dawn-cmake/tools/src/bench/bench.go

418 lines
10 KiB
Go
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// Copyright 2022 The Tint Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Package bench provides types and methods for parsing Google benchmark results.
package bench
import (
"encoding/json"
"errors"
"fmt"
"regexp"
"sort"
"strconv"
"strings"
"time"
"unicode/utf8"
)
// Run holds all the benchmark results for a run, along with the context
// information for the run.
type Run struct {
Benchmarks []Benchmark
Context *Context
}
// Context provides information about the environment used to perform the
// benchmark.
type Context struct {
Date time.Time
HostName string
Executable string
NumCPUs int
MhzPerCPU int
CPUScalingEnabled bool
Caches []ContextCache
LoadAvg []float32
LibraryBuildType string
}
// ContextCache holds information about one of the system caches.
type ContextCache struct {
Type string
Level int
Size int
NumSharing int
}
// Benchmark holds the results of a single benchmark test.
type Benchmark struct {
Name string
Duration time.Duration
AggregateType AggregateType
}
// AggregateType is an enumerator of benchmark aggregate types.
type AggregateType string
// Enumerator values of AggregateType
const (
NonAggregate AggregateType = "NonAggregate"
Mean AggregateType = "mean"
Median AggregateType = "median"
Stddev AggregateType = "stddev"
)
// Parse parses the benchmark results from the string s.
// Parse will handle the json and 'console' formats.
func Parse(s string) (Run, error) {
type Parser = func(s string) (Run, error)
for _, parser := range []Parser{parseConsole, parseJSON} {
r, err := parser(s)
switch err {
case nil:
return r, nil
case errWrongFormat:
default:
return Run{}, err
}
}
return Run{}, errors.New("Unrecognised file format")
}
var errWrongFormat = errors.New("Wrong format")
var consoleLineRE = regexp.MustCompile(`([\w/:]+)\s+([0-9]+(?:.[0-9]+)?) ns\s+[0-9]+(?:.[0-9]+) ns\s+([0-9]+)`)
func parseConsole(s string) (Run, error) {
blocks := strings.Split(s, "------------------------------------------------------------------------------------------")
if len(blocks) != 3 {
return Run{}, errWrongFormat
}
lines := strings.Split(blocks[2], "\n")
b := make([]Benchmark, 0, len(lines))
for _, line := range lines {
if len(line) == 0 {
continue
}
matches := consoleLineRE.FindStringSubmatch(line)
if len(matches) != 4 {
return Run{}, fmt.Errorf("Unable to parse the line:\n" + line)
}
ns, err := strconv.ParseFloat(matches[2], 64)
if err != nil {
return Run{}, fmt.Errorf("Unable to parse the duration: " + matches[2])
}
b = append(b, Benchmark{
Name: trimAggregateSuffix(matches[1]),
Duration: time.Nanosecond * time.Duration(ns),
})
}
return Run{Benchmarks: b}, nil
}
func parseJSON(s string) (Run, error) {
type Data struct {
Context struct {
Date time.Time `json:"date"`
HostName string `json:"host_name"`
Executable string `json:"executable"`
NumCPUs int `json:"num_cpus"`
MhzPerCPU int `json:"mhz_per_cpu"`
CPUScalingEnabled bool `json:"cpu_scaling_enabled"`
LoadAvg []float32 `json:"load_avg"`
LibraryBuildType string `json:"library_build_type"`
Caches []struct {
Type string `json:"type"`
Level int `json:"level"`
Size int `json:"size"`
NumSharing int `json:"num_sharing"`
} `json:"caches"`
} `json:"context"`
Benchmarks []struct {
Name string `json:"name"`
Time float64 `json:"cpu_time"`
AggregateType AggregateType `json:"aggregate_name"`
} `json:"benchmarks"`
}
data := Data{}
d := json.NewDecoder(strings.NewReader(s))
if err := d.Decode(&data); err != nil {
return Run{}, err
}
out := Run{
Benchmarks: make([]Benchmark, len(data.Benchmarks)),
Context: &Context{
Date: data.Context.Date,
HostName: data.Context.HostName,
Executable: data.Context.Executable,
NumCPUs: data.Context.NumCPUs,
MhzPerCPU: data.Context.MhzPerCPU,
CPUScalingEnabled: data.Context.CPUScalingEnabled,
LoadAvg: data.Context.LoadAvg,
LibraryBuildType: data.Context.LibraryBuildType,
Caches: make([]ContextCache, len(data.Context.Caches)),
},
}
for i, c := range data.Context.Caches {
out.Context.Caches[i] = ContextCache{
Type: c.Type,
Level: c.Level,
Size: c.Size,
NumSharing: c.NumSharing,
}
}
for i, b := range data.Benchmarks {
out.Benchmarks[i] = Benchmark{
Name: trimAggregateSuffix(b.Name),
Duration: time.Nanosecond * time.Duration(int64(b.Time)),
AggregateType: b.AggregateType,
}
}
return out, nil
}
// Diff describes the difference between two benchmarks
type Diff struct {
TestName string
Delta time.Duration // Δ (A → B)
