dawn-cmake/src/tint/number.h

673 lines
23 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// Copyright 2021 The Tint Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef SRC_TINT_NUMBER_H_
#define SRC_TINT_NUMBER_H_
#include <stdint.h>
#include <cmath>
#include <functional>
#include <limits>
#include <optional>
#include <ostream>
#include "src/tint/traits.h"
#include "src/tint/utils/compiler_macros.h"
#include "src/tint/utils/result.h"
// Forward declaration
namespace tint {
/// Number wraps a integer or floating point number, enforcing explicit casting.
template <typename T>
struct Number;
} // namespace tint
namespace tint::detail {
/// Base template for IsNumber
template <typename T>
struct IsNumber : std::false_type {};
/// Specialization for IsNumber
template <typename T>
struct IsNumber<Number<T>> : std::true_type {};
/// An empty structure used as a unique template type for Number when
/// specializing for the f16 type.
struct NumberKindF16 {};
/// Helper for obtaining the underlying type for a Number.
template <typename T>
struct NumberUnwrapper {
/// When T is not a Number, then type defined to be T.
using type = T;
};
/// NumberUnwrapper specialization for Number<T>.
template <typename T>
struct NumberUnwrapper<Number<T>> {
/// The Number's underlying type.
using type = typename Number<T>::type;
};
} // namespace tint::detail
namespace tint {
/// Evaluates to true iff T is a Number
template <typename T>
constexpr bool IsNumber = detail::IsNumber<T>::value;
/// Resolves to the underlying type for a Number.
template <typename T>
using UnwrapNumber = typename detail::NumberUnwrapper<T>::type;
/// Evaluates to true iff T or Number<T> is a floating-point type or is NumberKindF16.
template <typename T>
constexpr bool IsFloatingPoint = std::is_floating_point_v<UnwrapNumber<T>> ||
std::is_same_v<UnwrapNumber<T>, detail::NumberKindF16>;
/// Evaluates to true iff T or Number<T> is an integral type.
template <typename T>
constexpr bool IsIntegral = std::is_integral_v<UnwrapNumber<T>>;
/// Evaluates to true iff T or Number<T> is a signed integer type.
template <typename T>
constexpr bool IsSignedIntegral =
std::is_integral_v<UnwrapNumber<T>> && std::is_signed_v<UnwrapNumber<T>>;
/// Evaluates to true iff T or Number<T> is an unsigned integer type.
template <typename T>
constexpr bool IsUnsignedIntegral =
std::is_integral_v<UnwrapNumber<T>> && std::is_unsigned_v<UnwrapNumber<T>>;
/// Evaluates to true iff T is an integer type, floating-point type or is NumberKindF16.
template <typename T>
constexpr bool IsNumeric = IsIntegral<T> || IsFloatingPoint<T>;
/// Returns the bit width of T
template <typename T>
constexpr size_t BitWidth = sizeof(UnwrapNumber<T>) * 8;
/// NumberBase is a CRTP base class for Number<T>
template <typename NumberT>
struct NumberBase {
/// @returns value of type `Number<T>` with the highest value for that type.
static NumberT Highest() { return NumberT(NumberT::kHighestValue); }
/// @returns value of type `Number<T>` with the lowest value for that type.
static NumberT Lowest() { return NumberT(NumberT::kLowestValue); }
/// @returns value of type `Number<T>` with the smallest value for that type.
static NumberT Smallest() { return NumberT(NumberT::kSmallestValue); }
/// @returns value of type `Number<T>` that represents NaN for that type.
static NumberT NaN() {
return NumberT(std::numeric_limits<UnwrapNumber<NumberT>>::quiet_NaN());
}
/// @returns value of type `Number<T>` that represents infinity for that type.
static NumberT Inf() { return NumberT(std::numeric_limits<UnwrapNumber<NumberT>>::infinity()); }
};
/// Number wraps a integer or floating point number, enforcing explicit casting.
template <typename T>
struct Number : NumberBase<Number<T>> {
static_assert(IsNumeric<T>, "Number<T> constructed with non-numeric type");
/// type is the underlying type of the Number
using type = T;
/// Number of bits in the number.
static constexpr size_t kNumBits = sizeof(T) * 8;
/// Highest finite representable value of this type.
static constexpr type kHighestValue = std::numeric_limits<type>::max();
/// Lowest finite representable value of this type.
static constexpr type kLowestValue = std::numeric_limits<type>::lowest();
/// Smallest positive normal value of this type.
static constexpr type kSmallestValue =
std::is_integral_v<type> ? 0 : std::numeric_limits<type>::min();
/// Smallest positive subnormal value of this type, 0 for integral type.
static constexpr type kSmallestSubnormalValue =
std::is_integral_v<type> ? 0 : std::numeric_limits<type>::denorm_min();
/// Constructor. The value is zero-initialized.
