mirror of
https://github.com/encounter/dawn-cmake.git
synced 2025-05-13 10:51:35 +00:00
This matches the term used in the WGSL spec. Change-Id: I4603332b828450c126ef806f1064ed54f372013f Reviewed-on: https://dawn-review.googlesource.com/c/tint/+/78787 Reviewed-by: James Price <jrprice@google.com> Kokoro: Kokoro <noreply+kokoro@google.com>
3970 lines
118 KiB
C++
3970 lines
118 KiB
C++
/// Copyright 2020 The Tint Authors.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "src/writer/hlsl/generator_impl.h"
|
|
|
|
#include <algorithm>
|
|
#include <cmath>
|
|
#include <functional>
|
|
#include <iomanip>
|
|
#include <set>
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
#include "src/ast/call_statement.h"
|
|
#include "src/ast/fallthrough_statement.h"
|
|
#include "src/ast/internal_attribute.h"
|
|
#include "src/ast/interpolate_attribute.h"
|
|
#include "src/ast/override_attribute.h"
|
|
#include "src/ast/variable_decl_statement.h"
|
|
#include "src/debug.h"
|
|
#include "src/sem/array.h"
|
|
#include "src/sem/atomic_type.h"
|
|
#include "src/sem/block_statement.h"
|
|
#include "src/sem/call.h"
|
|
#include "src/sem/depth_multisampled_texture_type.h"
|
|
#include "src/sem/depth_texture_type.h"
|
|
#include "src/sem/function.h"
|
|
#include "src/sem/member_accessor_expression.h"
|
|
#include "src/sem/multisampled_texture_type.h"
|
|
#include "src/sem/sampled_texture_type.h"
|
|
#include "src/sem/statement.h"
|
|
#include "src/sem/storage_texture_type.h"
|
|
#include "src/sem/struct.h"
|
|
#include "src/sem/type_constructor.h"
|
|
#include "src/sem/type_conversion.h"
|
|
#include "src/sem/variable.h"
|
|
#include "src/transform/add_empty_entry_point.h"
|
|
#include "src/transform/array_length_from_uniform.h"
|
|
#include "src/transform/calculate_array_length.h"
|
|
#include "src/transform/canonicalize_entry_point_io.h"
|
|
#include "src/transform/decompose_memory_access.h"
|
|
#include "src/transform/external_texture_transform.h"
|
|
#include "src/transform/fold_trivial_single_use_lets.h"
|
|
#include "src/transform/localize_struct_array_assignment.h"
|
|
#include "src/transform/loop_to_for_loop.h"
|
|
#include "src/transform/manager.h"
|
|
#include "src/transform/num_workgroups_from_uniform.h"
|
|
#include "src/transform/pad_array_elements.h"
|
|
#include "src/transform/promote_side_effects_to_decl.h"
|
|
#include "src/transform/remove_phonies.h"
|
|
#include "src/transform/simplify_pointers.h"
|
|
#include "src/transform/unshadow.h"
|
|
#include "src/transform/zero_init_workgroup_memory.h"
|
|
#include "src/utils/defer.h"
|
|
#include "src/utils/map.h"
|
|
#include "src/utils/scoped_assignment.h"
|
|
#include "src/writer/append_vector.h"
|
|
#include "src/writer/float_to_string.h"
|
|
|
|
namespace tint {
|
|
namespace writer {
|
|
namespace hlsl {
|
|
namespace {
|
|
|
|
const char kTempNamePrefix[] = "tint_tmp";
|
|
const char kSpecConstantPrefix[] = "WGSL_SPEC_CONSTANT_";
|
|
|
|
const char* image_format_to_rwtexture_type(ast::TexelFormat image_format) {
|
|
switch (image_format) {
|
|
case ast::TexelFormat::kRgba8Unorm:
|
|
case ast::TexelFormat::kRgba8Snorm:
|
|
case ast::TexelFormat::kRgba16Float:
|
|
case ast::TexelFormat::kR32Float:
|
|
case ast::TexelFormat::kRg32Float:
|
|
case ast::TexelFormat::kRgba32Float:
|
|
return "float4";
|
|
case ast::TexelFormat::kRgba8Uint:
|
|
case ast::TexelFormat::kRgba16Uint:
|
|
case ast::TexelFormat::kR32Uint:
|
|
case ast::TexelFormat::kRg32Uint:
|
|
case ast::TexelFormat::kRgba32Uint:
|
|
return "uint4";
|
|
case ast::TexelFormat::kRgba8Sint:
|
|
case ast::TexelFormat::kRgba16Sint:
|
|
case ast::TexelFormat::kR32Sint:
|
|
case ast::TexelFormat::kRg32Sint:
|
|
case ast::TexelFormat::kRgba32Sint:
|
|
return "int4";
|
|
default:
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
// Helper for writing " : register(RX, spaceY)", where R is the register, X is
|
|
// the binding point binding value, and Y is the binding point group value.
