James Price a5d73ce965 transform/shader_io: Generate a wrapper function
This is a major reworking of this transform. The old transform code
was getting unwieldy, with part of the complication coming from the
handling of multiple return statements. By generating a wrapper
function instead, we can avoid a lot of this complexity.

The original entry point function is stripped of all shader IO
attributes (as well as `stage` and `workgroup_size`), but the body is
left unmodified. A new entry point wrapper function is introduced
which calls the original function, packing/unpacking the shader inputs
as necessary, and propagates the result to the corresponding shader
outputs.

The new code has been refactored to use a state object with the
different parts of the transform split into separate functions, which
makes it much more manageable.

Fixed: tint:1076
Bug: tint:920
Change-Id: I3490a0ea7a3509a4e198ce730e476516649d8d96
Reviewed-on: https://dawn-review.googlesource.com/c/tint/+/60521
Auto-Submit: James Price <jrprice@google.com>
Kokoro: Kokoro <noreply+kokoro@google.com>
Commit-Queue: James Price <jrprice@google.com>
Reviewed-by: Ben Clayton <bclayton@google.com>
2021-08-04 22:15:28 +00:00

96 lines
2.6 KiB
HLSL

struct S {
int data;
};
cbuffer cbuffer_x_9 : register(b0, space0) {
uint4 x_9[3];
};
static float4 x_GLF_color = float4(0.0f, 0.0f, 0.0f, 0.0f);
void func_struct_S_i11_i1_(inout S s, inout int x) {
const int x_103 = asint(x_9[1].x);
const uint scalar_offset = ((16u * uint(0))) / 4;
const int x_105 = asint(x_9[scalar_offset / 4][scalar_offset % 4]);
if ((x_103 == x_105)) {
return;
}
const int x_109 = x;
s.data = x_109;
return;
}
void main_1() {
int i = 0;
S arr[10] = (S[10])0;
int index = 0;
S param = (S)0;
int param_1 = 0;
S param_2 = (S)0;
int param_3 = 0;
i = 0;
{
for(; (i < 10); i = (i + 1)) {
arr[i].data = 0;
}
}
const int x_51 = asint(x_9[1].x);
const uint scalar_offset_1 = ((16u * uint(0))) / 4;
const int x_53 = asint(x_9[scalar_offset_1 / 4][scalar_offset_1 % 4]);
if ((x_51 == x_53)) {
const int x_58 = index;
const S x_60 = arr[x_58];
param = x_60;
param_1 = index;
func_struct_S_i11_i1_(param, param_1);
arr[x_58] = param;
} else {
const uint scalar_offset_2 = ((16u * uint(0))) / 4;
const int x_66 = asint(x_9[scalar_offset_2 / 4][scalar_offset_2 % 4]);
const S x_68 = arr[x_66];
param_2 = x_68;
const int x_70 = asint(x_9[1].x);
param_3 = x_70;
func_struct_S_i11_i1_(param_2, param_3);
arr[x_66] = param_2;
}
const uint scalar_offset_3 = ((16u * uint(0))) / 4;
const int x_75 = asint(x_9[scalar_offset_3 / 4][scalar_offset_3 % 4]);
const int x_77 = arr[x_75].data;
const int x_79 = asint(x_9[1].x);
if ((x_77 == x_79)) {
const int x_85 = asint(x_9[1].x);
const uint scalar_offset_4 = ((16u * uint(0))) / 4;
const int x_88 = asint(x_9[scalar_offset_4 / 4][scalar_offset_4 % 4]);
const uint scalar_offset_5 = ((16u * uint(0))) / 4;
const int x_91 = asint(x_9[scalar_offset_5 / 4][scalar_offset_5 % 4]);
const int x_94 = asint(x_9[1].x);
x_GLF_color = float4(float(x_85), float(x_88), float(x_91), float(x_94));
} else {
const uint scalar_offset_6 = ((16u * uint(0))) / 4;
const int x_98 = asint(x_9[scalar_offset_6 / 4][scalar_offset_6 % 4]);
const float x_99 = float(x_98);
x_GLF_color = float4(x_99, x_99, x_99, x_99);
}
return;
}
struct main_out {
float4 x_GLF_color_1;
};
struct tint_symbol {
float4 x_GLF_color_1 : SV_Target0;
};
main_out main_inner() {
main_1();
const main_out tint_symbol_2 = {x_GLF_color};
return tint_symbol_2;
}
tint_symbol main() {
const main_out inner_result = main_inner();
tint_symbol wrapper_result = (tint_symbol)0;
wrapper_result.x_GLF_color_1 = inner_result.x_GLF_color_1;
return wrapper_result;
}