dawn-cmake/src/writer/wgsl/generator_impl.cc

1007 lines
24 KiB
C++

// Copyright 2021 The Tint Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "src/writer/wgsl/generator_impl.h"
#include <algorithm>
#include <limits>
#include "src/ast/bool_literal.h"
#include "src/ast/call_statement.h"
#include "src/ast/constant_id_decoration.h"
#include "src/ast/float_literal.h"
#include "src/ast/module.h"
#include "src/ast/sint_literal.h"
#include "src/ast/stage_decoration.h"
#include "src/ast/stride_decoration.h"
#include "src/ast/struct_member_align_decoration.h"
#include "src/ast/struct_member_offset_decoration.h"
#include "src/ast/struct_member_size_decoration.h"
#include "src/ast/uint_literal.h"
#include "src/ast/variable_decl_statement.h"
#include "src/ast/workgroup_decoration.h"
#include "src/semantic/function.h"
#include "src/semantic/struct.h"
#include "src/semantic/variable.h"
#include "src/type/access_control_type.h"
#include "src/type/alias_type.h"
#include "src/type/array_type.h"
#include "src/type/bool_type.h"
#include "src/type/depth_texture_type.h"
#include "src/type/f32_type.h"
#include "src/type/i32_type.h"
#include "src/type/matrix_type.h"
#include "src/type/multisampled_texture_type.h"
#include "src/type/pointer_type.h"
#include "src/type/sampled_texture_type.h"
#include "src/type/u32_type.h"
#include "src/type/vector_type.h"
#include "src/type/void_type.h"
#include "src/utils/math.h"
#include "src/writer/float_to_string.h"
namespace tint {
namespace writer {
namespace wgsl {
GeneratorImpl::GeneratorImpl(const Program* program)
: TextGenerator(), program_(program) {}
GeneratorImpl::~GeneratorImpl() = default;
bool GeneratorImpl::Generate(const ast::Function* entry) {
// Generate global declarations in the order they appear in the module.
for (auto* decl : program_->AST().GlobalDeclarations()) {
if (auto* ty = decl->As<type::Type>()) {
if (!EmitConstructedType(ty)) {
return false;
}
} else if (auto* func = decl->As<ast::Function>()) {
if (entry && func != entry) {
// Skip functions that are not reachable by the target entry point.
auto* sem = program_->Sem().Get(func);
if (!sem->HasAncestorEntryPoint(entry->symbol())) {
continue;
}
}
if (!EmitFunction(func)) {
return false;
}
} else if (auto* var = decl->As<ast::Variable>()) {
if (entry && !var->is_const()) {
// Skip variables that are not referenced by the target entry point.
auto& refs = program_->Sem().Get(entry)->ReferencedModuleVariables();
if (std::find(refs.begin(), refs.end(), program_->Sem().Get(var)) ==
refs.end()) {
continue;
}
}
if (!EmitVariable(var)) {
return false;
}
} else {
TINT_UNREACHABLE(diagnostics_);
return false;
}
if (decl != program_->AST().GlobalDeclarations().back()) {
out_ << std::endl;
}
}
return true;
}
bool GeneratorImpl::GenerateEntryPoint(ast::PipelineStage stage,
const std::string& name) {
auto* func =
program_->AST().Functions().Find(program_->Symbols().Get(name), stage);
if (func == nullptr) {
diagnostics_.add_error("Unable to find requested entry point: " + name);
return false;
}
return Generate(func);
}
bool GeneratorImpl::EmitConstructedType(const type::Type* ty) {
make_indent();
if (auto* alias = ty->As<type::Alias>()) {
out_ << "type " << program_->Symbols().NameFor(alias->symbol()) << " = ";
if (!EmitType(alias->type())) {
return false;
}
out_ << ";" << std::endl;
} else if (auto* str = ty->As<type::Struct>()) {
if (!EmitStructType(str)) {
return false;
}
} else {
diagnostics_.add_error("unknown constructed type: " + ty->type_name());
return false;
}
return true;
}
bool GeneratorImpl::EmitExpression(ast::Expression* expr) {
if (auto* a = expr->As<ast::ArrayAccessorExpression>()) {
return EmitArrayAccessor(a);
}
if (auto* b = expr->As<ast::BinaryExpression>()) {
return EmitBinary(b);
}
if (auto* b = expr->As<ast::BitcastExpression>()) {
return EmitBitcast(b);
}
if (auto* c = expr->As<ast::CallExpression>()) {
return EmitCall(c);
}
if (auto* i = expr->As<ast::IdentifierExpression>()) {
return EmitIdentifier(i);
}
