James Price a5d73ce965 transform/shader_io: Generate a wrapper function
This is a major reworking of this transform. The old transform code
was getting unwieldy, with part of the complication coming from the
handling of multiple return statements. By generating a wrapper
function instead, we can avoid a lot of this complexity.

The original entry point function is stripped of all shader IO
attributes (as well as `stage` and `workgroup_size`), but the body is
left unmodified. A new entry point wrapper function is introduced
which calls the original function, packing/unpacking the shader inputs
as necessary, and propagates the result to the corresponding shader
outputs.

The new code has been refactored to use a state object with the
different parts of the transform split into separate functions, which
makes it much more manageable.

Fixed: tint:1076
Bug: tint:920
Change-Id: I3490a0ea7a3509a4e198ce730e476516649d8d96
Reviewed-on: https://dawn-review.googlesource.com/c/tint/+/60521
Auto-Submit: James Price <jrprice@google.com>
Kokoro: Kokoro <noreply+kokoro@google.com>
Commit-Queue: James Price <jrprice@google.com>
Reviewed-by: Ben Clayton <bclayton@google.com>
2021-08-04 22:15:28 +00:00

82 lines
2.3 KiB
Plaintext

#include <metal_stdlib>
using namespace metal;
struct tint_padded_array_element {
/* 0x0000 */ int el;
/* 0x0004 */ int8_t tint_pad[12];
};
struct tint_array_wrapper {
/* 0x0000 */ tint_padded_array_element arr[4];
};
struct buf0 {
/* 0x0000 */ tint_array_wrapper x_GLF_uniform_int_values;
};
struct main_out {
float4 x_GLF_color_1;
};
struct tint_symbol_1 {
float4 x_GLF_color_1 [[color(0)]];
};
void main_1(constant buf0& x_5, thread float4* const tint_symbol_3) {
int x_28 = 0;
int x_29 = 0;
int x_28_phi = 0;
int x_31_phi = 0;
int x_42_phi = 0;
int const x_24 = min(1, reverse_bits(1));
int const x_26 = x_5.x_GLF_uniform_int_values.arr[3].el;
x_28_phi = x_26;
x_31_phi = 1;
while (true) {
int x_32 = 0;
x_28 = x_28_phi;
int const x_31 = x_31_phi;
x_42_phi = x_28;
if ((x_31 <= as_type<int>((as_type<uint>(x_24) - as_type<uint>(1))))) {
} else {
break;
}
x_29 = as_type<int>(as_type<int>((as_type<uint>(x_28) + as_type<uint>(as_type<int>(x_31)))));
int const x_38 = x_5.x_GLF_uniform_int_values.arr[0].el;
if ((x_38 == 1)) {
x_42_phi = x_29;
break;
}
{
x_32 = as_type<int>((as_type<uint>(x_31) + as_type<uint>(1)));
x_28_phi = x_29;
x_31_phi = x_32;
}
}
int const x_42 = x_42_phi;
int const x_44 = x_5.x_GLF_uniform_int_values.arr[2].el;
if ((x_42 == x_44)) {
int const x_50 = x_5.x_GLF_uniform_int_values.arr[0].el;
float const x_51 = float(x_50);
int const x_53 = x_5.x_GLF_uniform_int_values.arr[1].el;
float const x_54 = float(x_53);
*(tint_symbol_3) = float4(x_51, x_54, x_54, x_51);
} else {
int const x_57 = x_5.x_GLF_uniform_int_values.arr[1].el;
float const x_58 = float(x_57);
*(tint_symbol_3) = float4(x_58, x_58, x_58, x_58);
}
return;
}
main_out tint_symbol_inner(constant buf0& x_5, thread float4* const tint_symbol_4) {
main_1(x_5, tint_symbol_4);
main_out const tint_symbol_2 = {.x_GLF_color_1=*(tint_symbol_4)};
return tint_symbol_2;
}
fragment tint_symbol_1 tint_symbol(constant buf0& x_5 [[buffer(0)]]) {
thread float4 tint_symbol_5 = 0.0f;
main_out const inner_result = tint_symbol_inner(x_5, &(tint_symbol_5));
tint_symbol_1 wrapper_result = {};
wrapper_result.x_GLF_color_1 = inner_result.x_GLF_color_1;
return wrapper_result;
}