Number() = default;
/// Constructor.
/// @param v the value to initialize this Number to
template <typename U>
explicit Number(U v) : value(static_cast<T>(v)) {}
/// Constructor.
/// @param v the value to initialize this Number to
template <typename U>
explicit Number(Number<U> v) : value(static_cast<T>(v.value)) {}
/// Conversion operator
/// @returns the value as T
operator T() const { return value; }
/// Negation operator
/// @returns the negative value of the number
Number operator-() const { return Number(-value); }
/// Assignment operator
/// @param v the new value
/// @returns this Number so calls can be chained
Number& operator=(T v) {
value = v;
return *this;
}
/// The number value
type value = {};
};
/// Writes the number to the ostream.
/// @param out the std::ostream to write to
/// @param num the Number
/// @return the std::ostream so calls can be chained
template <typename T>
inline std::ostream& operator<<(std::ostream& out, Number<T> num) {
return out << num.value;
}
/// The partial specification of Number for f16 type, storing the f16 value as float,
/// and enforcing proper explicit casting.
template <>
struct Number<detail::NumberKindF16> : NumberBase<Number<detail::NumberKindF16>> {
/// C++ does not have a native float16 type, so we use a 32-bit float instead.
using type = float;
/// Number of bits in the number.
static constexpr size_t kNumBits = 16;
/// Highest finite representable value of this type.
static constexpr type kHighestValue = 65504.0f; // 2¹⁵ × (1 + 1023/1024)
/// Lowest finite representable value of this type.
static constexpr type kLowestValue = -65504.0f;
/// Smallest positive normal value of this type.
/// binary16 0_00001_0000000000, value is 2⁻¹⁴.
static constexpr type kSmallestValue = 0x1p-14f;
/// Smallest positive subnormal value of this type.
/// binary16 0_00000_0000000001, value is 2⁻¹⁴ * 2⁻¹⁰ = 2⁻²⁴.
static constexpr type kSmallestSubnormalValue = 0x1p-24f;
/// Constructor. The value is zero-initialized.
Number() = default;
/// Constructor.
/// @param v the value to initialize this Number to
template <typename U>
explicit Number(U v) : value(Quantize(static_cast<type>(v))) {}
/// Constructor.
/// @param v the value to initialize this Number to
template <typename U>
explicit Number(Number<U> v) : value(Quantize(static_cast<type>(v.value))) {}
/// Conversion operator
/// @returns the value as the internal representation type of F16
operator float() const { return value; }
/// Negation operator
/// @returns the negative value of the number
Number operator-() const { return Number<detail::NumberKindF16>(-value); }
/// Assignment operator with parameter as native floating point type
/// @param v the new value
/// @returns this Number so calls can be chained
Number& operator=(type v) {
value = Quantize(v);
return *this;
}
/// Get the binary16 bit pattern in type uint16_t of this value.
/// @returns the binary16 bit pattern, in type uint16_t, of the stored quantized f16 value. If
/// the value is NaN, the returned value will be 0x7e00u. If the value is positive infinity, the
/// returned value will be 0x7c00u. If the input value is negative infinity, the returned value
/// will be 0xfc00u.
uint16_t BitsRepresentation() const;
/// Creates an f16 value from the uint16_t bit representation.
/// @param bits the bits to convert from
/// @returns the binary16 value based off the provided bit pattern.
static Number<detail::NumberKindF16> FromBits(uint16_t bits);
/// @param value the input float32 value
/// @returns the float32 value quantized to the smaller float16 value, through truncation of the
/// mantissa bits (no rounding). If the float32 value is too large (positive or negative) to be
/// represented by a float16 value, then the returned value will be positive or negative
/// infinity.
static type Quantize(type value);
/// The number value, stored as float
type value = {};
};
/// `AInt` is a type alias to `Number<int64_t>`.
using AInt = Number<int64_t>;
/// `AFloat` is a type alias to `Number<double>`.
using AFloat = Number<double>;
/// `i32` is a type alias to `Number<int32_t>`.
using i32 = Number<int32_t>;
/// `u32` is a type alias to `Number<uint32_t>`.
using u32 = Number<uint32_t>;
/// `f32` is a type alias to `Number<float>`
using f32 = Number<float>;
/// `f16` is a type alias to `Number<detail::NumberKindF16>`, which should be IEEE 754 binary16.