|
|
struct RegisterAndSpace {
|
|
RegisterAndSpace(char r, ast::VariableBindingPoint bp)
|
|
: reg(r), binding_point(bp) {}
|
|
|
|
const char reg;
|
|
ast::VariableBindingPoint const binding_point;
|
|
};
|
|
|
|
std::ostream& operator<<(std::ostream& s, const RegisterAndSpace& rs) {
|
|
s << " : register(" << rs.reg << rs.binding_point.binding->value << ", space"
|
|
<< rs.binding_point.group->value << ")";
|
|
return s;
|
|
}
|
|
|
|
const char* LoopAttribute() {
|
|
// Force loops not to be unrolled to work around FXC compilation issues when
|
|
// it attempts and fails to unroll loops when it contains gradient operations.
|
|
// https://docs.microsoft.com/en-us/windows/win32/direct3dhlsl/dx-graphics-hlsl-while
|
|
return "[loop] ";
|
|
}
|
|
|
|
} // namespace
|
|
|
|
SanitizedResult::SanitizedResult() = default;
|
|
SanitizedResult::~SanitizedResult() = default;
|
|
SanitizedResult::SanitizedResult(SanitizedResult&&) = default;
|
|
|
|
SanitizedResult Sanitize(
|
|
const Program* in,
|
|
sem::BindingPoint root_constant_binding_point,
|
|
bool disable_workgroup_init,
|
|
const ArrayLengthFromUniformOptions& array_length_from_uniform) {
|
|
transform::Manager manager;
|
|
transform::DataMap data;
|
|
|
|
// Build the config for the internal ArrayLengthFromUniform transform.
|
|
transform::ArrayLengthFromUniform::Config array_length_from_uniform_cfg(
|
|
array_length_from_uniform.ubo_binding);
|
|
array_length_from_uniform_cfg.bindpoint_to_size_index =
|
|
array_length_from_uniform.bindpoint_to_size_index;
|
|
|
|
manager.Add<transform::Unshadow>();
|
|
|
|
// LocalizeStructArrayAssignment must come after:
|
|
// * SimplifyPointers, because it assumes assignment to arrays in structs are
|
|
// done directly, not indirectly.
|
|
// TODO(crbug.com/tint/1340): See if we can get rid of the duplicate
|
|
// SimplifyPointers transform. Can't do it right now because
|
|
// LocalizeStructArrayAssignment introduces pointers.
|
|
manager.Add<transform::SimplifyPointers>();
|
|
manager.Add<transform::LocalizeStructArrayAssignment>();
|
|
|
|
// Attempt to convert `loop`s into for-loops. This is to try and massage the
|
|
// output into something that will not cause FXC to choke or misbehave.
|
|
manager.Add<transform::FoldTrivialSingleUseLets>();
|
|
manager.Add<transform::LoopToForLoop>();
|
|
|
|
if (!disable_workgroup_init) {
|
|
// ZeroInitWorkgroupMemory must come before CanonicalizeEntryPointIO as
|
|
// ZeroInitWorkgroupMemory may inject new builtin parameters.
|
|
manager.Add<transform::ZeroInitWorkgroupMemory>();
|
|
}
|
|
manager.Add<transform::CanonicalizeEntryPointIO>();
|
|
// NumWorkgroupsFromUniform must come after CanonicalizeEntryPointIO, as it
|
|
// assumes that num_workgroups builtins only appear as struct members and are
|
|
// only accessed directly via member accessors.
|
|
manager.Add<transform::NumWorkgroupsFromUniform>();
|
|
manager.Add<transform::SimplifyPointers>();
|
|
manager.Add<transform::RemovePhonies>();
|
|
// ArrayLengthFromUniform must come after InlinePointerLets and Simplify, as
|
|
// it assumes that the form of the array length argument is &var.array.
|
|
manager.Add<transform::ArrayLengthFromUniform>();
|
|
data.Add<transform::ArrayLengthFromUniform::Config>(
|
|
std::move(array_length_from_uniform_cfg));
|
|
// DecomposeMemoryAccess must come after:
|
|
// * InlinePointerLets, as we cannot take the address of calls to
|
|
// DecomposeMemoryAccess::Intrinsic.
