James Price a5d73ce965 transform/shader_io: Generate a wrapper function
This is a major reworking of this transform. The old transform code
was getting unwieldy, with part of the complication coming from the
handling of multiple return statements. By generating a wrapper
function instead, we can avoid a lot of this complexity.

The original entry point function is stripped of all shader IO
attributes (as well as `stage` and `workgroup_size`), but the body is
left unmodified. A new entry point wrapper function is introduced
which calls the original function, packing/unpacking the shader inputs
as necessary, and propagates the result to the corresponding shader
outputs.

The new code has been refactored to use a state object with the
different parts of the transform split into separate functions, which
makes it much more manageable.

Fixed: tint:1076
Bug: tint:920
Change-Id: I3490a0ea7a3509a4e198ce730e476516649d8d96
Reviewed-on: https://dawn-review.googlesource.com/c/tint/+/60521
Auto-Submit: James Price <jrprice@google.com>
Kokoro: Kokoro <noreply+kokoro@google.com>
Commit-Queue: James Price <jrprice@google.com>
Reviewed-by: Ben Clayton <bclayton@google.com>
2021-08-04 22:15:28 +00:00

72 lines
2.4 KiB
HLSL

cbuffer cbuffer_x_6 : register(b1, space0) {
uint4 x_6[3];
};
cbuffer cbuffer_x_9 : register(b0, space0) {
uint4 x_9[3];
};
static float4 x_GLF_color = float4(0.0f, 0.0f, 0.0f, 0.0f);
void main_1() {
int numbers[3] = (int[3])0;
float2 a = float2(0.0f, 0.0f);
float b = 0.0f;
const uint scalar_offset = ((16u * uint(0))) / 4;
const int x_38 = asint(x_6[scalar_offset / 4][scalar_offset % 4]);
const uint scalar_offset_1 = ((16u * uint(0))) / 4;
const int x_40 = asint(x_6[scalar_offset_1 / 4][scalar_offset_1 % 4]);
numbers[x_38] = x_40;
const int x_43 = asint(x_6[1].x);
const int x_45 = asint(x_6[1].x);
numbers[x_43] = x_45;
const int x_48 = asint(x_6[2].x);
const int x_50 = asint(x_6[2].x);
numbers[x_48] = x_50;
const uint scalar_offset_2 = ((16u * uint(0))) / 4;
const int x_53 = asint(x_6[scalar_offset_2 / 4][scalar_offset_2 % 4]);
const float x_56 = asfloat(x_9[2].x);
const int x_60 = numbers[((0.0f < x_56) ? 1 : 2)];
a = float2(float(x_53), float(x_60));
const float2 x_63 = a;
const float x_65 = asfloat(x_9[1].x);
const float x_67 = asfloat(x_9[1].x);
b = dot(x_63, float2(x_65, x_67));
const float x_70 = b;
const uint scalar_offset_3 = ((16u * uint(0))) / 4;
const float x_72 = asfloat(x_9[scalar_offset_3 / 4][scalar_offset_3 % 4]);
if ((x_70 == x_72)) {
const int x_78 = asint(x_6[1].x);
const uint scalar_offset_4 = ((16u * uint(0))) / 4;
const int x_81 = asint(x_6[scalar_offset_4 / 4][scalar_offset_4 % 4]);
const uint scalar_offset_5 = ((16u * uint(0))) / 4;
const int x_84 = asint(x_6[scalar_offset_5 / 4][scalar_offset_5 % 4]);
const int x_87 = asint(x_6[1].x);
x_GLF_color = float4(float(x_78), float(x_81), float(x_84), float(x_87));
} else {
const uint scalar_offset_6 = ((16u * uint(0))) / 4;
const int x_91 = asint(x_6[scalar_offset_6 / 4][scalar_offset_6 % 4]);
const float x_92 = float(x_91);
x_GLF_color = float4(x_92, x_92, x_92, x_92);
}
return;
}
struct main_out {
float4 x_GLF_color_1;
};
struct tint_symbol {
float4 x_GLF_color_1 : SV_Target0;
};
main_out main_inner() {
main_1();
const main_out tint_symbol_3 = {x_GLF_color};
return tint_symbol_3;
}
tint_symbol main() {
const main_out inner_result = main_inner();
tint_symbol wrapper_result = (tint_symbol)0;
wrapper_result.x_GLF_color_1 = inner_result.x_GLF_color_1;
return wrapper_result;
}