James Price a5d73ce965 transform/shader_io: Generate a wrapper function
This is a major reworking of this transform. The old transform code
was getting unwieldy, with part of the complication coming from the
handling of multiple return statements. By generating a wrapper
function instead, we can avoid a lot of this complexity.

The original entry point function is stripped of all shader IO
attributes (as well as `stage` and `workgroup_size`), but the body is
left unmodified. A new entry point wrapper function is introduced
which calls the original function, packing/unpacking the shader inputs
as necessary, and propagates the result to the corresponding shader
outputs.

The new code has been refactored to use a state object with the
different parts of the transform split into separate functions, which
makes it much more manageable.

Fixed: tint:1076
Bug: tint:920
Change-Id: I3490a0ea7a3509a4e198ce730e476516649d8d96
Reviewed-on: https://dawn-review.googlesource.com/c/tint/+/60521
Auto-Submit: James Price <jrprice@google.com>
Kokoro: Kokoro <noreply+kokoro@google.com>
Commit-Queue: James Price <jrprice@google.com>
Reviewed-by: Ben Clayton <bclayton@google.com>
2021-08-04 22:15:28 +00:00

63 lines
1.9 KiB
HLSL

cbuffer cbuffer_x_6 : register(b1, space0) {
uint4 x_6[3];
};
cbuffer cbuffer_x_8 : register(b0, space0) {
uint4 x_8[1];
};
static float4 x_GLF_color = float4(0.0f, 0.0f, 0.0f, 0.0f);
void main_1() {
float undefined = 0.0f;
bool x_51 = false;
bool x_52_phi = false;
undefined = (5.0f - (0.0f * floor((5.0f / 0.0f))));
const uint scalar_offset = ((16u * uint(0))) / 4;
const int x_10 = asint(x_6[scalar_offset / 4][scalar_offset % 4]);
const uint scalar_offset_1 = ((16u * uint(0))) / 4;
const int x_11 = asint(x_6[scalar_offset_1 / 4][scalar_offset_1 % 4]);
const int x_12 = asint(x_6[1].x);
const bool x_44 = (x_10 == (x_11 + x_12));
x_52_phi = x_44;
if (!(x_44)) {
const float x_48 = undefined;
const uint scalar_offset_2 = ((16u * uint(0))) / 4;
const float x_50 = asfloat(x_8[scalar_offset_2 / 4][scalar_offset_2 % 4]);
x_51 = (x_48 > x_50);
x_52_phi = x_51;
}
if (x_52_phi) {
const uint scalar_offset_3 = ((16u * uint(0))) / 4;
const int x_15 = asint(x_6[scalar_offset_3 / 4][scalar_offset_3 % 4]);
const int x_16 = asint(x_6[1].x);
const int x_17 = asint(x_6[1].x);
const uint scalar_offset_4 = ((16u * uint(0))) / 4;
const int x_18 = asint(x_6[scalar_offset_4 / 4][scalar_offset_4 % 4]);
x_GLF_color = float4(float(x_15), float(x_16), float(x_17), float(x_18));
} else {
const int x_19 = asint(x_6[1].x);
const float x_66 = float(x_19);
x_GLF_color = float4(x_66, x_66, x_66, x_66);
}
return;
}
struct main_out {
float4 x_GLF_color_1;
};
struct tint_symbol {
float4 x_GLF_color_1 : SV_Target0;
};
main_out main_inner() {
main_1();
const main_out tint_symbol_3 = {x_GLF_color};
return tint_symbol_3;
}
tint_symbol main() {
const main_out inner_result = main_inner();
tint_symbol wrapper_result = (tint_symbol)0;
wrapper_result.x_GLF_color_1 = inner_result.x_GLF_color_1;
return wrapper_result;
}