Alastair Donaldson f7e73d4ee3 Add tests derived from VK-GL-CTS
This adds SPIR-V assembly and WGSL tests derived from VK-GL-CTS commit
571256871c2e2f03995373e1e4a02958d8cd8cf5. The following procedure was
followed:

- Those .amber files in VK-GL-CTS wholly owned by Google were
  identified

- All GLSL and SPIR-V shaders were extracted from the Amber files and
  converted into SPIR-V binaries

- The compact-ids pass of spirv-opt was applied to each binary

- Duplicate binaries were removed

- spirv-opt -O was used to obtain an optimized version of each remaining
  binary, with duplicates discarded

- Binaries that failed validation using spirv-val with target
  environment SPIR-V 1.3 were discarded

- Those binaries that tint could not successfully convert into WGSL were
  put aside for further investigation

- SPIR-V assembly versions of the remaining binaries are included in
  this CL

- test-runner with -generate-expected and -generate-skip was used to
  generate expected .spvasm, .msl, .hlsl and .wgsl outputs for these
  SPIR-V assembly tests

- Each successfully-generated .expected.wgsl is included in this CL
  again, as a WGLSL test

- test-runner with -generate-expected and -generate-skip was used again,
  to generate expected outputs for these WGSL tests

Change-Id: Ibe9baf2729cf97e0b633db9a426f53362a5de540
Reviewed-on: https://dawn-review.googlesource.com/c/tint/+/58842
Kokoro: Kokoro <noreply+kokoro@google.com>
Commit-Queue: Ben Clayton <bclayton@google.com>
Reviewed-by: Ben Clayton <bclayton@google.com>
2021-07-23 13:10:12 +00:00

96 lines
2.3 KiB
WebGPU Shading Language

type Arr = [[stride(16)]] array<f32, 4>;
[[block]]
struct buf1 {
x_GLF_uniform_float_values : Arr;
};
type Arr_1 = [[stride(16)]] array<i32, 2>;
[[block]]
struct buf0 {
x_GLF_uniform_int_values : Arr_1;
};
var<private> gl_FragCoord : vec4<f32>;
[[group(0), binding(1)]] var<uniform> x_8 : buf1;
[[group(0), binding(0)]] var<uniform> x_12 : buf0;
var<private> x_GLF_v1 : vec4<f32>;
fn main_1() {
var uv : vec2<f32>;
var v1 : vec4<f32>;
var a : f32;
var i : i32;
let x_49 : vec4<f32> = gl_FragCoord;
uv = vec2<f32>(x_49.x, x_49.y);
let x_52 : f32 = x_8.x_GLF_uniform_float_values[0];
v1 = vec4<f32>(x_52, x_52, x_52, x_52);
let x_55 : f32 = uv.y;
let x_57 : f32 = x_8.x_GLF_uniform_float_values[0];
if ((x_55 >= x_57)) {
let x_62 : f32 = x_8.x_GLF_uniform_float_values[2];
v1.x = x_62;
let x_65 : f32 = x_8.x_GLF_uniform_float_values[0];
v1.y = x_65;
let x_68 : f32 = x_8.x_GLF_uniform_float_values[0];
v1.z = x_68;
let x_71 : f32 = x_8.x_GLF_uniform_float_values[2];
v1.w = x_71;
}
let x_74 : f32 = x_8.x_GLF_uniform_float_values[2];
a = x_74;
let x_15 : i32 = x_12.x_GLF_uniform_int_values[1];
i = x_15;
loop {
let x_16 : i32 = i;
let x_17 : i32 = x_12.x_GLF_uniform_int_values[0];
if ((x_16 < x_17)) {
} else {
break;
}
let x_84 : f32 = x_8.x_GLF_uniform_float_values[2];
let x_86 : f32 = x_8.x_GLF_uniform_float_values[0];
if ((x_84 < x_86)) {
discard;
}
let x_91 : f32 = v1.x;
let x_93 : f32 = v1.y;
let x_96 : f32 = v1.z;
let x_99 : f32 = v1.w;
let x_102 : f32 = x_8.x_GLF_uniform_float_values[3];
a = pow((((x_91 + x_93) + x_96) + x_99), x_102);
continuing {
let x_18 : i32 = i;
i = (x_18 + 1);
}
}
let x_104 : f32 = a;
let x_106 : f32 = x_8.x_GLF_uniform_float_values[1];
if ((x_104 == x_106)) {
let x_111 : vec4<f32> = v1;
x_GLF_v1 = x_111;
} else {
let x_20 : i32 = x_12.x_GLF_uniform_int_values[1];
let x_113 : f32 = f32(x_20);
x_GLF_v1 = vec4<f32>(x_113, x_113, x_113, x_113);
}
return;
}
struct main_out {
[[location(0)]]
x_GLF_v1_1 : vec4<f32>;
};
[[stage(fragment)]]
fn main([[builtin(position)]] gl_FragCoord_param : vec4<f32>) -> main_out {
gl_FragCoord = gl_FragCoord_param;
main_1();
return main_out(x_GLF_v1);
}