Alastair Donaldson f7e73d4ee3 Add tests derived from VK-GL-CTS
This adds SPIR-V assembly and WGSL tests derived from VK-GL-CTS commit
571256871c2e2f03995373e1e4a02958d8cd8cf5. The following procedure was
followed:

- Those .amber files in VK-GL-CTS wholly owned by Google were
  identified

- All GLSL and SPIR-V shaders were extracted from the Amber files and
  converted into SPIR-V binaries

- The compact-ids pass of spirv-opt was applied to each binary

- Duplicate binaries were removed

- spirv-opt -O was used to obtain an optimized version of each remaining
  binary, with duplicates discarded

- Binaries that failed validation using spirv-val with target
  environment SPIR-V 1.3 were discarded

- Those binaries that tint could not successfully convert into WGSL were
  put aside for further investigation

- SPIR-V assembly versions of the remaining binaries are included in
  this CL

- test-runner with -generate-expected and -generate-skip was used to
  generate expected .spvasm, .msl, .hlsl and .wgsl outputs for these
  SPIR-V assembly tests

- Each successfully-generated .expected.wgsl is included in this CL
  again, as a WGLSL test

- test-runner with -generate-expected and -generate-skip was used again,
  to generate expected outputs for these WGSL tests

Change-Id: Ibe9baf2729cf97e0b633db9a426f53362a5de540
Reviewed-on: https://dawn-review.googlesource.com/c/tint/+/58842
Kokoro: Kokoro <noreply+kokoro@google.com>
Commit-Queue: Ben Clayton <bclayton@google.com>
Reviewed-by: Ben Clayton <bclayton@google.com>
2021-07-23 13:10:12 +00:00

79 lines
2.1 KiB
WebGPU Shading Language

type Arr = [[stride(16)]] array<i32, 2>;
[[block]]
struct buf0 {
x_GLF_uniform_int_values : Arr;
};
type Arr_1 = [[stride(16)]] array<f32, 2>;
[[block]]
struct buf1 {
x_GLF_uniform_float_values : Arr_1;
};
var<private> x_GLF_color : vec4<f32>;
[[group(0), binding(0)]] var<uniform> x_8 : buf0;
var<private> gl_FragCoord : vec4<f32>;
[[group(0), binding(1)]] var<uniform> x_10 : buf1;
fn f1_f1_(a : ptr<function, f32>) -> f32 {
let x_100 : f32 = *(a);
return dpdx(x_100);
}
fn main_1() {
var v2 : vec4<f32>;
var a_1 : f32;
var x_40 : f32;
var param : f32;
let x_42 : i32 = x_8.x_GLF_uniform_int_values[0];
let x_45 : i32 = x_8.x_GLF_uniform_int_values[1];
let x_48 : i32 = x_8.x_GLF_uniform_int_values[1];
let x_51 : i32 = x_8.x_GLF_uniform_int_values[0];
x_GLF_color = vec4<f32>(f32(x_42), f32(x_45), f32(x_48), f32(x_51));
let x_55 : f32 = gl_FragCoord.x;
let x_57 : f32 = x_10.x_GLF_uniform_float_values[1];
if ((x_55 < x_57)) {
let x_62 : f32 = v2.x;
if (!((x_62 < 1.0))) {
let x_68 : f32 = x_10.x_GLF_uniform_float_values[1];
let x_70 : f32 = x_10.x_GLF_uniform_float_values[1];
let x_72 : f32 = x_10.x_GLF_uniform_float_values[0];
if ((x_70 > x_72)) {
let x_78 : f32 = x_10.x_GLF_uniform_float_values[0];
param = x_78;
let x_79 : f32 = f1_f1_(&(param));
x_40 = x_79;
} else {
let x_81 : f32 = x_10.x_GLF_uniform_float_values[0];
x_40 = x_81;
}
let x_82 : f32 = x_40;
a_1 = (x_68 / x_82);
let x_85 : f32 = x_10.x_GLF_uniform_float_values[0];
let x_88 : f32 = x_10.x_GLF_uniform_float_values[0];
let x_90 : f32 = a_1;
let x_92 : vec3<f32> = mix(vec3<f32>(x_85, x_85, x_85), vec3<f32>(x_88, x_88, x_88), vec3<f32>(x_90, x_90, x_90));
let x_94 : f32 = x_10.x_GLF_uniform_float_values[1];
x_GLF_color = vec4<f32>(x_92.x, x_92.y, x_92.z, x_94);
}
}
return;
}
struct main_out {
[[location(0)]]
x_GLF_color_1 : vec4<f32>;
};
[[stage(fragment)]]
fn main([[builtin(position)]] gl_FragCoord_param : vec4<f32>) -> main_out {
gl_FragCoord = gl_FragCoord_param;
main_1();
return main_out(x_GLF_color);
}