|
|
// * Simplify, as we need to fold away the address-of and dereferences of
|
|
// `*(&(intrinsic_load()))` expressions.
|
|
// * RemovePhonies, as phonies can be assigned a pointer to a
|
|
// non-constructible buffer, or dynamic array, which DMA cannot cope with.
|
|
manager.Add<transform::DecomposeMemoryAccess>();
|
|
// CalculateArrayLength must come after DecomposeMemoryAccess, as
|
|
// DecomposeMemoryAccess special-cases the arrayLength() intrinsic, which
|
|
// will be transformed by CalculateArrayLength
|
|
manager.Add<transform::CalculateArrayLength>();
|
|
manager.Add<transform::ExternalTextureTransform>();
|
|
|
|
data.Add<transform::PromoteSideEffectsToDecl::Config>(
|
|
/* type_ctor_to_let */ true, /* dynamic_index_to_var */ false);
|
|
manager.Add<transform::PromoteSideEffectsToDecl>();
|
|
|
|
manager.Add<transform::PadArrayElements>();
|
|
manager.Add<transform::AddEmptyEntryPoint>();
|
|
|
|
data.Add<transform::CanonicalizeEntryPointIO::Config>(
|
|
transform::CanonicalizeEntryPointIO::ShaderStyle::kHlsl);
|
|
data.Add<transform::NumWorkgroupsFromUniform::Config>(
|
|
root_constant_binding_point);
|
|
|
|
auto out = manager.Run(in, data);
|
|
|
|
SanitizedResult result;
|
|
result.program = std::move(out.program);
|
|
if (auto* res = out.data.Get<transform::ArrayLengthFromUniform::Result>()) {
|
|
result.used_array_length_from_uniform_indices =
|
|
std::move(res->used_size_indices);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
GeneratorImpl::GeneratorImpl(const Program* program) : TextGenerator(program) {}
|
|
|
|
GeneratorImpl::~GeneratorImpl() = default;
|
|
|
|
bool GeneratorImpl::Generate() {
|
|
const TypeInfo* last_kind = nullptr;
|
|
size_t last_padding_line = 0;
|
|
|
|
for (auto* decl : builder_.AST().GlobalDeclarations()) {
|
|
if (decl->Is<ast::Alias>()) {
|
|
continue; // Ignore aliases.
|
|
}
|
|
|
|
// Emit a new line between declarations if the type of declaration has
|
|
// changed, or we're about to emit a function
|
|
auto* kind = &decl->TypeInfo();
|
|
if (current_buffer_->lines.size() != last_padding_line) {
|
|
if (last_kind && (last_kind != kind || decl->Is<ast::Function>())) {
|
|
line();
|
|
last_padding_line = current_buffer_->lines.size();
|
|
}
|
|
}
|
|
last_kind = kind;
|
|
|
|
if (auto* global = decl->As<ast::Variable>()) {
|
|
if (!EmitGlobalVariable(global)) {
|
|
return false;
|
|
}
|
|
} else if (auto* str = decl->As<ast::Struct>()) {
|
|
auto* ty = builder_.Sem().Get(str);
|
|
auto storage_class_uses = ty->StorageClassUsage();
|
|
if (storage_class_uses.size() !=
|
|
(storage_class_uses.count(ast::StorageClass::kStorage) +
|
|
storage_class_uses.count(ast::StorageClass::kUniform))) {
|
|
// The structure is used as something other than a storage buffer or
|
|
// uniform buffer, so it needs to be emitted.
|
|
// Storage buffer are read and written to via a ByteAddressBuffer
|
|
// instead of true structure.
|
|
// Structures used as uniform buffer are read from an array of vectors
|
|
// instead of true structure.