if (auto* c = expr->As<ast::ConstructorExpression>()) {
return EmitConstructor(c);
}
if (auto* m = expr->As<ast::MemberAccessorExpression>()) {
return EmitMemberAccessor(m);
}
if (auto* u = expr->As<ast::UnaryOpExpression>()) {
return EmitUnaryOp(u);
}
diagnostics_.add_error("unknown expression type");
return false;
}
bool GeneratorImpl::EmitArrayAccessor(ast::ArrayAccessorExpression* expr) {
if (!EmitExpression(expr->array())) {
return false;
}
out_ << "[";
if (!EmitExpression(expr->idx_expr())) {
return false;
}
out_ << "]";
return true;
}
bool GeneratorImpl::EmitMemberAccessor(ast::MemberAccessorExpression* expr) {
if (!EmitExpression(expr->structure())) {
return false;
}
out_ << ".";
return EmitExpression(expr->member());
}
bool GeneratorImpl::EmitBitcast(ast::BitcastExpression* expr) {
out_ << "bitcast<";
if (!EmitType(expr->type())) {
return false;
}
out_ << ">(";
if (!EmitExpression(expr->expr())) {
return false;
}
out_ << ")";
return true;
}
bool GeneratorImpl::EmitCall(ast::CallExpression* expr) {
if (!EmitExpression(expr->func())) {
return false;
}
out_ << "(";
bool first = true;
const auto& params = expr->params();
for (auto* param : params) {
if (!first) {
out_ << ", ";
}
first = false;
if (!EmitExpression(param)) {
return false;
}
}
out_ << ")";
return true;
}
bool GeneratorImpl::EmitConstructor(ast::ConstructorExpression* expr) {
if (auto* scalar = expr->As<ast::ScalarConstructorExpression>()) {
return EmitScalarConstructor(scalar);
}
return EmitTypeConstructor(expr->As<ast::TypeConstructorExpression>());
}
bool GeneratorImpl::EmitTypeConstructor(ast::TypeConstructorExpression* expr) {
if (!EmitType(expr->type())) {
return false;
}
out_ << "(";
bool first = true;
for (auto* e : expr->values()) {
if (!first) {
out_ << ", ";
}
first = false;
if (!EmitExpression(e)) {
return false;
}
}
out_ << ")";
return true;
}
bool GeneratorImpl::EmitScalarConstructor(
ast::ScalarConstructorExpression* expr) {
return EmitLiteral(expr->literal());
}
bool GeneratorImpl::EmitLiteral(ast::Literal* lit) {
if (auto* bl = lit->As<ast::BoolLiteral>()) {
out_ << (bl->IsTrue() ? "true" : "false");
} else if (auto* fl = lit->As<ast::FloatLiteral>()) {
out_ << FloatToString(fl->value());
} else if (auto* sl = lit->As<ast::SintLiteral>()) {
out_ << sl->value();
} else if (auto* ul = lit->As<ast::UintLiteral>()) {
out_ << ul->value() << "u";
} else {
diagnostics_.add_error("unknown literal type");
return false;
}
return true;
}
bool GeneratorImpl::EmitIdentifier(ast::IdentifierExpression* expr) {
auto* ident = expr->As<ast::IdentifierExpression>();
out_ << program_->Symbols().NameFor(ident->symbol());
return true;
}
bool GeneratorImpl::EmitFunction(ast::Function* func) {
for (auto* deco : func->decorations()) {
make_indent();
out_ << "[[";
if (auto* workgroup = deco->As<ast::WorkgroupDecoration>()) {
uint32_t x = 0;
uint32_t y = 0;
uint32_t z = 0;
std::tie(x, y, z) = workgroup->values();
out_ << "workgroup_size(" << std::to_string(x) << ", "
<< std::to_string(y) << ", " << std::to_string(z) << ")";
}
if (auto* stage = deco->As<ast::StageDecoration>()) {
out_ << "stage(" << stage->value() << ")";
}
out_ << "]]" << std::endl;
}
make_indent();
out_ << "fn " << program_->Symbols().NameFor(func->symbol()) << "(";
bool first = true;
for (auto* v : func->params()) {
if (!first) {
out_ << ", ";
}
first = false;
if (!v->decorations().empty()) {
if (!EmitDecorations(v->decorations())) {
return false;
}
out_ << " ";
}
out_ << program_->Symbols().NameFor(v->symbol()) << " : ";
if (!EmitType(program_->Sem().Get(v)->Type())) {
return false;
}
}
out_ << ") -> ";
if (!func->return_type_decorations().empty()) {
if (!EmitDecorations(func->return_type_decorations())) {
return false;
}
out_ << " ";
}
if (!EmitType(func->return_type())) {
return false;
}
out_ << " ";
return EmitBlockAndNewline(func->body());
}
bool GeneratorImpl::EmitImageFormat(const type::ImageFormat fmt) {
switch (fmt) {
case type::ImageFormat::kNone:
diagnostics_.add_error("unknown image format");
return false;
default:
out_ << fmt;
