mirror of
https://github.com/encounter/dawn-cmake.git
synced 2025-08-02 18:25:56 +00:00
This adds SPIR-V assembly and WGSL tests derived from VK-GL-CTS commit 571256871c2e2f03995373e1e4a02958d8cd8cf5. The following procedure was followed: - Those .amber files in VK-GL-CTS wholly owned by Google were identified - All GLSL and SPIR-V shaders were extracted from the Amber files and converted into SPIR-V binaries - The compact-ids pass of spirv-opt was applied to each binary - Duplicate binaries were removed - spirv-opt -O was used to obtain an optimized version of each remaining binary, with duplicates discarded - Binaries that failed validation using spirv-val with target environment SPIR-V 1.3 were discarded - Those binaries that tint could not successfully convert into WGSL were put aside for further investigation - SPIR-V assembly versions of the remaining binaries are included in this CL - test-runner with -generate-expected and -generate-skip was used to generate expected .spvasm, .msl, .hlsl and .wgsl outputs for these SPIR-V assembly tests - Each successfully-generated .expected.wgsl is included in this CL again, as a WGLSL test - test-runner with -generate-expected and -generate-skip was used again, to generate expected outputs for these WGSL tests Change-Id: Ibe9baf2729cf97e0b633db9a426f53362a5de540 Reviewed-on: https://dawn-review.googlesource.com/c/tint/+/58842 Kokoro: Kokoro <noreply+kokoro@google.com> Commit-Queue: Ben Clayton <bclayton@google.com> Reviewed-by: Ben Clayton <bclayton@google.com>
99 lines
2.7 KiB
WebGPU Shading Language
99 lines
2.7 KiB
WebGPU Shading Language
type Arr = [[stride(16)]] array<f32, 7>;
|
|
|
|
[[block]]
|
|
struct buf1 {
|
|
x_GLF_uniform_float_values : Arr;
|
|
};
|
|
|
|
type Arr_1 = [[stride(16)]] array<i32, 4>;
|
|
|
|
[[block]]
|
|
struct buf0 {
|
|
x_GLF_uniform_int_values : Arr_1;
|
|
};
|
|
|
|
[[group(0), binding(1)]] var<uniform> x_6 : buf1;
|
|
|
|
[[group(0), binding(0)]] var<uniform> x_10 : buf0;
|
|
|
|
var<private> x_GLF_color : vec4<f32>;
|
|
|
|
fn main_1() {
|
|
var a : u32;
|
|
var v1 : vec4<f32>;
|
|
var E : f32;
|
|
var x_75 : bool;
|
|
var x_92 : bool;
|
|
var x_109 : bool;
|
|
var x_76_phi : bool;
|
|
var x_93_phi : bool;
|
|
var x_110_phi : bool;
|
|
let x_41 : f32 = x_6.x_GLF_uniform_float_values[0];
|
|
let x_43 : f32 = x_6.x_GLF_uniform_float_values[1];
|
|
a = pack2x16unorm(vec2<f32>(x_41, x_43));
|
|
let x_46 : u32 = a;
|
|
v1 = unpack4x8snorm(x_46);
|
|
E = 0.01;
|
|
let x_49 : i32 = x_10.x_GLF_uniform_int_values[2];
|
|
let x_51 : f32 = v1[x_49];
|
|
let x_53 : f32 = x_6.x_GLF_uniform_float_values[2];
|
|
let x_55 : f32 = x_6.x_GLF_uniform_float_values[3];
|
|
let x_59 : f32 = E;
|
|
let x_60 : bool = (abs((x_51 - (x_53 / x_55))) < x_59);
|
|
x_76_phi = x_60;
|
|
if (x_60) {
|
|
let x_64 : i32 = x_10.x_GLF_uniform_int_values[1];
|
|
let x_66 : f32 = v1[x_64];
|
|
let x_68 : f32 = x_6.x_GLF_uniform_float_values[4];
|
|
let x_70 : f32 = x_6.x_GLF_uniform_float_values[3];
|
|
let x_74 : f32 = E;
|
|
x_75 = (abs((x_66 - (x_68 / x_70))) < x_74);
|
|
x_76_phi = x_75;
|
|
}
|
|
let x_76 : bool = x_76_phi;
|
|
x_93_phi = x_76;
|
|
if (x_76) {
|
|
let x_80 : i32 = x_10.x_GLF_uniform_int_values[3];
|
|
let x_82 : f32 = v1[x_80];
|
|
let x_84 : f32 = x_6.x_GLF_uniform_float_values[5];
|
|
let x_87 : f32 = x_6.x_GLF_uniform_float_values[3];
|
|
let x_91 : f32 = E;
|
|
x_92 = (abs((x_82 - (-(x_84) / x_87))) < x_91);
|
|
x_93_phi = x_92;
|
|
}
|
|
let x_93 : bool = x_93_phi;
|
|
x_110_phi = x_93;
|
|
if (x_93) {
|
|
let x_97 : i32 = x_10.x_GLF_uniform_int_values[0];
|
|
let x_99 : f32 = v1[x_97];
|
|
let x_101 : f32 = x_6.x_GLF_uniform_float_values[6];
|
|
let x_104 : f32 = x_6.x_GLF_uniform_float_values[3];
|
|
let x_108 : f32 = E;
|
|
x_109 = (abs((x_99 - (-(x_101) / x_104))) < x_108);
|
|
x_110_phi = x_109;
|
|
}
|
|
let x_110 : bool = x_110_phi;
|
|
if (x_110) {
|
|
let x_115 : i32 = x_10.x_GLF_uniform_int_values[1];
|
|
let x_118 : i32 = x_10.x_GLF_uniform_int_values[2];
|
|
let x_121 : i32 = x_10.x_GLF_uniform_int_values[2];
|
|
let x_124 : i32 = x_10.x_GLF_uniform_int_values[1];
|
|
x_GLF_color = vec4<f32>(f32(x_115), f32(x_118), f32(x_121), f32(x_124));
|
|
} else {
|
|
let x_128 : f32 = x_6.x_GLF_uniform_float_values[5];
|
|
x_GLF_color = vec4<f32>(x_128, x_128, x_128, x_128);
|
|
}
|
|
return;
|
|
}
|
|
|
|
struct main_out {
|
|
[[location(0)]]
|
|
x_GLF_color_1 : vec4<f32>;
|
|
};
|
|
|
|
[[stage(fragment)]]
|
|
fn main() -> main_out {
|
|
main_1();
|
|
return main_out(x_GLF_color);
|
|
}
|