mirror of
https://github.com/encounter/dawn-cmake.git
synced 2025-05-13 10:51:35 +00:00
This patch adds a perf test harness for Dawn and a simple test of buffer upload performance. The test harness is based off of ANGLE's perf tests. Because perf tests are parameterized to support multiple test variants, this patch also adds DawnTestWithParams and ParamGenerator to support instantiating tests with additional parameters. Bug: dawn:208 Change-Id: I60df730e9f9f21a4c29fc21ea1a8315e4fff1aa6 Reviewed-on: https://dawn-review.googlesource.com/c/dawn/+/10340 Reviewed-by: Austin Eng <enga@chromium.org> Commit-Queue: Austin Eng <enga@chromium.org>
150 lines
4.5 KiB
Python
Executable File
150 lines
4.5 KiB
Python
Executable File
#!/usr/bin/python2
|
|
#
|
|
# Copyright 2019 The Dawn Authors
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
# Based on Angle's perf_test_runner.py
|
|
|
|
import glob
|
|
import subprocess
|
|
import sys
|
|
import os
|
|
import re
|
|
|
|
base_path = os.path.abspath(os.path.join(os.path.dirname(os.path.abspath(__file__)), '..'))
|
|
|
|
# Look for a [Rr]elease build.
|
|
perftests_paths = glob.glob('out/*elease*')
|
|
metric = 'wall_time'
|
|
max_experiments = 10
|
|
|
|
binary_name = 'dawn_perf_tests'
|
|
if sys.platform == 'win32':
|
|
binary_name += '.exe'
|
|
|
|
scores = []
|
|
|
|
def mean(data):
|
|
"""Return the sample arithmetic mean of data."""
|
|
n = len(data)
|
|
if n < 1:
|
|
raise ValueError('mean requires at least one data point')
|
|
return float(sum(data)) / float(n) # in Python 2 use sum(data)/float(n)
|
|
|
|
|
|
def sum_of_square_deviations(data, c):
|
|
"""Return sum of square deviations of sequence data."""
|
|
ss = sum((float(x) - c)**2 for x in data)
|
|
return ss
|
|
|
|
|
|
def coefficient_of_variation(data):
|
|
"""Calculates the population coefficient of variation."""
|
|
n = len(data)
|
|
if n < 2:
|
|
raise ValueError('variance requires at least two data points')
|
|
c = mean(data)
|
|
ss = sum_of_square_deviations(data, c)
|
|
pvar = ss / n # the population variance
|
|
stddev = (pvar**0.5) # population standard deviation
|
|
return stddev / c
|
|
|
|
|
|
def truncated_list(data, n):
|
|
"""Compute a truncated list, n is truncation size"""
|
|
if len(data) < n * 2:
|
|
raise ValueError('list not large enough to truncate')
|
|
return sorted(data)[n:-n]
|
|
|
|
|
|
def truncated_mean(data, n):
|
|
"""Compute a truncated mean, n is truncation size"""
|
|
return mean(truncated_list(data, n))
|
|
|
|
|
|
def truncated_cov(data, n):
|
|
"""Compute a truncated coefficient of variation, n is truncation size"""
|
|
return coefficient_of_variation(truncated_list(data, n))
|
|
|
|
|
|
# Find most recent binary
|
|
newest_binary = None
|
|
newest_mtime = None
|
|
|
|
for path in perftests_paths:
|
|
binary_path = os.path.join(base_path, path, binary_name)
|
|
if os.path.exists(binary_path):
|
|
binary_mtime = os.path.getmtime(binary_path)
|
|
if (newest_binary is None) or (binary_mtime > newest_mtime):
|
|
newest_binary = binary_path
|
|
newest_mtime = binary_mtime
|
|
|
|
perftests_path = newest_binary
|
|
|
|
if perftests_path == None or not os.path.exists(perftests_path):
|
|
print('Cannot find Release %s!' % binary_name)
|
|
sys.exit(1)
|
|
|
|
if len(sys.argv) >= 2:
|
|
test_name = sys.argv[1]
|
|
|
|
print('Using test executable: ' + perftests_path)
|
|
print('Test name: ' + test_name)
|
|
|
|
def get_results(metric, extra_args=[]):
|
|
process = subprocess.Popen(
|
|
[perftests_path, '--gtest_filter=' + test_name] + extra_args,
|
|
stdout=subprocess.PIPE,
|
|
stderr=subprocess.PIPE)
|
|
output, err = process.communicate()
|
|
|
|
m = re.search(r'Running (\d+) tests', output)
|
|
if m and int(m.group(1)) > 1:
|
|
print("Found more than one test result in output:")
|
|
print(output)
|
|
sys.exit(3)
|
|
|
|
pattern = metric + r'= ([0-9.]+)'
|
|
m = re.findall(pattern, output)
|
|
if m is None:
|
|
print("Did not find the metric '%s' in the test output:" % metric)
|
|
print(output)
|
|
sys.exit(1)
|
|
|
|
return [float(value) for value in m]
|
|
|
|
|
|
# Calibrate the number of steps
|
|
steps = get_results("steps", ["--calibration"])[0]
|
|
print("running with %d steps." % steps)
|
|
|
|
# Loop 'max_experiments' times, running the tests.
|
|
for experiment in range(max_experiments):
|
|
experiment_scores = get_results(metric, ["--override-steps", str(steps)])
|
|
|
|
for score in experiment_scores:
|
|
sys.stdout.write("%s: %.2f" % (metric, score))
|
|
scores.append(score)
|
|
|
|
if (len(scores) > 1):
|
|
sys.stdout.write(", mean: %.2f" % mean(scores))
|
|
sys.stdout.write(", variation: %.2f%%" % (coefficient_of_variation(scores) * 100.0))
|
|
|
|
if (len(scores) > 7):
|
|
truncation_n = len(scores) >> 3
|
|
sys.stdout.write(", truncated mean: %.2f" % truncated_mean(scores, truncation_n))
|
|
sys.stdout.write(", variation: %.2f%%" % (truncated_cov(scores, truncation_n) * 100.0))
|
|
|
|
print("")
|