James Price a5d73ce965 transform/shader_io: Generate a wrapper function
This is a major reworking of this transform. The old transform code
was getting unwieldy, with part of the complication coming from the
handling of multiple return statements. By generating a wrapper
function instead, we can avoid a lot of this complexity.

The original entry point function is stripped of all shader IO
attributes (as well as `stage` and `workgroup_size`), but the body is
left unmodified. A new entry point wrapper function is introduced
which calls the original function, packing/unpacking the shader inputs
as necessary, and propagates the result to the corresponding shader
outputs.

The new code has been refactored to use a state object with the
different parts of the transform split into separate functions, which
makes it much more manageable.

Fixed: tint:1076
Bug: tint:920
Change-Id: I3490a0ea7a3509a4e198ce730e476516649d8d96
Reviewed-on: https://dawn-review.googlesource.com/c/tint/+/60521
Auto-Submit: James Price <jrprice@google.com>
Kokoro: Kokoro <noreply+kokoro@google.com>
Commit-Queue: James Price <jrprice@google.com>
Reviewed-by: Ben Clayton <bclayton@google.com>
2021-08-04 22:15:28 +00:00

105 lines
2.9 KiB
HLSL

cbuffer cbuffer_x_6 : register(b0, space0) {
uint4 x_6[5];
};
static float4 x_GLF_color = float4(0.0f, 0.0f, 0.0f, 0.0f);
void main_1() {
int i = 0;
int A[4] = (int[4])0;
bool x_77 = false;
bool x_87 = false;
bool x_97 = false;
bool x_78_phi = false;
bool x_88_phi = false;
bool x_98_phi = false;
const uint scalar_offset = ((16u * uint(0))) / 4;
const int x_33 = asint(x_6[scalar_offset / 4][scalar_offset % 4]);
i = x_33;
while (true) {
const int x_38 = i;
const int x_40 = asint(x_6[4].x);
if ((x_38 < x_40)) {
} else {
break;
}
const int x_43 = i;
const uint scalar_offset_1 = ((16u * uint(0))) / 4;
const int x_45 = asint(x_6[scalar_offset_1 / 4][scalar_offset_1 % 4]);
A[x_43] = x_45;
const int x_47 = i;
const int x_50 = asint(x_6[3].x);
const int x_54 = asint(x_6[1].x);
if ((max((2 * x_47), (2 * x_50)) == x_54)) {
A[i] = 1;
}
{
i = (i + 1);
}
}
const uint scalar_offset_2 = ((16u * uint(0))) / 4;
const int x_63 = asint(x_6[scalar_offset_2 / 4][scalar_offset_2 % 4]);
const int x_65 = A[x_63];
const int x_67 = asint(x_6[3].x);
const bool x_68 = (x_65 == x_67);
x_78_phi = x_68;
if (x_68) {
const int x_72 = asint(x_6[3].x);
const int x_74 = A[x_72];
const int x_76 = asint(x_6[3].x);
x_77 = (x_74 == x_76);
x_78_phi = x_77;
}
const bool x_78 = x_78_phi;
x_88_phi = x_78;
if (x_78) {
const int x_82 = asint(x_6[1].x);
const int x_84 = A[x_82];
const uint scalar_offset_3 = ((16u * uint(0))) / 4;
const int x_86 = asint(x_6[scalar_offset_3 / 4][scalar_offset_3 % 4]);
x_87 = (x_84 == x_86);
x_88_phi = x_87;
}
const bool x_88 = x_88_phi;
x_98_phi = x_88;
if (x_88) {
const int x_92 = asint(x_6[2].x);
const int x_94 = A[x_92];
const uint scalar_offset_4 = ((16u * uint(0))) / 4;
const int x_96 = asint(x_6[scalar_offset_4 / 4][scalar_offset_4 % 4]);
x_97 = (x_94 == x_96);
x_98_phi = x_97;
}
if (x_98_phi) {
const int x_103 = asint(x_6[3].x);
const uint scalar_offset_5 = ((16u * uint(0))) / 4;
const int x_106 = asint(x_6[scalar_offset_5 / 4][scalar_offset_5 % 4]);
const uint scalar_offset_6 = ((16u * uint(0))) / 4;
const int x_109 = asint(x_6[scalar_offset_6 / 4][scalar_offset_6 % 4]);
const int x_112 = asint(x_6[3].x);
x_GLF_color = float4(float(x_103), float(x_106), float(x_109), float(x_112));
} else {
x_GLF_color = float4(1.0f, 1.0f, 1.0f, 1.0f);
}
return;
}
struct main_out {
float4 x_GLF_color_1;
};
struct tint_symbol {
float4 x_GLF_color_1 : SV_Target0;
};
main_out main_inner() {
main_1();
const main_out tint_symbol_2 = {x_GLF_color};
return tint_symbol_2;
}
tint_symbol main() {
const main_out inner_result = main_inner();
tint_symbol wrapper_result = (tint_symbol)0;
wrapper_result.x_GLF_color_1 = inner_result.x_GLF_color_1;
return wrapper_result;
}