James Price a5d73ce965 transform/shader_io: Generate a wrapper function
This is a major reworking of this transform. The old transform code
was getting unwieldy, with part of the complication coming from the
handling of multiple return statements. By generating a wrapper
function instead, we can avoid a lot of this complexity.

The original entry point function is stripped of all shader IO
attributes (as well as `stage` and `workgroup_size`), but the body is
left unmodified. A new entry point wrapper function is introduced
which calls the original function, packing/unpacking the shader inputs
as necessary, and propagates the result to the corresponding shader
outputs.

The new code has been refactored to use a state object with the
different parts of the transform split into separate functions, which
makes it much more manageable.

Fixed: tint:1076
Bug: tint:920
Change-Id: I3490a0ea7a3509a4e198ce730e476516649d8d96
Reviewed-on: https://dawn-review.googlesource.com/c/tint/+/60521
Auto-Submit: James Price <jrprice@google.com>
Kokoro: Kokoro <noreply+kokoro@google.com>
Commit-Queue: James Price <jrprice@google.com>
Reviewed-by: Ben Clayton <bclayton@google.com>
2021-08-04 22:15:28 +00:00

128 lines
3.7 KiB
Plaintext

#include <metal_stdlib>
using namespace metal;
struct buf1 {
/* 0x0000 */ packed_float2 resolution;
};
struct buf0 {
/* 0x0000 */ packed_float2 injectionSwitch;
};
struct tint_array_wrapper {
float arr[10];
};
struct main_out {
float4 x_GLF_color_1;
};
struct tint_symbol_1 {
float4 x_GLF_color_1 [[color(0)]];
};
void main_1(constant buf0& x_9, constant buf1& x_6, thread float4* const tint_symbol_3, thread float4* const tint_symbol_4) {
tint_array_wrapper data = {};
int x_40_phi = 0;
int x_52_phi = 0;
x_40_phi = 0;
while (true) {
int x_41 = 0;
int const x_40 = x_40_phi;
if ((x_40 < 10)) {
} else {
break;
}
{
float const x_48 = x_9.injectionSwitch.y;
data.arr[x_40] = (float(as_type<int>((as_type<uint>(10) - as_type<uint>(x_40)))) * x_48);
x_41 = as_type<int>((as_type<uint>(x_40) + as_type<uint>(1)));
x_40_phi = x_41;
}
}
x_52_phi = 0;
while (true) {
int x_53 = 0;
int x_59_phi = 0;
int const x_52 = x_52_phi;
if ((x_52 < 9)) {
} else {
break;
}
x_59_phi = 0;
while (true) {
bool x_82 = false;
bool x_83 = false;
int x_60 = 0;
bool x_84_phi = false;
int const x_59 = x_59_phi;
if ((x_59 < 10)) {
} else {
break;
}
if ((x_59 < as_type<int>((as_type<uint>(x_52) + as_type<uint>(1))))) {
{
x_60 = as_type<int>((as_type<uint>(x_59) + as_type<uint>(1)));
x_59_phi = x_60;
}
continue;
}
int const x_69_save = x_52;
float const x_70 = data.arr[x_69_save];
int const x_71_save = x_59;
float const x_72 = data.arr[x_71_save];
float const x_74 = (*(tint_symbol_3)).y;
float const x_76 = x_6.resolution.y;
if ((x_74 < (x_76 * 0.5f))) {
x_82 = (x_70 > x_72);
x_84_phi = x_82;
} else {
x_83 = (x_70 < x_72);
x_84_phi = x_83;
}
bool const x_84 = x_84_phi;
if (x_84) {
float const x_87 = data.arr[x_69_save];
float const x_88 = data.arr[x_71_save];
data.arr[x_69_save] = x_88;
data.arr[x_71_save] = x_87;
}
{
x_60 = as_type<int>((as_type<uint>(x_59) + as_type<uint>(1)));
x_59_phi = x_60;
}
}
{
x_53 = as_type<int>((as_type<uint>(x_52) + as_type<uint>(1)));
x_52_phi = x_53;
}
}
float const x_90 = (*(tint_symbol_3)).x;
float const x_92 = x_6.resolution.x;
if ((x_90 < (x_92 * 0.5f))) {
float const x_99 = data.arr[0];
float const x_102 = data.arr[5];
float const x_105 = data.arr[9];
*(tint_symbol_4) = float4((x_99 * 0.100000001f), (x_102 * 0.100000001f), (x_105 * 0.100000001f), 1.0f);
} else {
float const x_109 = data.arr[5];
float const x_112 = data.arr[9];
float const x_115 = data.arr[0];
*(tint_symbol_4) = float4((x_109 * 0.100000001f), (x_112 * 0.100000001f), (x_115 * 0.100000001f), 1.0f);
}
return;
}
main_out tint_symbol_inner(constant buf0& x_9, constant buf1& x_6, float4 gl_FragCoord_param, thread float4* const tint_symbol_5, thread float4* const tint_symbol_6) {
*(tint_symbol_5) = gl_FragCoord_param;
main_1(x_9, x_6, tint_symbol_5, tint_symbol_6);
main_out const tint_symbol_2 = {.x_GLF_color_1=*(tint_symbol_6)};
return tint_symbol_2;
}
fragment tint_symbol_1 tint_symbol(float4 gl_FragCoord_param [[position]], constant buf0& x_9 [[buffer(0)]], constant buf1& x_6 [[buffer(1)]]) {
thread float4 tint_symbol_7 = 0.0f;
thread float4 tint_symbol_8 = 0.0f;
main_out const inner_result = tint_symbol_inner(x_9, x_6, gl_FragCoord_param, &(tint_symbol_7), &(tint_symbol_8));
tint_symbol_1 wrapper_result = {};
wrapper_result.x_GLF_color_1 = inner_result.x_GLF_color_1;
return wrapper_result;
}