/// However since C++ don't have native binary16 type, the value is stored as float.
using f16 = Number<detail::NumberKindF16>;
template <typename T, traits::EnableIf<IsFloatingPoint<T>>* = nullptr>
inline const auto kPi = T(UnwrapNumber<T>(3.14159265358979323846));
/// True iff T is an abstract number type
template <typename T>
constexpr bool IsAbstract = std::is_same_v<T, AInt> || std::is_same_v<T, AFloat>;
/// @returns the friendly name of Number type T
template <typename T, traits::EnableIf<IsNumber<T>>* = nullptr>
const char* FriendlyName() {
if constexpr (std::is_same_v<T, AInt>) {
return "abstract-int";
} else if constexpr (std::is_same_v<T, AFloat>) {
return "abstract-float";
} else if constexpr (std::is_same_v<T, i32>) {
return "i32";
} else if constexpr (std::is_same_v<T, u32>) {
return "u32";
} else if constexpr (std::is_same_v<T, f32>) {
return "f32";
} else if constexpr (std::is_same_v<T, f16>) {
return "f16";
} else {
static_assert(!sizeof(T), "Unhandled type");
}
}
/// @returns the friendly name of T when T is bool
template <typename T, traits::EnableIf<std::is_same_v<T, bool>>* = nullptr>
const char* FriendlyName() {
return "bool";
}
/// Enumerator of failure reasons when converting from one number to another.
enum class ConversionFailure {
kExceedsPositiveLimit, // The value was too big (+'ve) to fit in the target type
kExceedsNegativeLimit, // The value was too big (-'ve) to fit in the target type
};
/// Writes the conversion failure message to the ostream.
/// @param out the std::ostream to write to
/// @param failure the ConversionFailure
/// @return the std::ostream so calls can be chained
std::ostream& operator<<(std::ostream& out, ConversionFailure failure);
/// Converts a number from one type to another, checking that the value fits in the target type.
/// @returns the resulting value of the conversion, or a failure reason.
template <typename TO, typename FROM>
utils::Result<TO, ConversionFailure> CheckedConvert(Number<FROM> num) {
// Use the highest-precision integer or floating-point type to perform the comparisons.
using T = std::conditional_t<IsFloatingPoint<UnwrapNumber<TO>> || IsFloatingPoint<FROM>,
AFloat::type, AInt::type>;
const auto value = static_cast<T>(num.value);
if (value > static_cast<T>(TO::kHighestValue)) {
return ConversionFailure::kExceedsPositiveLimit;
}
if (value < static_cast<T>(TO::kLowestValue)) {
return ConversionFailure::kExceedsNegativeLimit;
}
return TO(value); // Success
}
/// Equality operator.
/// @param a the LHS number
/// @param b the RHS number
/// @returns true if the numbers `a` and `b` are exactly equal. Also considers sign bit.
template <typename A, typename B>
bool operator==(Number<A> a, Number<B> b) {
// Use the highest-precision integer or floating-point type to perform the comparisons.
using T =
std::conditional_t<IsFloatingPoint<A> || IsFloatingPoint<B>, AFloat::type, AInt::type>;
auto va = static_cast<T>(a.value);
auto vb = static_cast<T>(b.value);
if constexpr (IsFloatingPoint<T>) {
if (std::signbit(va) != std::signbit(vb)) {
return false;
}
}
return std::equal_to<T>()(va, vb);
}
/// Inequality operator.
/// @param a the LHS number
/// @param b the RHS number
/// @returns true if the numbers `a` and `b` are exactly unequal. Also considers sign bit.
template <typename A, typename B>
bool operator!=(Number<A> a, Number<B> b) {
return !(a == b);
}
/// Equality operator.
/// @param a the LHS number
/// @param b the RHS number
/// @returns true if the numbers `a` and `b` are exactly equal.
template <typename A, typename B>
std::enable_if_t<IsNumeric<B>, bool> operator==(Number<A> a, B b) {
return a == Number<B>(b);
}
/// Inequality operator.
/// @param a the LHS number
/// @param b the RHS number
/// @returns true if the numbers `a` and `b` are exactly unequal.
template <typename A, typename B>
std::enable_if_t<IsNumeric<B>, bool> operator!=(Number<A> a, B b) {
return !(a == b);
}
/// Equality operator.
/// @param a the LHS number
/// @param b the RHS number
/// @returns true if the numbers `a` and `b` are exactly equal.
template <typename A, typename B>
std::enable_if_t<IsNumeric<A>, bool> operator==(A a, Number<B> b) {
return Number<A>(a) == b;
}
/// Inequality operator.