|
|
if (!EmitStructType(current_buffer_, ty)) {
|
|
return false;
|
|
}
|
|
}
|
|
} else if (auto* func = decl->As<ast::Function>()) {
|
|
if (func->IsEntryPoint()) {
|
|
if (!EmitEntryPointFunction(func)) {
|
|
return false;
|
|
}
|
|
} else {
|
|
if (!EmitFunction(func)) {
|
|
return false;
|
|
}
|
|
}
|
|
} else {
|
|
TINT_ICE(Writer, diagnostics_)
|
|
<< "unhandled module-scope declaration: " << decl->TypeInfo().name;
|
|
return false;
|
|
}
|
|
}
|
|
|
|
if (!helpers_.lines.empty()) {
|
|
current_buffer_->Insert(helpers_, 0, 0);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool GeneratorImpl::EmitDynamicVectorAssignment(
|
|
const ast::AssignmentStatement* stmt,
|
|
const sem::Vector* vec) {
|
|
auto name =
|
|
utils::GetOrCreate(dynamic_vector_write_, vec, [&]() -> std::string {
|
|
std::string fn;
|
|
{
|
|
std::ostringstream ss;
|
|
if (!EmitType(ss, vec, tint::ast::StorageClass::kInvalid,
|
|
ast::Access::kUndefined, "")) {
|
|
return "";
|
|
}
|
|
fn = UniqueIdentifier("set_" + ss.str());
|
|
}
|
|
{
|
|
auto out = line(&helpers_);
|
|
out << "void " << fn << "(inout ";
|
|
if (!EmitTypeAndName(out, vec, ast::StorageClass::kInvalid,
|
|
ast::Access::kUndefined, "vec")) {
|
|
return "";
|
|
}
|
|
out << ", int idx, ";
|
|
if (!EmitTypeAndName(out, vec->type(), ast::StorageClass::kInvalid,
|
|
ast::Access::kUndefined, "val")) {
|
|
return "";
|
|
}
|
|
out << ") {";
|
|
}
|
|
{
|
|
ScopedIndent si(&helpers_);
|
|
auto out = line(&helpers_);
|
|
switch (vec->Width()) {
|
|
case 2:
|
|
out << "vec = (idx.xx == int2(0, 1)) ? val.xx : vec;";
|
|
break;
|
|
case 3:
|
|
out << "vec = (idx.xxx == int3(0, 1, 2)) ? val.xxx : vec;";
|
|
break;
|
|
case 4:
|
|
out << "vec = (idx.xxxx == int4(0, 1, 2, 3)) ? val.xxxx : vec;";
|
|
break;
|
|
default:
|
|
TINT_UNREACHABLE(Writer, builder_.Diagnostics())
|
|
<< "invalid vector size " << vec->Width();
|
|
break;
|
|
}
|
|
}
|
|
line(&helpers_) << "}";
|
|
line(&helpers_);
|
|
return fn;
|
|
});
|
|
|
|
if (name.empty()) {
|
|
return false;
|
|
}
|
|
|
|
auto* ast_access_expr = stmt->lhs->As<ast::IndexAccessorExpression>();
|
|
|
|
auto out = line();
|
|
out << name << "(";
|
|
if (!EmitExpression(out, ast_access_expr->object)) {
|
|
return false;
|
|
}
|
|
out << ", ";
|
|
if (!EmitExpression(out, ast_access_expr->index)) {
|
|
return false;
|
|
}
|
|
out << ", ";
|
|
if (!EmitExpression(out, stmt->rhs)) {
|
|
return false;
|
|
}
|
|
out << ");";
|
|
|
|
return true;
|
|
}
|
|
|
|
bool GeneratorImpl::EmitDynamicMatrixVectorAssignment(
|
|
const ast::AssignmentStatement* stmt,
|
|
const sem::Matrix* mat) {
|
|
auto name = utils::GetOrCreate(
|
|
dynamic_matrix_vector_write_, mat, [&]() -> std::string {
|
|
std::string fn;
|
|
{
|
|
std::ostringstream ss;
|
|
if (!EmitType(ss, mat, tint::ast::StorageClass::kInvalid,
|
|
ast::Access::kUndefined, "")) {
|
|
return "";
|
|
}
|
|
fn = UniqueIdentifier("set_vector_" + ss.str());
|
|
}
|
|
{
|
|
auto out = line(&helpers_);
|
|
out << "void " << fn << "(inout ";
|
|
if (!EmitTypeAndName(out, mat, ast::StorageClass::kInvalid,
|
|
ast::Access::kUndefined, "mat")) {
|
|
return "";
|
|
}
|
|
out << ", int col, ";
|
|
