81 lines
2.8 KiB
WebGPU Shading Language
81 lines
2.8 KiB
WebGPU Shading Language
struct Params {
|
|
filterDim : u32,
|
|
blockDim : u32,
|
|
};
|
|
|
|
@group(0) @binding(0) var samp : sampler;
|
|
@group(0) @binding(1) var<uniform> params : Params;
|
|
@group(1) @binding(1) var inputTex : texture_2d<f32>;
|
|
@group(1) @binding(2) var outputTex : texture_storage_2d<rgba8unorm, write>;
|
|
|
|
struct Flip {
|
|
value : u32,
|
|
};
|
|
@group(1) @binding(3) var<uniform> flip : Flip;
|
|
|
|
// This shader blurs the input texture in one direction, depending on whether
|
|
// |flip.value| is 0 or 1.
|
|
// It does so by running (256 / 4) threads per workgroup to load 256
|
|
// texels into 4 rows of shared memory. Each thread loads a
|
|
// 4 x 4 block of texels to take advantage of the texture sampling
|
|
// hardware.
|
|
// Then, each thread computes the blur result by averaging the adjacent texel values
|
|
// in shared memory.
|
|
// Because we're operating on a subset of the texture, we cannot compute all of the
|
|
// results since not all of the neighbors are available in shared memory.
|
|
// Specifically, with 256 x 256 tiles, we can only compute and write out
|
|
// square blocks of size 256 - (filterSize - 1). We compute the number of blocks
|
|
// needed in Javascript and dispatch that amount.
|
|
|
|
var<workgroup> tile : array<array<vec3<f32>, 256>, 4>;
|
|
|
|
@stage(compute) @workgroup_size(64, 1, 1)
|
|
fn main(
|
|
@builtin(workgroup_id) WorkGroupID : vec3<u32>,
|
|
@builtin(local_invocation_id) LocalInvocationID : vec3<u32>
|
|
) {
|
|
let filterOffset : u32 = (params.filterDim - 1u) / 2u;
|
|
let dims : vec2<i32> = textureDimensions(inputTex, 0);
|
|
|
|
let baseIndex = vec2<i32>(
|
|
WorkGroupID.xy * vec2<u32>(params.blockDim, 4u) +
|
|
LocalInvocationID.xy * vec2<u32>(4u, 1u)
|
|
) - vec2<i32>(i32(filterOffset), 0);
|
|
|
|
for (var r : u32 = 0u; r < 4u; r = r + 1u) {
|
|
for (var c : u32 = 0u; c < 4u; c = c + 1u) {
|
|
var loadIndex = baseIndex + vec2<i32>(i32(c), i32(r));
|
|
if (flip.value != 0u) {
|
|
loadIndex = loadIndex.yx;
|
|
}
|
|
|
|
tile[r][4u * LocalInvocationID.x + c] =
|
|
textureSampleLevel(inputTex, samp,
|
|
(vec2<f32>(loadIndex) + vec2<f32>(0.25, 0.25)) / vec2<f32>(dims), 0.0).rgb;
|
|
}
|
|
}
|
|
|
|
workgroupBarrier();
|
|
|
|
for (var r : u32 = 0u; r < 4u; r = r + 1u) {
|
|
for (var c : u32 = 0u; c < 4u; c = c + 1u) {
|
|
var writeIndex = baseIndex + vec2<i32>(i32(c), i32(r));
|
|
if (flip.value != 0u) {
|
|
writeIndex = writeIndex.yx;
|
|
}
|
|
|
|
let center : u32 = 4u * LocalInvocationID.x + c;
|
|
if (center >= filterOffset &&
|
|
center < 256u - filterOffset &&
|
|
all(writeIndex < dims)) {
|
|
var acc : vec3<f32> = vec3<f32>(0.0, 0.0, 0.0);
|
|
for (var f : u32 = 0u; f < params.filterDim; f = f + 1u) {
|
|
var i : u32 = center + f - filterOffset;
|
|
acc = acc + (1.0 / f32(params.filterDim)) * tile[r][i];
|
|
}
|
|
textureStore(outputTex, writeIndex, vec4<f32>(acc, 1.0));
|
|
}
|
|
}
|
|
}
|
|
}
|