiveTypeTriangle
vertexStart:draw->firstVertex
vertexCount:draw->vertexCount
instanceCount:draw->instanceCount
baseInstance:draw->firstInstance];
}
break;
case Command::DrawElements:
{
DrawElementsCmd* draw = commands.NextCommand<DrawElementsCmd>();
ASSERT(encoders.render);
[encoders.render
drawIndexedPrimitives:MTLPrimitiveTypeTriangle
indexCount:draw->indexCount
indexType:indexType
indexBuffer:indexBuffer
indexBufferOffset:indexBufferOffset
instanceCount:draw->instanceCount
baseVertex:0
baseInstance:draw->firstInstance];
}
break;
case Command::EndRenderPass:
{
commands.NextCommand<EndRenderPassCmd>();
encoders.EndRenderPass();
}
break;
case Command::SetPipeline:
{
SetPipelineCmd* cmd = commands.NextCommand<SetPipelineCmd>();
lastPipeline = ToBackend(cmd->pipeline).Get();
if (lastPipeline->IsCompute()) {
encoders.EnsureCompute(commandBuffer);
lastPipeline->Encode(encoders.compute);
} else {
ASSERT(encoders.render);
lastPipeline->Encode(encoders.render);
}
}
break;
case Command::SetPushConstants:
{
SetPushConstantsCmd* cmd = commands.NextCommand<SetPushConstantsCmd>();
uint32_t* valuesUInt = commands.NextData<uint32_t>(cmd->count);
int32_t* valuesInt = reinterpret_cast<int32_t*>(valuesUInt);
float* valuesFloat = reinterpret_cast<float*>(valuesUInt);
// TODO(kainino@chromium.org): implement SetPushConstants
}
break;
case Command::SetBindGroup:
{
SetBindGroupCmd* cmd = commands.NextCommand<SetBindGroupCmd>();
BindGroup* group = ToBackend(cmd->group.Get());
uint32_t groupIndex = cmd->index;
const auto& layout = group->GetLayout()->GetBindingInfo();
if (lastPipeline->IsCompute()) {
encoders.EnsureCompute(commandBuffer);
} else {
ASSERT(encoders.render);
}
// TODO(kainino@chromium.org): Maintain buffers and offsets arrays in BindGroup so that we
// only have to do one setVertexBuffers and one setFragmentBuffers call here.
for (size_t binding = 0; binding < layout.mask.size(); ++binding) {
if (!layout.mask[binding]) {
continue;
}
auto stage = layout.visibilities[binding];
bool vertStage = stage & nxt::ShaderStageBit::Vertex;
bool fragStage = stage & nxt::ShaderStageBit::Fragment;
bool computeStage = stage & nxt::ShaderStageBit::Compute;
uint32_t vertIndex = 0;
uint32_t fragIndex = 0;
uint32_t computeIndex = 0;
if (vertStage) {
vertIndex = ToBackend(lastPipeline->GetLayout())->
GetBindingIndexInfo(nxt::ShaderStage::Vertex)[groupIndex][binding];
}
if (fragStage) {
fragIndex = ToBackend(lastPipeline->GetLayout())->
GetBindingIndexInfo(nxt::ShaderStage::Fragment)[groupIndex][binding];
}
if (computeStage) {
computeIndex = ToBackend(lastPipeline->GetLayout())->
GetBindingIndexInfo(nxt::ShaderStage::Compute)[groupIndex][binding];
}
switch (layout.types[binding]) {
case nxt::BindingType::UniformBuffer:
case nxt::BindingType::StorageBuffer:
{
BufferView* view = ToBackend(group->GetBindingAsBufferView(binding));
auto b = ToBackend(view->GetBuffer());
mutexes->insert(&b->GetMutex());
const id<MTLBuffer> buffer = b->GetMTLBuffer();
const NSUInteger offset = view->GetOffset();
if (vertStage) {
[encoders.render
setVertexBuffers:&buffer
offsets:&offset
withRange:NSMakeRange(vertIndex, 1)];
}
if (fragStage) {
[encoders.render
setFragmentBuffers:&buffer
offsets:&offset
withRange:NSMakeRange(fragIndex, 1)];
}
if (computeStage) {
[encoders.compute
setBuffers:&buffer
offsets:&offset
withRange:NSMakeRange(computeIndex, 1)];
}
}
break;
case nxt::BindingType::Sampler:
{
auto sampler = ToBackend(group->GetBindingAsSampler(binding));
if (vertStage) {
[encoders.render
setVertexSamplerState:sampler->GetMTLSamplerState()
atIndex:vertIndex];
}
if (fragStage) {
[encoders.render
setFragmentSamplerState:sampler->GetMTLSamplerState()
atIndex:fragIndex];
}