if (!EmitTypeAndName(out, mat->ColumnType(),
|
|
ast::StorageClass::kInvalid,
|
|
ast::Access::kUndefined, "val")) {
|
|
return "";
|
|
}
|
|
out << ") {";
|
|
}
|
|
{
|
|
ScopedIndent si(&helpers_);
|
|
line(&helpers_) << "switch (col) {";
|
|
{
|
|
ScopedIndent si2(&helpers_);
|
|
for (uint32_t i = 0; i < mat->columns(); ++i) {
|
|
line(&helpers_)
|
|
<< "case " << i << ": mat[" << i << "] = val; break;";
|
|
}
|
|
}
|
|
line(&helpers_) << "}";
|
|
}
|
|
line(&helpers_) << "}";
|
|
line(&helpers_);
|
|
return fn;
|
|
});
|
|
|
|
if (name.empty()) {
|
|
return false;
|
|
}
|
|
|
|
auto* ast_access_expr = stmt->lhs->As<ast::IndexAccessorExpression>();
|
|
|
|
auto out = line();
|
|
out << name << "(";
|
|
if (!EmitExpression(out, ast_access_expr->object)) {
|
|
return false;
|
|
}
|
|
out << ", ";
|
|
if (!EmitExpression(out, ast_access_expr->index)) {
|
|
return false;
|
|
}
|
|
out << ", ";
|
|
if (!EmitExpression(out, stmt->rhs)) {
|
|
return false;
|
|
}
|
|
out << ");";
|
|
|
|
return true;
|
|
}
|
|
|
|
bool GeneratorImpl::EmitDynamicMatrixScalarAssignment(
|
|
const ast::AssignmentStatement* stmt,
|
|
const sem::Matrix* mat) {
|
|
auto* lhs_col_access = stmt->lhs->As<ast::IndexAccessorExpression>();
|
|
auto* lhs_row_access =
|
|
lhs_col_access->object->As<ast::IndexAccessorExpression>();
|
|
|
|
auto name = utils::GetOrCreate(
|
|
dynamic_matrix_scalar_write_, mat, [&]() -> std::string {
|
|
std::string fn;
|
|
{
|
|
std::ostringstream ss;
|
|
if (!EmitType(ss, mat, tint::ast::StorageClass::kInvalid,
|
|
ast::Access::kUndefined, "")) {
|
|
return "";
|
|
}
|
|
fn = UniqueIdentifier("set_scalar_" + ss.str());
|
|
}
|
|
{
|
|
auto out = line(&helpers_);
|
|
out << "void " << fn << "(inout ";
|
|
if (!EmitTypeAndName(out, mat, ast::StorageClass::kInvalid,
|
|
ast::Access::kUndefined, "mat")) {
|
|
return "";
|
|
}
|
|
out << ", int col, int row, ";
|
|
if (!EmitTypeAndName(out, mat->type(), ast::StorageClass::kInvalid,
|
|
ast::Access::kUndefined, "val")) {
|
|
return "";
|
|
}
|
|
out << ") {";
|
|
}
|
|
{
|
|
ScopedIndent si(&helpers_);
|
|
line(&helpers_) << "switch (col) {";
|
|
{
|
|
ScopedIndent si2(&helpers_);
|
|
auto* vec =
|
|
TypeOf(lhs_row_access->object)->UnwrapRef()->As<sem::Vector>();
|
|
for (uint32_t i = 0; i < mat->columns(); ++i) {
|
|
line(&helpers_) << "case " << i << ":";
|
|
{
|
|
auto vec_name = "mat[" + std::to_string(i) + "]";
|
|
ScopedIndent si3(&helpers_);
|
|
{
|
|
auto out = line(&helpers_);
|
|
switch (mat->rows()) {
|
|
case 2:
|
|
out << vec_name
|
|
<< " = (row.xx == int2(0, 1)) ? val.xx : " << vec_name
|
|
<< ";";
|
|
break;
|
|
case 3:
|
|
out << vec_name
|
|
<< " = (row.xxx == int3(0, 1, 2)) ? val.xxx : "
|
|
<< vec_name << ";";
|
|
break;
|
|
case 4:
|
|
out << vec_name
|
|
<< " = (row.xxxx == int4(0, 1, 2, 3)) ? val.xxxx : "
|
|
<< vec_name << ";";
|
|
break;
|
|
default:
|
|
TINT_UNREACHABLE(Writer, builder_.Diagnostics())
|
|
<< "invalid vector size " << vec->Width();
|
|
break;
|
|
}
|
|
}
|
|
line(&helpers_) << "break;";
|
|
}
|
|
}
|
|
}
|
|
line(&helpers_) << "}";
|
|
}
|
|
line(&helpers_) << "}";
|
|
line(&helpers_);
|
|
return fn;
|
|
});
|
|
|
|
