James Price a5d73ce965 transform/shader_io: Generate a wrapper function
This is a major reworking of this transform. The old transform code
was getting unwieldy, with part of the complication coming from the
handling of multiple return statements. By generating a wrapper
function instead, we can avoid a lot of this complexity.

The original entry point function is stripped of all shader IO
attributes (as well as `stage` and `workgroup_size`), but the body is
left unmodified. A new entry point wrapper function is introduced
which calls the original function, packing/unpacking the shader inputs
as necessary, and propagates the result to the corresponding shader
outputs.

The new code has been refactored to use a state object with the
different parts of the transform split into separate functions, which
makes it much more manageable.

Fixed: tint:1076
Bug: tint:920
Change-Id: I3490a0ea7a3509a4e198ce730e476516649d8d96
Reviewed-on: https://dawn-review.googlesource.com/c/tint/+/60521
Auto-Submit: James Price <jrprice@google.com>
Kokoro: Kokoro <noreply+kokoro@google.com>
Commit-Queue: James Price <jrprice@google.com>
Reviewed-by: Ben Clayton <bclayton@google.com>
2021-08-04 22:15:28 +00:00

83 lines
2.7 KiB
HLSL

cbuffer cbuffer_x_6 : register(b0, space0) {
uint4 x_6[2];
};
cbuffer cbuffer_x_9 : register(b1, space0) {
uint4 x_9[3];
};
static float4 x_GLF_color = float4(0.0f, 0.0f, 0.0f, 0.0f);
void main_1() {
float sums[3] = (float[3])0;
int i = 0;
float2x4 indexable = float2x4(0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f);
const uint scalar_offset = ((16u * uint(0))) / 4;
const float x_40 = asfloat(x_6[scalar_offset / 4][scalar_offset % 4]);
const uint scalar_offset_1 = ((16u * uint(0))) / 4;
const float x_42 = asfloat(x_6[scalar_offset_1 / 4][scalar_offset_1 % 4]);
const uint scalar_offset_2 = ((16u * uint(0))) / 4;
const float x_44 = asfloat(x_6[scalar_offset_2 / 4][scalar_offset_2 % 4]);
const float tint_symbol_3[3] = {x_40, x_42, x_44};
sums = tint_symbol_3;
i = 0;
while (true) {
const int x_50 = i;
const uint scalar_offset_3 = ((16u * uint(0))) / 4;
const int x_52 = asint(x_9[scalar_offset_3 / 4][scalar_offset_3 % 4]);
const uint scalar_offset_4 = ((16u * uint(0))) / 4;
const int x_54 = asint(x_9[scalar_offset_4 / 4][scalar_offset_4 % 4]);
if ((x_50 < clamp(x_52, x_54, 2))) {
} else {
break;
}
const int x_59 = asint(x_9[2].x);
const uint scalar_offset_5 = ((16u * uint(0))) / 4;
const float x_61 = asfloat(x_6[scalar_offset_5 / 4][scalar_offset_5 % 4]);
const int x_65 = i;
const int x_67 = asint(x_9[1].x);
indexable = float2x4(float4(x_61, 0.0f, 0.0f, 0.0f), float4(0.0f, x_61, 0.0f, 0.0f));
const float x_69 = indexable[x_65][x_67];
const float x_71 = sums[x_59];
sums[x_59] = (x_71 + x_69);
{
i = (i + 1);
}
}
const int x_77 = asint(x_9[2].x);
const float x_79 = sums[x_77];
const float x_81 = asfloat(x_6[1].x);
if ((x_79 == x_81)) {
const uint scalar_offset_6 = ((16u * uint(0))) / 4;
const int x_87 = asint(x_9[scalar_offset_6 / 4][scalar_offset_6 % 4]);
const int x_90 = asint(x_9[1].x);
const int x_93 = asint(x_9[1].x);
const uint scalar_offset_7 = ((16u * uint(0))) / 4;
const int x_96 = asint(x_9[scalar_offset_7 / 4][scalar_offset_7 % 4]);
x_GLF_color = float4(float(x_87), float(x_90), float(x_93), float(x_96));
} else {
const int x_100 = asint(x_9[1].x);
const float x_101 = float(x_100);
x_GLF_color = float4(x_101, x_101, x_101, x_101);
}
return;
}
struct main_out {
float4 x_GLF_color_1;
};
struct tint_symbol {
float4 x_GLF_color_1 : SV_Target0;
};
main_out main_inner() {
main_1();
const main_out tint_symbol_4 = {x_GLF_color};
return tint_symbol_4;
}
tint_symbol main() {
const main_out inner_result = main_inner();
tint_symbol wrapper_result = (tint_symbol)0;
wrapper_result.x_GLF_color_1 = inner_result.x_GLF_color_1;
return wrapper_result;
}