if (computeStage) {
[encoders.compute
setSamplerState:sampler->GetMTLSamplerState()
atIndex:computeIndex];
}
}
break;
case nxt::BindingType::SampledTexture:
{
auto texture = ToBackend(group->GetBindingAsTextureView(binding)->GetTexture());
if (vertStage) {
[encoders.render
setVertexTexture:texture->GetMTLTexture()
atIndex:vertIndex];
}
if (fragStage) {
[encoders.render
setFragmentTexture:texture->GetMTLTexture()
atIndex:fragIndex];
}
if (computeStage) {
[encoders.compute
setTexture:texture->GetMTLTexture()
atIndex:computeIndex];
}
}
break;
}
}
}
break;
case Command::SetIndexBuffer:
{
SetIndexBufferCmd* cmd = commands.NextCommand<SetIndexBufferCmd>();
auto b = ToBackend(cmd->buffer.Get());
mutexes->insert(&b->GetMutex());
indexBuffer = b->GetMTLBuffer();
indexBufferOffset = cmd->offset;
indexType = IndexFormatType(cmd->format);
}
break;
case Command::SetVertexBuffers:
{
SetVertexBuffersCmd* cmd = commands.NextCommand<SetVertexBuffersCmd>();
auto buffers = commands.NextData<Ref<BufferBase>>(cmd->count);
auto offsets = commands.NextData<uint32_t>(cmd->count);
auto inputState = lastPipeline->GetInputState();
std::array<id<MTLBuffer>, kMaxVertexInputs> mtlBuffers;
std::array<NSUInteger, kMaxVertexInputs> mtlOffsets;
// Perhaps an "array of vertex buffers(+offsets?)" should be
// a NXT API primitive to avoid reconstructing this array?
for (uint32_t i = 0; i < cmd->count; ++i) {
Buffer* buffer = ToBackend(buffers[i].Get());
mutexes->insert(&buffer->GetMutex());
mtlBuffers[i] = buffer->GetMTLBuffer();
mtlOffsets[i] = offsets[i];
}
ASSERT(encoders.render);
[encoders.render
setVertexBuffers:mtlBuffers.data()
offsets:mtlOffsets.data()
withRange:NSMakeRange(kMaxBindingsPerGroup + cmd->startSlot, cmd->count)];
}
break;
case Command::TransitionBufferUsage:
{
TransitionBufferUsageCmd* cmd = commands.NextCommand<TransitionBufferUsageCmd>();
cmd->buffer->TransitionUsageImpl(cmd->usage);
}
break;
case Command::TransitionTextureUsage:
{
TransitionTextureUsageCmd* cmd = commands.NextCommand<TransitionTextureUsageCmd>();
cmd->texture->TransitionUsageImpl(cmd->usage);
}
break;
;
}
}
encoders.FinishEncoders();
}
// InputState
static MTLVertexFormat VertexFormatType(nxt::VertexFormat format) {
switch (format) {
case nxt::VertexFormat::FloatR32G32B32A32:
return MTLVertexFormatFloat4;
case nxt::VertexFormat::FloatR32G32B32:
return MTLVertexFormatFloat3;
case nxt::VertexFormat::FloatR32G32:
return MTLVertexFormatFloat2;
}
}
static MTLVertexStepFunction InputStepModeFunction(nxt::InputStepMode mode) {
switch (mode) {
case nxt::InputStepMode::Vertex:
return MTLVertexStepFunctionPerVertex;
case nxt::InputStepMode::Instance:
return MTLVertexStepFunctionPerInstance;
}
}
InputState::InputState(Device* device, InputStateBuilder* builder)
: InputStateBase(builder), device(device) {
mtlVertexDescriptor = [MTLVertexDescriptor new];
const auto& attributesSetMask = GetAttributesSetMask();
for (size_t i = 0; i < attributesSetMask.size(); ++i) {
if (!attributesSetMask[i]) {
continue;
}
const AttributeInfo& info = GetAttribute(i);
auto attribDesc = [MTLVertexAttributeDescriptor new];
attribDesc.format = VertexFormatType(info.format);
attribDesc.offset = info.offset;
attribDesc.bufferIndex = kMaxBindingsPerGroup + info.bindingSlot;
mtlVertexDescriptor.attributes[i] = attribDesc;
[attribDesc release];
}
const auto& inputsSetMask = GetInputsSetMask();
for (size_t i = 0; i < inputsSetMask.size(); ++i) {
if (!inputsSetMask[i]) {
continue;
}
const InputInfo& info = GetInput(i);
auto layoutDesc = [MTLVertexBufferLayoutDescriptor new];
if (info.stride == 0) {
// For MTLVertexStepFunctionConstant, the stepRate must be 0,
// but the stride must NOT be 0, so I made up a value (256).
