James Price a5d73ce965 transform/shader_io: Generate a wrapper function
This is a major reworking of this transform. The old transform code
was getting unwieldy, with part of the complication coming from the
handling of multiple return statements. By generating a wrapper
function instead, we can avoid a lot of this complexity.

The original entry point function is stripped of all shader IO
attributes (as well as `stage` and `workgroup_size`), but the body is
left unmodified. A new entry point wrapper function is introduced
which calls the original function, packing/unpacking the shader inputs
as necessary, and propagates the result to the corresponding shader
outputs.

The new code has been refactored to use a state object with the
different parts of the transform split into separate functions, which
makes it much more manageable.

Fixed: tint:1076
Bug: tint:920
Change-Id: I3490a0ea7a3509a4e198ce730e476516649d8d96
Reviewed-on: https://dawn-review.googlesource.com/c/tint/+/60521
Auto-Submit: James Price <jrprice@google.com>
Kokoro: Kokoro <noreply+kokoro@google.com>
Commit-Queue: James Price <jrprice@google.com>
Reviewed-by: Ben Clayton <bclayton@google.com>
2021-08-04 22:15:28 +00:00

81 lines
2.4 KiB
Plaintext

#include <metal_stdlib>
using namespace metal;
struct tint_padded_array_element {
/* 0x0000 */ int el;
/* 0x0004 */ int8_t tint_pad[12];
};
struct tint_array_wrapper {
/* 0x0000 */ tint_padded_array_element arr[5];
};
struct buf0 {
/* 0x0000 */ tint_array_wrapper x_GLF_uniform_int_values;
};
struct tint_array_wrapper_1 {
int arr[9];
};
struct main_out {
float4 x_GLF_color_1;
};
struct tint_symbol_1 {
float4 x_GLF_color_1 [[color(0)]];
};
void main_1(constant buf0& x_6, thread float4* const tint_symbol_4) {
int a = 0;
int i = 0;
tint_array_wrapper_1 indexable = {};
int const x_38 = x_6.x_GLF_uniform_int_values.arr[2].el;
a = x_38;
int const x_40 = x_6.x_GLF_uniform_int_values.arr[3].el;
i = x_40;
while (true) {
int const x_45 = i;
int const x_47 = x_6.x_GLF_uniform_int_values.arr[0].el;
if ((x_45 < x_47)) {
} else {
break;
}
int const x_50 = i;
int const x_52 = x_6.x_GLF_uniform_int_values.arr[4].el;
tint_array_wrapper_1 const tint_symbol_2 = {.arr={1, 2, 3, 4, 5, 6, 7, 8, 9}};
indexable = tint_symbol_2;
int const x_55 = indexable.arr[(x_50 % x_52)];
int const x_56 = a;
a = as_type<int>((as_type<uint>(x_56) + as_type<uint>(x_55)));
{
int const x_58 = i;
i = as_type<int>((as_type<uint>(x_58) + as_type<uint>(1)));
}
}
int const x_60 = a;
int const x_62 = x_6.x_GLF_uniform_int_values.arr[1].el;
if ((x_60 == x_62)) {
int const x_68 = x_6.x_GLF_uniform_int_values.arr[2].el;
int const x_71 = x_6.x_GLF_uniform_int_values.arr[3].el;
int const x_74 = x_6.x_GLF_uniform_int_values.arr[3].el;
int const x_77 = x_6.x_GLF_uniform_int_values.arr[2].el;
*(tint_symbol_4) = float4(float(x_68), float(x_71), float(x_74), float(x_77));
} else {
int const x_81 = x_6.x_GLF_uniform_int_values.arr[3].el;
float const x_82 = float(x_81);
*(tint_symbol_4) = float4(x_82, x_82, x_82, x_82);
}
return;
}
main_out tint_symbol_inner(constant buf0& x_6, thread float4* const tint_symbol_5) {
main_1(x_6, tint_symbol_5);
main_out const tint_symbol_3 = {.x_GLF_color_1=*(tint_symbol_5)};
return tint_symbol_3;
}
fragment tint_symbol_1 tint_symbol(constant buf0& x_6 [[buffer(0)]]) {
thread float4 tint_symbol_6 = 0.0f;
main_out const inner_result = tint_symbol_inner(x_6, &(tint_symbol_6));
tint_symbol_1 wrapper_result = {};
wrapper_result.x_GLF_color_1 = inner_result.x_GLF_color_1;
return wrapper_result;
}