James Price a5d73ce965 transform/shader_io: Generate a wrapper function
This is a major reworking of this transform. The old transform code
was getting unwieldy, with part of the complication coming from the
handling of multiple return statements. By generating a wrapper
function instead, we can avoid a lot of this complexity.

The original entry point function is stripped of all shader IO
attributes (as well as `stage` and `workgroup_size`), but the body is
left unmodified. A new entry point wrapper function is introduced
which calls the original function, packing/unpacking the shader inputs
as necessary, and propagates the result to the corresponding shader
outputs.

The new code has been refactored to use a state object with the
different parts of the transform split into separate functions, which
makes it much more manageable.

Fixed: tint:1076
Bug: tint:920
Change-Id: I3490a0ea7a3509a4e198ce730e476516649d8d96
Reviewed-on: https://dawn-review.googlesource.com/c/tint/+/60521
Auto-Submit: James Price <jrprice@google.com>
Kokoro: Kokoro <noreply+kokoro@google.com>
Commit-Queue: James Price <jrprice@google.com>
Reviewed-by: Ben Clayton <bclayton@google.com>
2021-08-04 22:15:28 +00:00

77 lines
2.4 KiB
HLSL

struct S {
int a;
int b;
int c;
};
cbuffer cbuffer_x_7 : register(b0, space0) {
uint4 x_7[2];
};
static float4 x_GLF_color = float4(0.0f, 0.0f, 0.0f, 0.0f);
void main_1() {
S A[2] = (S[2])0;
const int x_29 = asint(x_7[1].x);
const int x_31 = asint(x_7[1].x);
const int x_33 = asint(x_7[1].x);
const int x_35 = asint(x_7[1].x);
const S tint_symbol_2 = {x_31, x_33, x_35};
A[x_29] = tint_symbol_2;
const uint scalar_offset = ((16u * uint(0))) / 4;
const int x_39 = asint(x_7[scalar_offset / 4][scalar_offset % 4]);
const int x_41 = asint(x_7[1].x);
const int x_43 = asint(x_7[1].x);
const int x_45 = asint(x_7[1].x);
const S tint_symbol_3 = {x_41, x_43, x_45};
A[x_39] = tint_symbol_3;
const int x_49 = asint(x_7[1].x);
const int x_51 = A[x_49].b;
const int x_53 = asint(x_7[1].x);
if ((x_51 == x_53)) {
const int x_58 = asint(x_7[1].x);
const uint scalar_offset_1 = ((16u * uint(0))) / 4;
const int x_61 = asint(x_7[scalar_offset_1 / 4][scalar_offset_1 % 4]);
A[clamp(x_58, 1, 2)].b = x_61;
}
const uint scalar_offset_2 = ((16u * uint(0))) / 4;
const int x_64 = asint(x_7[scalar_offset_2 / 4][scalar_offset_2 % 4]);
const int x_66 = A[x_64].b;
const uint scalar_offset_3 = ((16u * uint(0))) / 4;
const int x_68 = asint(x_7[scalar_offset_3 / 4][scalar_offset_3 % 4]);
if ((x_66 == x_68)) {
const uint scalar_offset_4 = ((16u * uint(0))) / 4;
const int x_74 = asint(x_7[scalar_offset_4 / 4][scalar_offset_4 % 4]);
const int x_77 = asint(x_7[1].x);
const int x_80 = asint(x_7[1].x);
const uint scalar_offset_5 = ((16u * uint(0))) / 4;
const int x_83 = asint(x_7[scalar_offset_5 / 4][scalar_offset_5 % 4]);
x_GLF_color = float4(float(x_74), float(x_77), float(x_80), float(x_83));
} else {
const uint scalar_offset_6 = ((16u * uint(0))) / 4;
const int x_87 = asint(x_7[scalar_offset_6 / 4][scalar_offset_6 % 4]);
const float x_88 = float(x_87);
x_GLF_color = float4(x_88, x_88, x_88, x_88);
}
return;
}
struct main_out {
float4 x_GLF_color_1;
};
struct tint_symbol {
float4 x_GLF_color_1 : SV_Target0;
};
main_out main_inner() {
main_1();
const main_out tint_symbol_4 = {x_GLF_color};
return tint_symbol_4;
}
tint_symbol main() {
const main_out inner_result = main_inner();
tint_symbol wrapper_result = (tint_symbol)0;
wrapper_result.x_GLF_color_1 = inner_result.x_GLF_color_1;
return wrapper_result;
}