layoutDesc.stepFunction = MTLVertexStepFunctionConstant;
layoutDesc.stepRate = 0;
layoutDesc.stride = 256;
} else {
layoutDesc.stepFunction = InputStepModeFunction(info.stepMode);
layoutDesc.stepRate = 1;
layoutDesc.stride = info.stride;
}
mtlVertexDescriptor.layouts[kMaxBindingsPerGroup + i] = layoutDesc;
[layoutDesc release];
}
}
InputState::~InputState() {
[mtlVertexDescriptor release];
mtlVertexDescriptor = nil;
}
MTLVertexDescriptor* InputState::GetMTLVertexDescriptor() {
return mtlVertexDescriptor;
}
// Framebuffer
Framebuffer::Framebuffer(Device* device, FramebufferBuilder* builder)
: FramebufferBase(builder), device(device) {
}
Framebuffer::~Framebuffer() {
}
// Pipeline
Pipeline::Pipeline(Device* device, PipelineBuilder* builder)
: PipelineBase(builder), device(device) {
if (IsCompute()) {
const auto& module = ToBackend(builder->GetStageInfo(nxt::ShaderStage::Compute).module);
const auto& entryPoint = builder->GetStageInfo(nxt::ShaderStage::Compute).entryPoint;
id<MTLFunction> function = module->GetFunction(entryPoint.c_str());
NSError *error = nil;
mtlComputePipelineState = [device->GetMTLDevice()
newComputePipelineStateWithFunction:function error:&error];
if (error != nil) {
NSLog(@" error => %@", error);
builder->HandleError("Error creating pipeline state");
return;
}
// Copy over the local workgroup size as it is passed to dispatch explicitly in Metal
localWorkgroupSize = module->GetLocalWorkGroupSize(entryPoint);
} else {
MTLRenderPipelineDescriptor* descriptor = [MTLRenderPipelineDescriptor new];
for (auto stage : IterateStages(GetStageMask())) {
const auto& module = ToBackend(builder->GetStageInfo(stage).module);
const auto& entryPoint = builder->GetStageInfo(stage).entryPoint;
id<MTLFunction> function = module->GetFunction(entryPoint.c_str());
switch (stage) {
case nxt::ShaderStage::Vertex:
descriptor.vertexFunction = function;
break;
case nxt::ShaderStage::Fragment:
descriptor.fragmentFunction = function;
break;
case nxt::ShaderStage::Compute:
ASSERT(false);
break;
}
}
descriptor.colorAttachments[0].pixelFormat = MTLPixelFormatBGRA8Unorm;
descriptor.depthAttachmentPixelFormat = MTLPixelFormatDepth32Float;
InputState* inputState = ToBackend(GetInputState());
descriptor.vertexDescriptor = inputState->GetMTLVertexDescriptor();
// TODO(kainino@chromium.org): push constants, textures, samplers
NSError *error = nil;
mtlRenderPipelineState = [device->GetMTLDevice()
newRenderPipelineStateWithDescriptor:descriptor error:&error];
if (error != nil) {
NSLog(@" error => %@", error);
builder->HandleError("Error creating pipeline state");
return;
}
MTLDepthStencilDescriptor* dsDesc = [MTLDepthStencilDescriptor new];
dsDesc.depthWriteEnabled = true;
dsDesc.depthCompareFunction = MTLCompareFunctionLess;
mtlDepthStencilState = [device->GetMTLDevice()
newDepthStencilStateWithDescriptor:dsDesc];
[dsDesc release];
[descriptor release];
}
}
Pipeline::~Pipeline() {
[mtlRenderPipelineState release];
[mtlDepthStencilState release];
[mtlComputePipelineState release];
}
void Pipeline::Encode(id<MTLRenderCommandEncoder> encoder) {
ASSERT(!IsCompute());
[encoder setDepthStencilState:mtlDepthStencilState];
[encoder setRenderPipelineState:mtlRenderPipelineState];
}
void Pipeline::Encode(id<MTLComputeCommandEncoder> encoder) {
ASSERT(IsCompute());
[encoder setComputePipelineState:mtlComputePipelineState];
}
MTLSize Pipeline::GetLocalWorkGroupSize() const {
return localWorkgroupSize;
}
// PipelineLayout
PipelineLayout::PipelineLayout(Device* device, PipelineLayoutBuilder* builder)
: PipelineLayoutBase(builder), device(device) {
// Each stage has its own numbering namespace in CompilerMSL.
