James Price a5d73ce965 transform/shader_io: Generate a wrapper function
This is a major reworking of this transform. The old transform code
was getting unwieldy, with part of the complication coming from the
handling of multiple return statements. By generating a wrapper
function instead, we can avoid a lot of this complexity.

The original entry point function is stripped of all shader IO
attributes (as well as `stage` and `workgroup_size`), but the body is
left unmodified. A new entry point wrapper function is introduced
which calls the original function, packing/unpacking the shader inputs
as necessary, and propagates the result to the corresponding shader
outputs.

The new code has been refactored to use a state object with the
different parts of the transform split into separate functions, which
makes it much more manageable.

Fixed: tint:1076
Bug: tint:920
Change-Id: I3490a0ea7a3509a4e198ce730e476516649d8d96
Reviewed-on: https://dawn-review.googlesource.com/c/tint/+/60521
Auto-Submit: James Price <jrprice@google.com>
Kokoro: Kokoro <noreply+kokoro@google.com>
Commit-Queue: James Price <jrprice@google.com>
Reviewed-by: Ben Clayton <bclayton@google.com>
2021-08-04 22:15:28 +00:00

83 lines
2.7 KiB
HLSL

static float4 x_GLF_color = float4(0.0f, 0.0f, 0.0f, 0.0f);
cbuffer cbuffer_x_5 : register(b0, space0) {
uint4 x_5[2];
};
cbuffer cbuffer_x_8 : register(b1, space0) {
uint4 x_8[2];
};
void main_1() {
float a = 0.0f;
const float x_31 = asfloat(x_5[1].x);
x_GLF_color = float4(x_31, x_31, x_31, x_31);
const uint scalar_offset = ((16u * uint(0))) / 4;
const float x_34 = asfloat(x_5[scalar_offset / 4][scalar_offset % 4]);
a = x_34;
while (true) {
const uint scalar_offset_1 = ((16u * uint(0))) / 4;
const float x_40 = asfloat(x_5[scalar_offset_1 / 4][scalar_offset_1 % 4]);
const uint scalar_offset_2 = ((16u * uint(0))) / 4;
const float x_43 = asfloat(x_5[scalar_offset_2 / 4][scalar_offset_2 % 4]);
if (((x_40 / 0.200000003f) < x_43)) {
return;
}
const uint scalar_offset_3 = ((16u * uint(0))) / 4;
const float x_48 = asfloat(x_5[scalar_offset_3 / 4][scalar_offset_3 % 4]);
const uint scalar_offset_4 = ((16u * uint(0))) / 4;
const float x_51 = asfloat(x_5[scalar_offset_4 / 4][scalar_offset_4 % 4]);
if (((x_48 / 0.200000003f) < x_51)) {
return;
}
const uint scalar_offset_5 = ((16u * uint(0))) / 4;
const float x_56 = asfloat(x_5[scalar_offset_5 / 4][scalar_offset_5 % 4]);
const uint scalar_offset_6 = ((16u * uint(0))) / 4;
const float x_59 = asfloat(x_5[scalar_offset_6 / 4][scalar_offset_6 % 4]);
if (((x_56 / 0.200000003f) < x_59)) {
return;
}
const uint scalar_offset_7 = ((16u * uint(0))) / 4;
const float x_64 = asfloat(x_5[scalar_offset_7 / 4][scalar_offset_7 % 4]);
const uint scalar_offset_8 = ((16u * uint(0))) / 4;
const float x_67 = asfloat(x_5[scalar_offset_8 / 4][scalar_offset_8 % 4]);
if (((x_64 / 0.200000003f) < x_67)) {
return;
} else {
a = 0.0f;
}
{
if (!((a == 0.0f))) {
} else {
break;
}
}
}
const int x_75 = asint(x_8[1].x);
const uint scalar_offset_9 = ((16u * uint(0))) / 4;
const int x_78 = asint(x_8[scalar_offset_9 / 4][scalar_offset_9 % 4]);
const uint scalar_offset_10 = ((16u * uint(0))) / 4;
const int x_81 = asint(x_8[scalar_offset_10 / 4][scalar_offset_10 % 4]);
const int x_84 = asint(x_8[1].x);
x_GLF_color = float4(float(x_75), float(x_78), float(x_81), float(x_84));
return;
}
struct main_out {
float4 x_GLF_color_1;
};
struct tint_symbol {
float4 x_GLF_color_1 : SV_Target0;
};
main_out main_inner() {
main_1();
const main_out tint_symbol_3 = {x_GLF_color};
return tint_symbol_3;
}
tint_symbol main() {
const main_out inner_result = main_inner();
tint_symbol wrapper_result = (tint_symbol)0;
wrapper_result.x_GLF_color_1 = inner_result.x_GLF_color_1;
return wrapper_result;
}