dawn-cmake/test/bug/tint/914.wgsl.expected.hlsl

168 lines
5.8 KiB
HLSL

ByteAddressBuffer firstMatrix : register(t0, space0);
ByteAddressBuffer secondMatrix : register(t1, space0);
RWByteAddressBuffer resultMatrix : register(u2, space0);
cbuffer cbuffer_uniforms : register(b3, space0) {
uint4 uniforms[1];
};
float mm_readA(uint row, uint col) {
const uint scalar_offset = (0u) / 4;
bool tint_tmp = (row < uniforms[scalar_offset / 4][scalar_offset % 4]);
if (tint_tmp) {
const uint scalar_offset_1 = (4u) / 4;
tint_tmp = (col < uniforms[scalar_offset_1 / 4][scalar_offset_1 % 4]);
}
if ((tint_tmp)) {
const uint scalar_offset_2 = (4u) / 4;
const float result = asfloat(firstMatrix.Load((4u * ((row * uniforms[scalar_offset_2 / 4][scalar_offset_2 % 4]) + col))));
return result;
}
return 0.0f;
}
float mm_readB(uint row, uint col) {
const uint scalar_offset_3 = (4u) / 4;
bool tint_tmp_1 = (row < uniforms[scalar_offset_3 / 4][scalar_offset_3 % 4]);
if (tint_tmp_1) {
const uint scalar_offset_4 = (8u) / 4;
tint_tmp_1 = (col < uniforms[scalar_offset_4 / 4][scalar_offset_4 % 4]);
}
if ((tint_tmp_1)) {
const uint scalar_offset_5 = (8u) / 4;
const float result = asfloat(secondMatrix.Load((4u * ((row * uniforms[scalar_offset_5 / 4][scalar_offset_5 % 4]) + col))));
return result;
}
return 0.0f;
}
void mm_write(uint row, uint col, float value) {
const uint scalar_offset_6 = (0u) / 4;
bool tint_tmp_2 = (row < uniforms[scalar_offset_6 / 4][scalar_offset_6 % 4]);
if (tint_tmp_2) {
const uint scalar_offset_7 = (8u) / 4;
tint_tmp_2 = (col < uniforms[scalar_offset_7 / 4][scalar_offset_7 % 4]);
}
if ((tint_tmp_2)) {
const uint scalar_offset_8 = (8u) / 4;
const uint index = (col + (row * uniforms[scalar_offset_8 / 4][scalar_offset_8 % 4]));
resultMatrix.Store((4u * index), asuint(value));
}
}
static const uint RowPerThread = 4u;
static const uint ColPerThread = 4u;
static const uint TileAOuter = 64u;
static const uint TileBOuter = 64u;
static const uint TileInner = 64u;
groupshared float mm_Asub[64][64];
groupshared float mm_Bsub[64][64];
struct tint_symbol_1 {
uint3 local_id : SV_GroupThreadID;
uint local_invocation_index : SV_GroupIndex;
uint3 global_id : SV_DispatchThreadID;
};
[numthreads(16, 16, 1)]
void main(tint_symbol_1 tint_symbol) {
const uint3 local_id = tint_symbol.local_id;
const uint3 global_id = tint_symbol.global_id;
const uint local_invocation_index = tint_symbol.local_invocation_index;
if ((local_invocation_index == 0u)) {
const float tint_symbol_5[64][64] = (float[64][64])0;
mm_Asub = tint_symbol_5;
const float tint_symbol_6[64][64] = (float[64][64])0;
mm_Bsub = tint_symbol_6;
}
GroupMemoryBarrierWithGroupSync();
const uint tileRow = (local_id.y * RowPerThread);
const uint tileCol = (local_id.x * ColPerThread);
const uint globalRow = (global_id.y * RowPerThread);
const uint globalCol = (global_id.x * ColPerThread);
const uint scalar_offset_9 = (4u) / 4;
const uint numTiles = (((uniforms[scalar_offset_9 / 4][scalar_offset_9 % 4] - 1u) / TileInner) + 1u);
float acc[16] = (float[16])0;
float ACached = 0.0f;
float BCached[4] = (float[4])0;
{
uint index = 0u;
for(; !(!((index < (RowPerThread * ColPerThread)))); index = (index + 1u)) {
acc[index] = 0.0f;
}
}
const uint ColPerThreadA = (TileInner / 16u);
const uint tileColA = (local_id.x * ColPerThreadA);
const uint RowPerThreadB = (TileInner / 16u);
const uint tileRowB = (local_id.y * RowPerThreadB);
{
uint t = 0u;
for(; !(!((t < numTiles))); t = (t + 1u)) {
{
uint innerRow = 0u;
for(; !(!((innerRow < RowPerThread))); innerRow = (innerRow + 1u)) {
{
uint innerCol = 0u;
for(; !(!((innerCol < ColPerThreadA))); innerCol = (innerCol + 1u)) {
const uint inputRow = (tileRow + innerRow);
const uint inputCol = (tileColA + innerCol);
mm_Asub[inputRow][inputCol] = mm_readA((globalRow + innerRow), ((t * TileInner) + inputCol));
}
}
}
}
{
uint innerRow = 0u;
for(; !(!((innerRow < RowPerThreadB))); innerRow = (innerRow + 1u)) {
{
uint innerCol = 0u;
for(; !(!((innerCol < ColPerThread))); innerCol = (innerCol + 1u)) {
const uint inputRow = (tileRowB + innerRow);
const uint inputCol = (tileCol + innerCol);
mm_Bsub[innerCol][inputCol] = mm_readB(((t * TileInner) + inputRow), (globalCol + innerCol));
}
}
}
}
GroupMemoryBarrierWithGroupSync();
{
uint k = 0u;
for(; !(!((k < TileInner))); k = (k + 1u)) {
{
uint inner = 0u;
for(; !(!((inner < ColPerThread))); inner = (inner + 1u)) {
BCached[inner] = mm_Bsub[k][(tileCol + inner)];
}
}
{
uint innerRow = 0u;
for(; !(!((innerRow < RowPerThread))); innerRow = (innerRow + 1u)) {
ACached = mm_Asub[(tileRow + innerRow)][k];
{
uint innerCol = 0u;
for(; !(!((innerCol < ColPerThread))); innerCol = (innerCol + 1u)) {
const uint index = ((innerRow * ColPerThread) + innerCol);
acc[index] = (acc[index] + (ACached * BCached[innerCol]));
}
}
}
}
}
}
GroupMemoryBarrierWithGroupSync();
}
}
{
uint innerRow = 0u;
for(; !(!((innerRow < RowPerThread))); innerRow = (innerRow + 1u)) {
{
uint innerCol = 0u;
for(; !(!((innerCol < ColPerThread))); innerCol = (innerCol + 1u)) {
const uint index = ((innerRow * ColPerThread) + innerCol);
mm_write((globalRow + innerRow), (globalCol + innerCol), acc[index]);
}
}
}
}
return;
}