Alastair Donaldson f7e73d4ee3 Add tests derived from VK-GL-CTS
This adds SPIR-V assembly and WGSL tests derived from VK-GL-CTS commit
571256871c2e2f03995373e1e4a02958d8cd8cf5. The following procedure was
followed:

- Those .amber files in VK-GL-CTS wholly owned by Google were
  identified

- All GLSL and SPIR-V shaders were extracted from the Amber files and
  converted into SPIR-V binaries

- The compact-ids pass of spirv-opt was applied to each binary

- Duplicate binaries were removed

- spirv-opt -O was used to obtain an optimized version of each remaining
  binary, with duplicates discarded

- Binaries that failed validation using spirv-val with target
  environment SPIR-V 1.3 were discarded

- Those binaries that tint could not successfully convert into WGSL were
  put aside for further investigation

- SPIR-V assembly versions of the remaining binaries are included in
  this CL

- test-runner with -generate-expected and -generate-skip was used to
  generate expected .spvasm, .msl, .hlsl and .wgsl outputs for these
  SPIR-V assembly tests

- Each successfully-generated .expected.wgsl is included in this CL
  again, as a WGLSL test

- test-runner with -generate-expected and -generate-skip was used again,
  to generate expected outputs for these WGSL tests

Change-Id: Ibe9baf2729cf97e0b633db9a426f53362a5de540
Reviewed-on: https://dawn-review.googlesource.com/c/tint/+/58842
Kokoro: Kokoro <noreply+kokoro@google.com>
Commit-Queue: Ben Clayton <bclayton@google.com>
Reviewed-by: Ben Clayton <bclayton@google.com>
2021-07-23 13:10:12 +00:00

96 lines
2.6 KiB
WebGPU Shading Language

type Arr = [[stride(16)]] array<f32, 2>;
[[block]]
struct buf1 {
x_GLF_uniform_float_values : Arr;
};
type Arr_1 = [[stride(16)]] array<i32, 4>;
[[block]]
struct buf0 {
x_GLF_uniform_int_values : Arr_1;
};
[[group(0), binding(1)]] var<uniform> x_7 : buf1;
[[group(0), binding(0)]] var<uniform> x_10 : buf0;
var<private> gl_FragCoord : vec4<f32>;
var<private> x_GLF_color : vec4<f32>;
fn main_1() {
var m23 : mat2x3<f32>;
var i : i32;
let x_46 : f32 = x_7.x_GLF_uniform_float_values[1];
m23 = mat2x3<f32>(vec3<f32>(x_46, 0.0, 0.0), vec3<f32>(0.0, x_46, 0.0));
i = 1;
loop {
var x_80 : bool;
var x_81_phi : bool;
let x_54 : i32 = i;
let x_56 : i32 = x_10.x_GLF_uniform_int_values[3];
if ((x_54 < x_56)) {
} else {
break;
}
let x_60 : i32 = x_10.x_GLF_uniform_int_values[0];
let x_62 : i32 = x_10.x_GLF_uniform_int_values[2];
let x_64 : f32 = x_7.x_GLF_uniform_float_values[0];
let x_66 : f32 = m23[x_60][x_62];
m23[x_60][x_62] = (x_66 + x_64);
let x_70 : f32 = gl_FragCoord.y;
let x_72 : f32 = x_7.x_GLF_uniform_float_values[0];
if ((x_70 < x_72)) {
}
x_81_phi = true;
if (true) {
let x_79 : f32 = gl_FragCoord.x;
x_80 = (x_79 < 0.0);
x_81_phi = x_80;
}
let x_81 : bool = x_81_phi;
if (!(x_81)) {
break;
}
continuing {
let x_85 : i32 = i;
i = (x_85 + 1);
}
}
let x_87 : mat2x3<f32> = m23;
let x_89 : i32 = x_10.x_GLF_uniform_int_values[1];
let x_92 : i32 = x_10.x_GLF_uniform_int_values[1];
let x_95 : i32 = x_10.x_GLF_uniform_int_values[1];
let x_98 : i32 = x_10.x_GLF_uniform_int_values[1];
let x_101 : i32 = x_10.x_GLF_uniform_int_values[1];
let x_104 : i32 = x_10.x_GLF_uniform_int_values[0];
let x_108 : mat2x3<f32> = mat2x3<f32>(vec3<f32>(f32(x_89), f32(x_92), f32(x_95)), vec3<f32>(f32(x_98), f32(x_101), f32(x_104)));
if ((all((x_87[0u] == x_108[0u])) && all((x_87[1u] == x_108[1u])))) {
let x_122 : i32 = x_10.x_GLF_uniform_int_values[0];
let x_125 : i32 = x_10.x_GLF_uniform_int_values[1];
let x_128 : i32 = x_10.x_GLF_uniform_int_values[1];
let x_131 : i32 = x_10.x_GLF_uniform_int_values[0];
x_GLF_color = vec4<f32>(f32(x_122), f32(x_125), f32(x_128), f32(x_131));
} else {
let x_135 : i32 = x_10.x_GLF_uniform_int_values[1];
let x_136 : f32 = f32(x_135);
x_GLF_color = vec4<f32>(x_136, x_136, x_136, x_136);
}
return;
}
struct main_out {
[[location(0)]]
x_GLF_color_1 : vec4<f32>;
};
[[stage(fragment)]]
fn main([[builtin(position)]] gl_FragCoord_param : vec4<f32>) -> main_out {
gl_FragCoord = gl_FragCoord_param;
main_1();
return main_out(x_GLF_color);
}