/// @param a the LHS number
/// @param b the RHS number
/// @returns true if the numbers `a` and `b` are exactly unequal.
template <typename A, typename B>
std::enable_if_t<IsNumeric<A>, bool> operator!=(A a, Number<B> b) {
return !(a == b);
}
/// Define 'TINT_HAS_OVERFLOW_BUILTINS' if the compiler provide overflow checking builtins.
/// If the compiler does not support these builtins, then these are emulated with algorithms
/// described in:
/// https://wiki.sei.cmu.edu/confluence/display/c/INT32-C.+Ensure+that+operations+on+signed+integers+do+not+result+in+overflow
#if defined(__GNUC__) && __GNUC__ >= 5
#define TINT_HAS_OVERFLOW_BUILTINS
#elif defined(__clang__)
#if __has_builtin(__builtin_add_overflow) && __has_builtin(__builtin_mul_overflow)
#define TINT_HAS_OVERFLOW_BUILTINS
#endif
#endif
// https://gcc.gnu.org/bugzilla/show_bug.cgi?id=80635
TINT_BEGIN_DISABLE_WARNING(MAYBE_UNINITIALIZED);
/// @returns a + b, or an empty optional if the resulting value overflowed the AInt
inline std::optional<AInt> CheckedAdd(AInt a, AInt b) {
int64_t result;
#ifdef TINT_HAS_OVERFLOW_BUILTINS
if (__builtin_add_overflow(a.value, b.value, &result)) {
return {};
}
#else // TINT_HAS_OVERFLOW_BUILTINS
if (a.value >= 0) {
if (b.value > AInt::kHighestValue - a.value) {
return {};
}
} else {
if (b.value < AInt::kLowestValue - a.value) {
return {};
}
}
result = a.value + b.value;
#endif // TINT_HAS_OVERFLOW_BUILTINS
return AInt(result);
}
/// @returns a + b, or an empty optional if the resulting value overflowed the float value
template <typename FloatingPointT, typename = traits::EnableIf<IsFloatingPoint<FloatingPointT>>>
inline std::optional<FloatingPointT> CheckedAdd(FloatingPointT a, FloatingPointT b) {
auto result = FloatingPointT{a.value + b.value};
if (!std::isfinite(result.value)) {
return {};
}
return result;
}
/// @returns a - b, or an empty optional if the resulting value overflowed the AInt
inline std::optional<AInt> CheckedSub(AInt a, AInt b) {
int64_t result;
#ifdef TINT_HAS_OVERFLOW_BUILTINS
if (__builtin_sub_overflow(a.value, b.value, &result)) {
return {};
}
#else // TINT_HAS_OVERFLOW_BUILTINS
if (b.value >= 0) {
if (a.value < AInt::kLowestValue + b.value) {
return {};
}
} else {
if (a.value > AInt::kHighestValue + b.value) {
return {};
}
}
result = a.value - b.value;
#endif // TINT_HAS_OVERFLOW_BUILTINS
return AInt(result);
}
/// @returns a + b, or an empty optional if the resulting value overflowed the float value
template <typename FloatingPointT, typename = traits::EnableIf<IsFloatingPoint<FloatingPointT>>>
inline std::optional<FloatingPointT> CheckedSub(FloatingPointT a, FloatingPointT b) {
auto result = FloatingPointT{a.value - b.value};
if (!std::isfinite(result.value)) {
return {};
}
return result;
}
/// @returns a * b, or an empty optional if the resulting value overflowed the AInt
inline std::optional<AInt> CheckedMul(AInt a, AInt b) {
int64_t result;
#ifdef TINT_HAS_OVERFLOW_BUILTINS
if (__builtin_mul_overflow(a.value, b.value, &result)) {
return {};
}
#else // TINT_HAS_OVERFLOW_BUILTINS
if (a > 0) {
if (b > 0) {
if (a > (AInt::kHighestValue / b)) {
return {};
}
} else {
if (b < (AInt::kLowestValue / a)) {
return {};
}
}
} else {
if (b > 0) {
if (a < (AInt::kLowestValue / b)) {
return {};
}
} else {
if ((a != 0) && (b < (AInt::kHighestValue / a))) {
return {};
}
}
}
result = a.value * b.value;
#endif // TINT_HAS_OVERFLOW_BUILTINS
return AInt(result);
}
/// @returns a * b, or an empty optional if the resulting value overflowed the float value
template <typename FloatingPointT, typename = traits::EnableIf<IsFloatingPoint<FloatingPointT>>>
inline std::optional<FloatingPointT> CheckedMul(FloatingPointT a, FloatingPointT b) {
auto result = FloatingPointT{a.value * b.value};
if (!std::isfinite(result.value)) {
return {};
}
return result;
}
/// @returns a / b, or an empty optional if the resulting value overflowed the AInt