for (auto stage : IterateStages(kAllStages)) {
uint32_t bufferIndex = 0;
uint32_t samplerIndex = 0;
uint32_t textureIndex = 0;
for (size_t group = 0; group < kMaxBindGroups; ++group) {
const auto& groupInfo = GetBindGroupLayout(group)->GetBindingInfo();
for (size_t binding = 0; binding < kMaxBindingsPerGroup; ++binding) {
if (!(groupInfo.visibilities[binding] & StageBit(stage))) {
continue;
}
if (!groupInfo.mask[binding]) {
continue;
}
switch (groupInfo.types[binding]) {
case nxt::BindingType::UniformBuffer:
case nxt::BindingType::StorageBuffer:
indexInfo[stage][group][binding] = bufferIndex;
bufferIndex++;
break;
case nxt::BindingType::Sampler:
indexInfo[stage][group][binding] = samplerIndex;
samplerIndex++;
break;
case nxt::BindingType::SampledTexture:
indexInfo[stage][group][binding] = textureIndex;
textureIndex++;
break;
}
}
}
}
}
const PipelineLayout::BindingIndexInfo& PipelineLayout::GetBindingIndexInfo(nxt::ShaderStage stage) const {
return indexInfo[stage];
}
// Queue
Queue::Queue(Device* device, QueueBuilder* builder)
: QueueBase(builder), device(device) {
commandQueue = [device->GetMTLDevice() newCommandQueue];
}
Queue::~Queue() {
[commandQueue release];
commandQueue = nil;
}
id<MTLCommandQueue> Queue::GetMTLCommandQueue() {
return commandQueue;
}
void Queue::Submit(uint32_t numCommands, CommandBuffer* const * commands) {
id<MTLCommandBuffer> commandBuffer = [commandQueue commandBuffer];
// Mutexes are necessary to prevent buffers from being written from the
// CPU before their previous value has been read from the GPU.
// https://developer.apple.com/library/content/documentation/3DDrawing/Conceptual/MTLBestPracticesGuide/TripleBuffering.html
// TODO(kainino@chromium.org): When we have resource transitions, all of these mutexes will be replaced.
