James Price a5d73ce965 transform/shader_io: Generate a wrapper function
This is a major reworking of this transform. The old transform code
was getting unwieldy, with part of the complication coming from the
handling of multiple return statements. By generating a wrapper
function instead, we can avoid a lot of this complexity.

The original entry point function is stripped of all shader IO
attributes (as well as `stage` and `workgroup_size`), but the body is
left unmodified. A new entry point wrapper function is introduced
which calls the original function, packing/unpacking the shader inputs
as necessary, and propagates the result to the corresponding shader
outputs.

The new code has been refactored to use a state object with the
different parts of the transform split into separate functions, which
makes it much more manageable.

Fixed: tint:1076
Bug: tint:920
Change-Id: I3490a0ea7a3509a4e198ce730e476516649d8d96
Reviewed-on: https://dawn-review.googlesource.com/c/tint/+/60521
Auto-Submit: James Price <jrprice@google.com>
Kokoro: Kokoro <noreply+kokoro@google.com>
Commit-Queue: James Price <jrprice@google.com>
Reviewed-by: Ben Clayton <bclayton@google.com>
2021-08-04 22:15:28 +00:00

96 lines
2.0 KiB
Plaintext

#include <metal_stdlib>
using namespace metal;
struct buf0 {
/* 0x0000 */ packed_float2 injectionSwitch;
};
struct main_out {
float4 x_GLF_color_1;
};
struct tint_symbol_1 {
float4 x_GLF_color_1 [[color(0)]];
};
int performPartition_(constant buf0& x_6, thread float4* const tint_symbol_3) {
int GLF_live0i = 0;
int i = 0;
int x_11 = 0;
int x_10_phi = 0;
*(tint_symbol_3) = float4(1.0f, 0.0f, 0.0f, 1.0f);
x_10_phi = 0;
while (true) {
int x_11_phi = 0;
int const x_10 = x_10_phi;
bool x_42 = false;
float const x_41 = x_6.injectionSwitch.y;
x_42 = (x_41 < 0.0f);
if (x_42) {
x_11_phi = x_10;
{
x_11 = x_11_phi;
x_10_phi = x_11;
if (false) {
} else {
break;
}
}
continue;
} else {
GLF_live0i = 0;
while (true) {
bool const x_47 = (0 < 1);
if (x_42) {
break;
}
return 1;
}
if (x_42) {
while (true) {
return 1;
}
return 0;
}
x_11_phi = x_10;
{
x_11 = x_11_phi;
x_10_phi = x_11;
if (false) {
} else {
break;
}
}
continue;
}
x_11_phi = 0;
{
x_11 = x_11_phi;
x_10_phi = x_11;
if (false) {
} else {
break;
}
}
}
return x_11;
}
void main_1(constant buf0& x_6, thread float4* const tint_symbol_4) {
int const x_9 = performPartition_(x_6, tint_symbol_4);
return;
}
main_out tint_symbol_inner(constant buf0& x_6, thread float4* const tint_symbol_5) {
main_1(x_6, tint_symbol_5);
main_out const tint_symbol_2 = {.x_GLF_color_1=*(tint_symbol_5)};
return tint_symbol_2;
}
fragment tint_symbol_1 tint_symbol(constant buf0& x_6 [[buffer(0)]]) {
thread float4 tint_symbol_6 = 0.0f;
main_out const inner_result = tint_symbol_inner(x_6, &(tint_symbol_6));
tint_symbol_1 wrapper_result = {};
wrapper_result.x_GLF_color_1 = inner_result.x_GLF_color_1;
return wrapper_result;
}