}
return true;
}
bool GeneratorImpl::EmitType(type::Type* type) {
std::string storage_texture_access = "";
if (auto* ac = type->As<type::AccessControl>()) {
out_ << "[[access(";
if (ac->IsReadOnly()) {
out_ << "read";
} else if (ac->IsWriteOnly()) {
out_ << "write";
} else if (ac->IsReadWrite()) {
out_ << "read_write";
} else {
diagnostics_.add_error("invalid access control");
return false;
}
out_ << ")]]" << std::endl;
if (!EmitType(ac->type())) {
return false;
}
return true;
} else if (auto* alias = type->As<type::Alias>()) {
out_ << program_->Symbols().NameFor(alias->symbol());
} else if (auto* ary = type->As<type::Array>()) {
for (auto* deco : ary->decorations()) {
if (auto* stride = deco->As<ast::StrideDecoration>()) {
out_ << "[[stride(" << stride->stride() << ")]] ";
}
}
out_ << "array<";
if (!EmitType(ary->type())) {
return false;
}
if (!ary->IsRuntimeArray())
out_ << ", " << ary->size();
out_ << ">";
} else if (type->Is<type::Bool>()) {
out_ << "bool";
} else if (type->Is<type::F32>()) {
out_ << "f32";
} else if (type->Is<type::I32>()) {
out_ << "i32";
} else if (auto* mat = type->As<type::Matrix>()) {
out_ << "mat" << mat->columns() << "x" << mat->rows() << "<";
if (!EmitType(mat->type())) {
return false;
}
out_ << ">";
} else if (auto* ptr = type->As<type::Pointer>()) {
out_ << "ptr<" << ptr->storage_class() << ", ";
if (!EmitType(ptr->type())) {
return false;
}
out_ << ">";
} else if (auto* sampler = type->As<type::Sampler>()) {
out_ << "sampler";
if (sampler->IsComparison()) {
out_ << "_comparison";
}
} else if (auto* str = type->As<type::Struct>()) {
// The struct, as a type, is just the name. We should have already emitted
// the declaration through a call to |EmitStructType| earlier.
out_ << program_->Symbols().NameFor(str->symbol());
} else if (auto* texture = type->As<type::Texture>()) {
out_ << "texture_";
if (texture->Is<type::DepthTexture>()) {
out_ << "depth_";
} else if (texture->Is<type::SampledTexture>()) {
/* nothing to emit */
} else if (texture->Is<type::MultisampledTexture>()) {
out_ << "multisampled_";
} else if (texture->Is<type::StorageTexture>()) {
out_ << "storage_";
} else {
diagnostics_.add_error("unknown texture type");
return false;
}
switch (texture->dim()) {
case type::TextureDimension::k1d:
out_ << "1d";
break;
case type::TextureDimension::k2d:
out_ << "2d";
break;
case type::TextureDimension::k2dArray:
out_ << "2d_array";
break;
case type::TextureDimension::k3d:
out_ << "3d";
break;
case type::TextureDimension::kCube:
out_ << "cube";
break;
case type::TextureDimension::kCubeArray:
out_ << "cube_array";
break;
default:
diagnostics_.add_error("unknown texture dimension");
return false;
}
if (auto* sampled = texture->As<type::SampledTexture>()) {
out_ << "<";
if (!EmitType(sampled->type())) {
return false;
}
out_ << ">";
} else if (auto* ms = texture->As<type::MultisampledTexture>()) {
out_ << "<";
if (!EmitType(ms->type())) {
return false;
}
out_ << ">";
} else if (auto* storage = texture->As<type::StorageTexture>()) {
out_ << "<";
if (!EmitImageFormat(storage->image_format())) {
return false;
}
out_ << ">";
}
} else if (type->Is<type::U32>()) {
out_ << "u32";
} else if (auto* vec = type->As<type::Vector>()) {
out_ << "vec" << vec->size() << "<";
if (!EmitType(vec->type())) {
return false;
}
out_ << ">";
} else if (type->Is<type::Void>()) {
out_ << "void";
} else {
diagnostics_.add_error("unknown type in EmitType: " + type->type_name());
return false;
}
return true;
}
bool GeneratorImpl::EmitStructType(const type::Struct* str) {
auto* impl = str->impl();
for (auto* deco : impl->decorations()) {
out_ << "[[";
program_->to_str(deco, out_, 0);
out_ << "]]" << std::endl;
}
out_ << "struct " << program_->Symbols().NameFor(str->symbol()) << " {"
<< std::endl;
auto add_padding = [&](uint32_t size) {
make_indent();
out_ << "[[size(" << size << ")]]" << std::endl;
make_indent();
// Note: u32 is the smallest primitive we currently support. When WGSL
// supports smaller types, this will need to be updated.