PercentChangeAB float64 // % (A → B)
PercentChangeBA float64 // % (A → B)
MultiplierChangeAB float64 // × (A → B)
MultiplierChangeBA float64 // × (A → B)
TimeA time.Duration // A
TimeB time.Duration // B
}
// Diffs is a list of Diff
type Diffs []Diff
// DiffFormat describes how a list of diffs should be formatted
type DiffFormat struct {
TestName bool
Delta bool
PercentChangeAB bool
PercentChangeBA bool
MultiplierChangeAB bool
MultiplierChangeBA bool
TimeA bool
TimeB bool
}
func (diffs Diffs) Format(f DiffFormat) string {
if len(diffs) == 0 {
return "<no changes>"
}
type row []string
header := row{}
if f.TestName {
header = append(header, "Test name")
}
if f.Delta {
header = append(header, "Δ (A → B)")
}
if f.PercentChangeAB {
header = append(header, "% (A → B)")
}
if f.PercentChangeBA {
header = append(header, "% (B → A)")
}
if f.MultiplierChangeAB {
header = append(header, "× (A → B)")
}
if f.MultiplierChangeBA {
header = append(header, "× (B → A)")
}
if f.TimeA {
header = append(header, "A")
}
if f.TimeB {
header = append(header, "B")
}
if len(header) == 0 {
return ""
}
columns := []row{}
for _, d := range diffs {
r := make(row, 0, len(header))
if f.TestName {
r = append(r, d.TestName)
}
if f.Delta {
r = append(r, fmt.Sprintf("%v", d.Delta))
}
if f.PercentChangeAB {
r = append(r, fmt.Sprintf("%+2.1f%%", d.PercentChangeAB))
}
if f.PercentChangeBA {
r = append(r, fmt.Sprintf("%+2.1f%%", d.PercentChangeBA))
}
if f.MultiplierChangeAB {
r = append(r, fmt.Sprintf("%+.4f", d.MultiplierChangeAB))
}
if f.MultiplierChangeBA {
r = append(r, fmt.Sprintf("%+.4f", d.MultiplierChangeBA))
}
if f.TimeA {
r = append(r, fmt.Sprintf("%v", d.TimeA))
}
if f.TimeB {
r = append(r, fmt.Sprintf("%v", d.TimeB))
}
columns = append(columns, r)
}
// measure
widths := make([]int, len(header))
for i, h := range header {
widths[i] = utf8.RuneCountInString(h)
}
for _, row := range columns {
for i, cell := range row {
l := utf8.RuneCountInString(cell)
if widths[i] < l {
widths[i] = l
}
}
}
pad := func(s string, i int) string {
if n := i - utf8.RuneCountInString(s); n > 0 {
return s + strings.Repeat(" ", n)
}
return s
}
// Draw table
b := &strings.Builder{}
horizontal_bar := func() {
for i := range header {
fmt.Fprintf(b, "+%v", strings.Repeat("-", 2+widths[i]))
}
fmt.Fprintln(b, "+")
}
horizontal_bar()
for i, h := range header {
fmt.Fprintf(b, "| %v ", pad(h, widths[i]))
}
fmt.Fprintln(b, "|")
horizontal_bar()
for _, row := range columns {
for i, cell := range row {
fmt.Fprintf(b, "| %v ", pad(cell, widths[i]))
}
fmt.Fprintln(b, "|")
}
horizontal_bar()
return b.String()
}
// Compare returns a string describing differences in the two benchmarks
// Absolute benchmark differences less than minDiff are omitted
// Absolute relative differences between [1, 1+x] are omitted
func Compare(a, b []Benchmark, minDiff time.Duration, minRelDiff float64) Diffs {
type times struct {
a time.Duration
b time.Duration
}
byName := map[string]times{}
for _, test := range a {
byName[test.Name] = times{a: test.Duration}
}
for _, test := range b {
t := byName[test.Name]
t.b = test.Duration
byName[test.Name] = t
}
type delta struct {
name string
times times
relDiff float64
absRelDiff float64
}
deltas := []delta{}
for name, times := range byName {
if times.a == 0 || times.b == 0 {
continue // Assuming test was missing from a or b
}
diff := times.b - times.a
absDiff := diff
if absDiff < 0 {
absDiff = -absDiff
}
if absDiff < minDiff {
continue
}
relDiff := float64(times.b) / float64(times.a)
absRelDiff := relDiff
if absRelDiff < 1 {
absRelDiff = 1.0 / absRelDiff
}
if absRelDiff < (1.0 + minRelDiff) {
continue
}
d := delta{
name: name,
times: times,
relDiff: relDiff,
absRelDiff: absRelDiff,
}
deltas = append(deltas, d)
}
sort.Slice(deltas, func(i, j int) bool { return deltas[j].relDiff < deltas[i].relDiff })
out := make(Diffs, len(deltas))
for i, delta := range deltas {
a2b := delta.times.b - delta.times.a
out[i] = Diff{
TestName: delta.name,
Delta: a2b,
PercentChangeAB: 100 * float64(a2b) / float64(delta.times.a),
PercentChangeBA: 100 * float64(-a2b) / float64(delta.times.b),
MultiplierChangeAB: float64(delta.times.b) / float64(delta.times.a),
MultiplierChangeBA: float64(delta.times.a) / float64(delta.times.b),
TimeA: delta.times.a,
TimeB: delta.times.b,
}
}
return out
}
func trimAggregateSuffix(name string) string {
name = strings.TrimSuffix(name, "_stddev")
name = strings.TrimSuffix(name, "_mean")
name = strings.TrimSuffix(name, "_median")
return name
}