James Price a5d73ce965 transform/shader_io: Generate a wrapper function
This is a major reworking of this transform. The old transform code
was getting unwieldy, with part of the complication coming from the
handling of multiple return statements. By generating a wrapper
function instead, we can avoid a lot of this complexity.

The original entry point function is stripped of all shader IO
attributes (as well as `stage` and `workgroup_size`), but the body is
left unmodified. A new entry point wrapper function is introduced
which calls the original function, packing/unpacking the shader inputs
as necessary, and propagates the result to the corresponding shader
outputs.

The new code has been refactored to use a state object with the
different parts of the transform split into separate functions, which
makes it much more manageable.

Fixed: tint:1076
Bug: tint:920
Change-Id: I3490a0ea7a3509a4e198ce730e476516649d8d96
Reviewed-on: https://dawn-review.googlesource.com/c/tint/+/60521
Auto-Submit: James Price <jrprice@google.com>
Kokoro: Kokoro <noreply+kokoro@google.com>
Commit-Queue: James Price <jrprice@google.com>
Reviewed-by: Ben Clayton <bclayton@google.com>
2021-08-04 22:15:28 +00:00

111 lines
2.6 KiB
HLSL

static uint3 gl_GlobalInvocationID = uint3(0u, 0u, 0u);
cbuffer cbuffer_x_10 : register(b1, space0) {
uint4 x_10[1];
};
cbuffer cbuffer_x_13 : register(b2, space0) {
uint4 x_13[1];
};
RWByteAddressBuffer x_15 : register(u0, space0);
void main_1() {
float A[1] = (float[1])0;
int i = 0;
float4 value = float4(0.0f, 0.0f, 0.0f, 0.0f);
int m = 0;
int l = 0;
int n = 0;
A[0] = 0.0f;
i = 0;
{
for(; (i < 50); i = (i + 1)) {
if ((i > 0)) {
const float x_68 = A[0];
const float x_70 = A[0];
A[0] = (x_70 + x_68);
}
}
}
while (true) {
const uint x_80 = gl_GlobalInvocationID.x;
if ((x_80 < 100u)) {
value = float4(0.0f, 0.0f, 0.0f, 1.0f);
m = 0;
{
for(; (m < 1); m = (m + 1)) {
l = 0;
{
for(; (l < 1); l = (l + 1)) {
const float x_100 = asfloat(x_10[0].x);
const float x_102 = asfloat(x_10[0].y);
if ((x_100 > x_102)) {
return;
}
}
}
}
}
n = 0;
{
for(; (n < 1); n = (n + 1)) {
const float x_118 = asfloat(x_10[0].x);
const float x_120 = asfloat(x_10[0].y);
if ((x_118 > x_120)) {
GroupMemoryBarrierWithGroupSync();
}
}
}
} else {
const uint x_127 = gl_GlobalInvocationID.x;
if ((x_127 < 120u)) {
const float x_133 = A[0];
const float x_135 = asfloat(x_13[0].x);
const float x_138 = A[0];
const float x_140 = asfloat(x_13[0].y);
value = float4((x_133 / x_135), (x_138 / x_140), 0.0f, 1.0f);
} else {
const float x_144 = asfloat(x_10[0].x);
const float x_146 = asfloat(x_10[0].y);
if ((x_144 > x_146)) {
{
if (false) {
} else {
break;
}
}
continue;
}
}
}
{
if (false) {
} else {
break;
}
}
}
const float x_151 = value.x;
x_15.Store((4u * uint(0)), asuint(int(x_151)));
const float x_155 = value.y;
x_15.Store(4u, asuint(int(x_155)));
const float x_159 = value.z;
x_15.Store(8u, asuint(int(x_159)));
const float x_163 = value.w;
x_15.Store(12u, asuint(int(x_163)));
return;
}
struct tint_symbol_1 {
uint3 gl_GlobalInvocationID_param : SV_DispatchThreadID;
};
void main_inner(uint3 gl_GlobalInvocationID_param) {
gl_GlobalInvocationID = gl_GlobalInvocationID_param;
main_1();
}
[numthreads(1, 1, 1)]
void main(tint_symbol_1 tint_symbol) {
main_inner(tint_symbol.gl_GlobalInvocationID_param);
return;
}