out_ << UniqueIdentifier("padding") << " : u32;" << std::endl;
};
increment_indent();
uint32_t offset = 0;
for (auto* mem : impl->members()) {
auto* mem_sem = program_->Sem().Get(mem);
offset = utils::RoundUp(mem_sem->Align(), offset);
if (uint32_t padding = mem_sem->Offset() - offset) {
add_padding(padding);
offset += padding;
}
offset += mem_sem->Size();
// Offset decorations no longer exist in the WGSL spec, but are emitted
// by the SPIR-V reader and are consumed by the Resolver(). These should not
// be emitted, but instead struct padding fields should be emitted.
ast::DecorationList decorations_sanitized;
decorations_sanitized.reserve(mem->decorations().size());
for (auto* deco : mem->decorations()) {
if (!deco->Is<ast::StructMemberOffsetDecoration>()) {
decorations_sanitized.emplace_back(deco);
}
}
if (!decorations_sanitized.empty()) {
make_indent();
if (!EmitDecorations(decorations_sanitized)) {
return false;
}
out_ << std::endl;
}
make_indent();
out_ << program_->Symbols().NameFor(mem->symbol()) << " : ";
if (!EmitType(mem->type())) {
return false;
}
out_ << ";" << std::endl;
}
decrement_indent();
make_indent();
out_ << "};" << std::endl;
return true;
}
bool GeneratorImpl::EmitVariable(ast::Variable* var) {
auto* sem = program_->Sem().Get(var);
make_indent();
if (!var->decorations().empty()) {
if (!EmitDecorations(var->decorations())) {
return false;
}
out_ << " ";
}
if (var->is_const()) {
out_ << "const";
} else {
out_ << "var";
if (sem->StorageClass() != ast::StorageClass::kNone &&
sem->StorageClass() != ast::StorageClass::kFunction &&
!sem->Type()->UnwrapAll()->is_handle()) {
out_ << "<" << sem->StorageClass() << ">";
}
}
out_ << " " << program_->Symbols().NameFor(var->symbol()) << " : ";
if (!EmitType(sem->Type())) {
return false;
}
if (var->constructor() != nullptr) {
out_ << " = ";
if (!EmitExpression(var->constructor())) {
return false;
}
}
out_ << ";" << std::endl;
return true;
}
bool GeneratorImpl::EmitDecorations(const ast::DecorationList& decos) {
out_ << "[[";
bool first = true;
for (auto* deco : decos) {
if (!first) {
out_ << ", ";
}
first = false;
if (auto* binding = deco->As<ast::BindingDecoration>()) {
out_ << "binding(" << binding->value() << ")";
} else if (auto* group = deco->As<ast::GroupDecoration>()) {
out_ << "group(" << group->value() << ")";
} else if (auto* location = deco->As<ast::LocationDecoration>()) {
out_ << "location(" << location->value() << ")";
} else if (auto* builtin = deco->As<ast::BuiltinDecoration>()) {
out_ << "builtin(" << builtin->value() << ")";
} else if (auto* constant = deco->As<ast::ConstantIdDecoration>()) {
out_ << "constant_id(" << constant->value() << ")";
} else if (auto* size = deco->As<ast::StructMemberSizeDecoration>()) {
out_ << "size(" << size->size() << ")";
} else if (auto* align = deco->As<ast::StructMemberAlignDecoration>()) {
out_ << "align(" << align->align() << ")";
} else {
TINT_ICE(diagnostics_)
<< "Unsupported decoration '" << deco->TypeInfo().name << "'";
return false;
}
}
out_ << "]]";
return true;
}
bool GeneratorImpl::EmitBinary(ast::BinaryExpression* expr) {
out_ << "(";
if (!EmitExpression(expr->lhs())) {
return false;
}
out_ << " ";
switch (expr->op()) {
