James Price a5d73ce965 transform/shader_io: Generate a wrapper function
This is a major reworking of this transform. The old transform code
was getting unwieldy, with part of the complication coming from the
handling of multiple return statements. By generating a wrapper
function instead, we can avoid a lot of this complexity.

The original entry point function is stripped of all shader IO
attributes (as well as `stage` and `workgroup_size`), but the body is
left unmodified. A new entry point wrapper function is introduced
which calls the original function, packing/unpacking the shader inputs
as necessary, and propagates the result to the corresponding shader
outputs.

The new code has been refactored to use a state object with the
different parts of the transform split into separate functions, which
makes it much more manageable.

Fixed: tint:1076
Bug: tint:920
Change-Id: I3490a0ea7a3509a4e198ce730e476516649d8d96
Reviewed-on: https://dawn-review.googlesource.com/c/tint/+/60521
Auto-Submit: James Price <jrprice@google.com>
Kokoro: Kokoro <noreply+kokoro@google.com>
Commit-Queue: James Price <jrprice@google.com>
Reviewed-by: Ben Clayton <bclayton@google.com>
2021-08-04 22:15:28 +00:00

84 lines
2.7 KiB
HLSL

cbuffer cbuffer_x_6 : register(b1, space0) {
uint4 x_6[3];
};
cbuffer cbuffer_x_9 : register(b0, space0) {
uint4 x_9[3];
};
static float4 x_GLF_color = float4(0.0f, 0.0f, 0.0f, 0.0f);
void main_1() {
float A1[3] = (float[3])0;
int a = 0;
float b = 0.0f;
bool c = false;
bool x_36 = false;
const float x_38 = asfloat(x_6[2].x);
const uint scalar_offset = ((16u * uint(0))) / 4;
const float x_40 = asfloat(x_6[scalar_offset / 4][scalar_offset % 4]);
const float x_42 = asfloat(x_6[1].x);
const float tint_symbol_3[3] = {x_38, x_40, x_42};
A1 = tint_symbol_3;
const uint scalar_offset_1 = ((16u * uint(0))) / 4;
const int x_45 = asint(x_9[scalar_offset_1 / 4][scalar_offset_1 % 4]);
const uint scalar_offset_2 = ((16u * uint(0))) / 4;
const int x_47 = asint(x_9[scalar_offset_2 / 4][scalar_offset_2 % 4]);
const int x_49 = asint(x_9[1].x);
a = clamp(x_45, x_47, x_49);
const int x_51 = a;
const int x_53 = asint(x_9[1].x);
const uint scalar_offset_3 = ((16u * uint(0))) / 4;
const int x_55 = asint(x_9[scalar_offset_3 / 4][scalar_offset_3 % 4]);
const float x_58 = A1[clamp(x_51, x_53, x_55)];
b = x_58;
const float x_59 = b;
const int x_61 = asint(x_9[1].x);
const float x_63 = A1[x_61];
if ((x_59 < x_63)) {
const uint scalar_offset_4 = ((16u * uint(0))) / 4;
const float x_69 = asfloat(x_6[scalar_offset_4 / 4][scalar_offset_4 % 4]);
const float x_71 = asfloat(x_6[2].x);
x_36 = (x_69 > x_71);
} else {
const uint scalar_offset_5 = ((16u * uint(0))) / 4;
const float x_74 = asfloat(x_6[scalar_offset_5 / 4][scalar_offset_5 % 4]);
const int x_76 = asint(x_9[2].x);
const float x_78 = A1[x_76];
x_36 = (x_74 < x_78);
}
c = x_36;
if (c) {
const uint scalar_offset_6 = ((16u * uint(0))) / 4;
const int x_86 = asint(x_9[scalar_offset_6 / 4][scalar_offset_6 % 4]);
const int x_89 = asint(x_9[1].x);
const int x_92 = asint(x_9[1].x);
const uint scalar_offset_7 = ((16u * uint(0))) / 4;
const int x_95 = asint(x_9[scalar_offset_7 / 4][scalar_offset_7 % 4]);
x_GLF_color = float4(float(x_86), float(x_89), float(x_92), float(x_95));
} else {
const uint scalar_offset_8 = ((16u * uint(0))) / 4;
const float x_99 = asfloat(x_6[scalar_offset_8 / 4][scalar_offset_8 % 4]);
x_GLF_color = float4(x_99, x_99, x_99, x_99);
}
return;
}
struct main_out {
float4 x_GLF_color_1;
};
struct tint_symbol {
float4 x_GLF_color_1 : SV_Target0;
};
main_out main_inner() {
main_1();
const main_out tint_symbol_4 = {x_GLF_color};
return tint_symbol_4;
}
tint_symbol main() {
const main_out inner_result = main_inner();
tint_symbol wrapper_result = (tint_symbol)0;
wrapper_result.x_GLF_color_1 = inner_result.x_GLF_color_1;
return wrapper_result;
}