std::unordered_set<std::mutex*> mutexes;
for (uint32_t i = 0; i < numCommands; ++i) {
commands[i]->FillCommands(commandBuffer, &mutexes);
}
for (auto mutex : mutexes) {
mutex->lock();
}
[commandBuffer addCompletedHandler:^(id<MTLCommandBuffer> commandBuffer) {
// 'mutexes' is copied into this Block
for (auto mutex : mutexes) {
mutex->unlock();
}
}];
[commandBuffer commit];
}
// RenderPass
RenderPass::RenderPass(Device* device, RenderPassBuilder* builder)
: RenderPassBase(builder), device(device) {
}
RenderPass::~RenderPass() {
}
// Sampler
MTLSamplerMinMagFilter FilterModeToMinMagFilter(nxt::FilterMode mode) {
switch (mode) {
case nxt::FilterMode::Nearest:
return MTLSamplerMinMagFilterNearest;
case nxt::FilterMode::Linear:
return MTLSamplerMinMagFilterLinear;
}
}
MTLSamplerMipFilter FilterModeToMipFilter(nxt::FilterMode mode) {
switch (mode) {
case nxt::FilterMode::Nearest:
return MTLSamplerMipFilterNearest;
case nxt::FilterMode::Linear:
return MTLSamplerMipFilterLinear;
}
}
Sampler::Sampler(Device* device, SamplerBuilder* builder)
: SamplerBase(builder), device(device) {
auto desc = [MTLSamplerDescriptor new];
[desc autorelease];
desc.minFilter = FilterModeToMinMagFilter(builder->GetMinFilter());
desc.magFilter = FilterModeToMinMagFilter(builder->GetMagFilter());
desc.mipFilter = FilterModeToMipFilter(builder->GetMipMapFilter());
// TODO(kainino@chromium.org): wrap modes
mtlSamplerState = [device->GetMTLDevice() newSamplerStateWithDescriptor:desc];
}
Sampler::~Sampler() {
[mtlSamplerState release];
}
id<MTLSamplerState> Sampler::GetMTLSamplerState() {
return mtlSamplerState;
}
// ShaderModule
ShaderModule::ShaderModule(Device* device, ShaderModuleBuilder* builder)
: ShaderModuleBase(builder), device(device) {
compiler = new spirv_cross::CompilerMSL(builder->AcquireSpirv());
ExtractSpirvInfo(*compiler);
spirv_cross::MSLConfiguration mslConfig;
mslConfig.flip_vert_y = false;
mslConfig.flip_frag_y = false;
std::string msl = compiler->compile(mslConfig);
NSString* mslSource = [NSString stringWithFormat:@"%s", msl.c_str()];
NSError *error = nil;
mtlLibrary = [device->GetMTLDevice() newLibraryWithSource:mslSource options:nil error:&error];
if (error != nil) {
NSLog(@"MTLDevice newLibraryWithSource => %@", error);
builder->HandleError("Error creating MTLLibrary from MSL source");
}
}
ShaderModule::~ShaderModule() {
delete compiler;
}
id<MTLFunction> ShaderModule::GetFunction(const char* functionName) const {
// TODO(kainino@chromium.org): make this somehow more robust; it needs to behave like clean_func_name:
// https://github.com/KhronosGroup/SPIRV-Cross/blob/4e915e8c483e319d0dd7a1fa22318bef28f8cca3/spirv_msl.cpp#L1213
if (strcmp(functionName, "main") == 0) {
functionName = "main0";
}
NSString* name = [NSString stringWithFormat:@"%s", functionName];
return [mtlLibrary newFunctionWithName:name];
}
MTLSize ShaderModule::GetLocalWorkGroupSize(const std::string& entryPoint) const {
auto size = compiler->get_entry_point(entryPoint).workgroup_size;
return MTLSizeMake(size.x, size.y, size.z);
}
// Texture
MTLPixelFormat TextureFormatPixelFormat(nxt::TextureFormat format) {
switch (format) {
case nxt::TextureFormat::R8G8B8A8Unorm:
return MTLPixelFormatRGBA8Unorm;
}
}
Texture::Texture(Device* device, TextureBuilder* builder)
: TextureBase(builder), device(device) {
auto desc = [MTLTextureDescriptor new];
[desc autorelease];
switch (GetDimension()) {
case nxt::TextureDimension::e2D:
desc.textureType = MTLTextureType2D;
break;
}
desc.usage = MTLTextureUsageShaderRead;
desc.pixelFormat = TextureFormatPixelFormat(GetFormat());
desc.width = GetWidth();
desc.height = GetHeight();
desc.depth = GetDepth();
desc.mipmapLevelCount = GetNumMipLevels();
desc.arrayLength = 1;
mtlTexture = [device->GetMTLDevice() newTextureWithDescriptor:desc];
}
Texture::~Texture() {
[mtlTexture release];
}
id<MTLTexture> Texture::GetMTLTexture() {
return mtlTexture;
}
// TextureView
TextureView::TextureView(Device* device, TextureViewBuilder* builder)
: TextureViewBase(builder), device(device) {
}
}
}