case ast::BinaryOp::kAnd:
out_ << "&";
break;
case ast::BinaryOp::kOr:
out_ << "|";
break;
case ast::BinaryOp::kXor:
out_ << "^";
break;
case ast::BinaryOp::kLogicalAnd:
out_ << "&&";
break;
case ast::BinaryOp::kLogicalOr:
out_ << "||";
break;
case ast::BinaryOp::kEqual:
out_ << "==";
break;
case ast::BinaryOp::kNotEqual:
out_ << "!=";
break;
case ast::BinaryOp::kLessThan:
out_ << "<";
break;
case ast::BinaryOp::kGreaterThan:
out_ << ">";
break;
case ast::BinaryOp::kLessThanEqual:
out_ << "<=";
break;
case ast::BinaryOp::kGreaterThanEqual:
out_ << ">=";
break;
case ast::BinaryOp::kShiftLeft:
out_ << "<<";
break;
case ast::BinaryOp::kShiftRight:
out_ << ">>";
break;
case ast::BinaryOp::kAdd:
out_ << "+";
break;
case ast::BinaryOp::kSubtract:
out_ << "-";
break;
case ast::BinaryOp::kMultiply:
out_ << "*";
break;
case ast::BinaryOp::kDivide:
out_ << "/";
break;
case ast::BinaryOp::kModulo:
out_ << "%";
break;
case ast::BinaryOp::kNone:
diagnostics_.add_error("missing binary operation type");
return false;
}
out_ << " ";
if (!EmitExpression(expr->rhs())) {
return false;
}
out_ << ")";
return true;
}
bool GeneratorImpl::EmitUnaryOp(ast::UnaryOpExpression* expr) {
switch (expr->op()) {
case ast::UnaryOp::kNot:
out_ << "!";
break;
case ast::UnaryOp::kNegation:
out_ << "-";
break;
}
out_ << "(";
if (!EmitExpression(expr->expr())) {
return false;
}
out_ << ")";
return true;
}
bool GeneratorImpl::EmitBlock(const ast::BlockStatement* stmt) {
out_ << "{" << std::endl;
increment_indent();
for (auto* s : *stmt) {
if (!EmitStatement(s)) {
return false;
}
}
decrement_indent();
make_indent();
out_ << "}";
return true;
}
bool GeneratorImpl::EmitIndentedBlockAndNewline(
const ast::BlockStatement* stmt) {
make_indent();
const bool result = EmitBlock(stmt);
if (result) {
out_ << std::endl;
}
return result;
}
bool GeneratorImpl::EmitBlockAndNewline(const ast::BlockStatement* stmt) {
const bool result = EmitBlock(stmt);
if (result) {
out_ << std::endl;
}
return result;
}
bool GeneratorImpl::EmitStatement(ast::Statement* stmt) {
if (auto* a = stmt->As<ast::AssignmentStatement>()) {
return EmitAssign(a);
}
if (auto* b = stmt->As<ast::BlockStatement>()) {
return EmitIndentedBlockAndNewline(b);
}
if (auto* b = stmt->As<ast::BreakStatement>()) {
return EmitBreak(b);
}
if (auto* c = stmt->As<ast::CallStatement>()) {
make_indent();
if (!EmitCall(c->expr())) {
return false;
}
out_ << ";" << std::endl;
return true;
}
if (auto* c = stmt->As<ast::ContinueStatement>()) {
return EmitContinue(c);
}
if (auto* d = stmt->As<ast::DiscardStatement>()) {
return EmitDiscard(d);
}
if (auto* f = stmt->As<ast::FallthroughStatement>()) {
return EmitFallthrough(f);
}
if (auto* i = stmt->As<ast::IfStatement>()) {
return EmitIf(i);
}
if (auto* l = stmt->As<ast::LoopStatement>()) {
return EmitLoop(l);
}
if (auto* r = stmt->As<ast::ReturnStatement>()) {
return EmitReturn(r);
}
if (auto* s = stmt->As<ast::SwitchStatement>()) {
return EmitSwitch(s);
}
if (auto* v = stmt->As<ast::VariableDeclStatement>()) {
return EmitVariable(v->variable());
}
diagnostics_.add_error("unknown statement type: " + program_->str(stmt));
return false;
}
bool GeneratorImpl::EmitAssign(ast::AssignmentStatement* stmt) {