inline std::optional<AInt> CheckedDiv(AInt a, AInt b) {
if (b == 0) {
return {};
}
if (b == -1 && a == AInt::Lowest()) {
return {};
}
return AInt{a.value / b.value};
}
/// @returns a / b, or an empty optional if the resulting value overflowed the float value
template <typename FloatingPointT, typename = traits::EnableIf<IsFloatingPoint<FloatingPointT>>>
inline std::optional<FloatingPointT> CheckedDiv(FloatingPointT a, FloatingPointT b) {
auto result = FloatingPointT{a.value / b.value};
if (!std::isfinite(result.value)) {
return {};
}
return result;
}
namespace detail {
/// @returns the remainder of e1 / e2
template <typename T>
inline T Mod(T e1, T e2) {
if constexpr (IsIntegral<T>) {
return e1 % e2;
} else {
return e1 - e2 * std::trunc(e1 / e2);
}
}
} // namespace detail
/// @returns the remainder of a / b, or an empty optional if the resulting value overflowed the AInt
inline std::optional<AInt> CheckedMod(AInt a, AInt b) {
if (b == 0) {
return {};
}
if (b == -1 && a == AInt::Lowest()) {
return {};
}
return AInt{detail::Mod(a.value, b.value)};
}
/// @returns the remainder of a / b, or an empty optional if the resulting value overflowed the
/// float value
template <typename FloatingPointT, typename = traits::EnableIf<IsFloatingPoint<FloatingPointT>>>
inline std::optional<FloatingPointT> CheckedMod(FloatingPointT a, FloatingPointT b) {
auto result = FloatingPointT{detail::Mod(a.value, b.value)};
if (!std::isfinite(result.value)) {
return {};
}
return result;
}
/// @returns a * b + c, or an empty optional if the value overflowed the AInt
inline std::optional<AInt> CheckedMadd(AInt a, AInt b, AInt c) {
if (auto mul = CheckedMul(a, b)) {
return CheckedAdd(mul.value(), c);
}
return {};
}
/// @returns the value of `base` raised to the power `exp`, or an empty optional if the operation
/// cannot be performed.
template <typename FloatingPointT, typename = traits::EnableIf<IsFloatingPoint<FloatingPointT>>>
inline std::optional<FloatingPointT> CheckedPow(FloatingPointT base, FloatingPointT exp) {
static_assert(IsNumber<FloatingPointT>);
if ((base < 0) || (base == 0 && exp <= 0)) {
return {};
}
auto result = FloatingPointT{std::pow(base.value, exp.value)};
if (!std::isfinite(result.value)) {
return {};
}
return result;
}
TINT_END_DISABLE_WARNING(MAYBE_UNINITIALIZED);
} // namespace tint
namespace tint::number_suffixes {
/// Literal suffix for abstract integer literals
inline AInt operator""_a(unsigned long long int value) { // NOLINT
return AInt(static_cast<int64_t>(value));
}
/// Literal suffix for abstract float literals
inline AFloat operator""_a(long double value) { // NOLINT
return AFloat(static_cast<double>(value));
}
/// Literal suffix for i32 literals
inline i32 operator""_i(unsigned long long int value) { // NOLINT
return i32(static_cast<int32_t>(value));
}
/// Literal suffix for u32 literals
inline u32 operator""_u(unsigned long long int value) { // NOLINT
return u32(static_cast<uint32_t>(value));
}
/// Literal suffix for f32 literals
inline f32 operator""_f(long double value) { // NOLINT
return f32(static_cast<double>(value));
}
/// Literal suffix for f32 literals
inline f32 operator""_f(unsigned long long int value) { // NOLINT
return f32(static_cast<double>(value));
}
/// Literal suffix for f16 literals
inline f16 operator""_h(long double value) { // NOLINT
return f16(static_cast<double>(value));
}
/// Literal suffix for f16 literals
inline f16 operator""_h(unsigned long long int value) { // NOLINT
return f16(static_cast<double>(value));
}
} // namespace tint::number_suffixes
namespace std {
/// Custom std::hash specialization for tint::Number<T>
template <typename T>
class hash<tint::Number<T>> {
public:
/// @param n the Number
/// @return the hash value
inline std::size_t operator()(const tint::Number<T>& n) const {
return std::hash<decltype(n.value)>()(n.value);
}
};
} // namespace std
#endif // SRC_TINT_NUMBER_H_