James Price a5d73ce965 transform/shader_io: Generate a wrapper function
This is a major reworking of this transform. The old transform code
was getting unwieldy, with part of the complication coming from the
handling of multiple return statements. By generating a wrapper
function instead, we can avoid a lot of this complexity.

The original entry point function is stripped of all shader IO
attributes (as well as `stage` and `workgroup_size`), but the body is
left unmodified. A new entry point wrapper function is introduced
which calls the original function, packing/unpacking the shader inputs
as necessary, and propagates the result to the corresponding shader
outputs.

The new code has been refactored to use a state object with the
different parts of the transform split into separate functions, which
makes it much more manageable.

Fixed: tint:1076
Bug: tint:920
Change-Id: I3490a0ea7a3509a4e198ce730e476516649d8d96
Reviewed-on: https://dawn-review.googlesource.com/c/tint/+/60521
Auto-Submit: James Price <jrprice@google.com>
Kokoro: Kokoro <noreply+kokoro@google.com>
Commit-Queue: James Price <jrprice@google.com>
Reviewed-by: Ben Clayton <bclayton@google.com>
2021-08-04 22:15:28 +00:00

86 lines
2.9 KiB
Plaintext

#include <metal_stdlib>
using namespace metal;
struct tint_padded_array_element {
/* 0x0000 */ int el;
/* 0x0004 */ int8_t tint_pad[12];
};
struct tint_array_wrapper {
/* 0x0000 */ tint_padded_array_element arr[2];
};
struct buf2 {
/* 0x0000 */ tint_array_wrapper x_GLF_uniform_int_values;
};
struct tint_padded_array_element_1 {
/* 0x0000 */ float el;
/* 0x0004 */ int8_t tint_pad_1[12];
};
struct tint_array_wrapper_1 {
/* 0x0000 */ tint_padded_array_element_1 arr[1];
};
struct buf0 {
/* 0x0000 */ tint_array_wrapper_1 x_GLF_uniform_float_values;
};
struct tint_padded_array_element_2 {
/* 0x0000 */ uint el;
/* 0x0004 */ int8_t tint_pad_2[12];
};
struct tint_array_wrapper_2 {
/* 0x0000 */ tint_padded_array_element_2 arr[1];
};
struct buf1 {
/* 0x0000 */ tint_array_wrapper_2 x_GLF_uniform_uint_values;
};
struct main_out {
float4 x_GLF_color_1;
};
struct tint_symbol_1 {
float4 x_GLF_color_1 [[color(0)]];
};
void main_1(constant buf2& x_8, constant buf0& x_10, constant buf1& x_12, thread float4* const tint_symbol_3, thread float4* const tint_symbol_4) {
uint a = 0u;
int b = 0;
a = 0u;
int const x_41 = x_8.x_GLF_uniform_int_values.arr[1].el;
b = x_41;
float const x_43 = (*(tint_symbol_3)).x;
float const x_45 = x_10.x_GLF_uniform_float_values.arr[0].el;
if ((x_43 < x_45)) {
uint const x_50 = x_12.x_GLF_uniform_uint_values.arr[0].el;
uint const x_51 = a;
b = as_type<int>((x_50 % x_51));
}
int const x_54 = b;
int const x_56 = x_8.x_GLF_uniform_int_values.arr[1].el;
if ((x_54 == x_56)) {
int const x_62 = x_8.x_GLF_uniform_int_values.arr[1].el;
int const x_65 = x_8.x_GLF_uniform_int_values.arr[0].el;
int const x_68 = x_8.x_GLF_uniform_int_values.arr[0].el;
int const x_71 = x_8.x_GLF_uniform_int_values.arr[1].el;
*(tint_symbol_4) = float4(float(x_62), float(x_65), float(x_68), float(x_71));
} else {
int const x_75 = x_8.x_GLF_uniform_int_values.arr[0].el;
float const x_76 = float(x_75);
*(tint_symbol_4) = float4(x_76, x_76, x_76, x_76);
}
return;
}
main_out tint_symbol_inner(constant buf2& x_8, constant buf0& x_10, constant buf1& x_12, float4 gl_FragCoord_param, thread float4* const tint_symbol_5, thread float4* const tint_symbol_6) {
*(tint_symbol_5) = gl_FragCoord_param;
main_1(x_8, x_10, x_12, tint_symbol_5, tint_symbol_6);
main_out const tint_symbol_2 = {.x_GLF_color_1=*(tint_symbol_6)};
return tint_symbol_2;
}
fragment tint_symbol_1 tint_symbol(float4 gl_FragCoord_param [[position]], constant buf2& x_8 [[buffer(2)]], constant buf0& x_10 [[buffer(0)]], constant buf1& x_12 [[buffer(1)]]) {
thread float4 tint_symbol_7 = 0.0f;
thread float4 tint_symbol_8 = 0.0f;
main_out const inner_result = tint_symbol_inner(x_8, x_10, x_12, gl_FragCoord_param, &(tint_symbol_7), &(tint_symbol_8));
tint_symbol_1 wrapper_result = {};
wrapper_result.x_GLF_color_1 = inner_result.x_GLF_color_1;
return wrapper_result;
}