make_indent();
if (!EmitExpression(stmt->lhs())) {
return false;
}
out_ << " = ";
if (!EmitExpression(stmt->rhs())) {
return false;
}
out_ << ";" << std::endl;
return true;
}
bool GeneratorImpl::EmitBreak(ast::BreakStatement*) {
make_indent();
out_ << "break;" << std::endl;
return true;
}
bool GeneratorImpl::EmitCase(ast::CaseStatement* stmt) {
make_indent();
if (stmt->IsDefault()) {
out_ << "default";
} else {
out_ << "case ";
bool first = true;
for (auto* selector : stmt->selectors()) {
if (!first) {
out_ << ", ";
}
first = false;
if (!EmitLiteral(selector)) {
return false;
}
}
}
out_ << ": ";
return EmitBlockAndNewline(stmt->body());
}
bool GeneratorImpl::EmitContinue(ast::ContinueStatement*) {
make_indent();
out_ << "continue;" << std::endl;
return true;
}
bool GeneratorImpl::EmitElse(ast::ElseStatement* stmt) {
if (stmt->HasCondition()) {
out_ << " elseif (";
if (!EmitExpression(stmt->condition())) {
return false;
}
out_ << ") ";
} else {
out_ << " else ";
}
return EmitBlock(stmt->body());
}
bool GeneratorImpl::EmitFallthrough(ast::FallthroughStatement*) {
make_indent();
out_ << "fallthrough;" << std::endl;
return true;
}
bool GeneratorImpl::EmitIf(ast::IfStatement* stmt) {
make_indent();
out_ << "if (";
if (!EmitExpression(stmt->condition())) {
return false;
}
out_ << ") ";
if (!EmitBlock(stmt->body())) {
return false;
}
for (auto* e : stmt->else_statements()) {
if (!EmitElse(e)) {
return false;
}
}
out_ << std::endl;
return true;
}
bool GeneratorImpl::EmitDiscard(ast::DiscardStatement*) {
make_indent();
out_ << "discard;" << std::endl;
return true;
}
bool GeneratorImpl::EmitLoop(ast::LoopStatement* stmt) {
make_indent();
out_ << "loop {" << std::endl;
increment_indent();
for (auto* s : *(stmt->body())) {
if (!EmitStatement(s)) {
return false;
}
}
if (stmt->has_continuing()) {
out_ << std::endl;
make_indent();
out_ << "continuing ";
if (!EmitBlockAndNewline(stmt->continuing())) {
return false;
}
}
decrement_indent();
make_indent();
out_ << "}" << std::endl;
return true;
}
bool GeneratorImpl::EmitReturn(ast::ReturnStatement* stmt) {
make_indent();
out_ << "return";
if (stmt->has_value()) {
out_ << " ";
if (!EmitExpression(stmt->value())) {
return false;
}
}
out_ << ";" << std::endl;
return true;
}
bool GeneratorImpl::EmitSwitch(ast::SwitchStatement* stmt) {
make_indent();
out_ << "switch(";
if (!EmitExpression(stmt->condition())) {
return false;
}
out_ << ") {" << std::endl;
increment_indent();
for (auto* s : stmt->body()) {
if (!EmitCase(s)) {
return false;
}
}
decrement_indent();
make_indent();
out_ << "}" << std::endl;
return true;
}
std::string GeneratorImpl::UniqueIdentifier(const std::string& suffix) {
auto const limit =
std::numeric_limits<decltype(next_unique_identifier_suffix)>::max();
while (next_unique_identifier_suffix < limit) {
auto ident = "tint_" + std::to_string(next_unique_identifier_suffix);
if (!suffix.empty()) {
ident += "_" + suffix;
}
next_unique_identifier_suffix++;
if (!program_->Symbols().Get(ident).IsValid()) {
return ident;
}
}
diagnostics_.add_error("Unable to generate a unique WGSL identifier");
return "<invalid-ident>";
}
} // namespace wgsl
} // namespace writer
} // namespace tint