if (name.empty()) {
|
|
return false;
|
|
}
|
|
|
|
auto out = line();
|
|
out << name << "(";
|
|
if (!EmitExpression(out, lhs_row_access->object)) {
|
|
return false;
|
|
}
|
|
out << ", ";
|
|
if (!EmitExpression(out, lhs_col_access->index)) {
|
|
return false;
|
|
}
|
|
out << ", ";
|
|
if (!EmitExpression(out, lhs_row_access->index)) {
|
|
return false;
|
|
}
|
|
out << ", ";
|
|
if (!EmitExpression(out, stmt->rhs)) {
|
|
return false;
|
|
}
|
|
out << ");";
|
|
|
|
return true;
|
|
}
|
|
|
|
bool GeneratorImpl::EmitIndexAccessor(
|
|
std::ostream& out,
|
|
const ast::IndexAccessorExpression* expr) {
|
|
if (!EmitExpression(out, expr->object)) {
|
|
return false;
|
|
}
|
|
out << "[";
|
|
|
|
if (!EmitExpression(out, expr->index)) {
|
|
return false;
|
|
}
|
|
out << "]";
|
|
|
|
return true;
|
|
}
|
|
|
|
bool GeneratorImpl::EmitBitcast(std::ostream& out,
|
|
const ast::BitcastExpression* expr) {
|
|
auto* type = TypeOf(expr);
|
|
if (auto* vec = type->UnwrapRef()->As<sem::Vector>()) {
|
|
type = vec->type();
|
|
}
|
|
|
|
if (!type->is_integer_scalar() && !type->is_float_scalar()) {
|
|
diagnostics_.add_error(diag::System::Writer,
|
|
"Unable to do bitcast to type " + type->type_name());
|
|
return false;
|
|
}
|
|
|
|
out << "as";
|
|
if (!EmitType(out, type, ast::StorageClass::kNone, ast::Access::kReadWrite,
|
|
"")) {
|
|
return false;
|
|
}
|
|
out << "(";
|
|
if (!EmitExpression(out, expr->expr)) {
|
|
return false;
|
|
}
|
|
out << ")";
|
|
return true;
|
|
}
|
|
|
|
bool GeneratorImpl::EmitAssign(const ast::AssignmentStatement* stmt) {
|
|
if (auto* lhs_access = stmt->lhs->As<ast::IndexAccessorExpression>()) {
|
|
// BUG(crbug.com/tint/1333): work around assignment of scalar to matrices
|
|
// with at least one dynamic index
|
|
if (auto* lhs_sub_access =
|
|
lhs_access->object->As<ast::IndexAccessorExpression>()) {
|
|
if (auto* mat =
|
|
TypeOf(lhs_sub_access->object)->UnwrapRef()->As<sem::Matrix>()) {
|
|
auto* rhs_col_idx_sem = builder_.Sem().Get(lhs_access->index);
|
|
auto* rhs_row_idx_sem = builder_.Sem().Get(lhs_sub_access->index);
|
|
if (!rhs_col_idx_sem->ConstantValue().IsValid() ||
|
|
!rhs_row_idx_sem->ConstantValue().IsValid()) {
|
|
return EmitDynamicMatrixScalarAssignment(stmt, mat);
|
|
}
|
|
}
|
|
}
|
|
// BUG(crbug.com/tint/1333): work around assignment of vector to matrices
|
|
// with dynamic indices
|
|
const auto* lhs_access_type = TypeOf(lhs_access->object)->UnwrapRef();
|
|
if (auto* mat = lhs_access_type->As<sem::Matrix>()) {
|
|
auto* lhs_index_sem = builder_.Sem().Get(lhs_access->index);
|
|
if (!lhs_index_sem->ConstantValue().IsValid()) {
|
|
return EmitDynamicMatrixVectorAssignment(stmt, mat);
|
|
}
|
|
}
|
|
// BUG(crbug.com/tint/534): work around assignment to vectors with dynamic
|
|
// indices
|
|
if (auto* vec = lhs_access_type->As<sem::Vector>()) {
|
|
auto* rhs_sem = builder_.Sem().Get(lhs_access->index);
|
|
if (!rhs_sem->ConstantValue().IsValid()) {
|
|
return EmitDynamicVectorAssignment(stmt, vec);
|
|
}
|
|
}
|
|
}
|
|
|
|
auto out = line();
|
|
if (!EmitExpression(out, stmt->lhs)) {
|
|
return false;
|
|
}
|
|
out << " = ";
|
|
if (!EmitExpression(out, stmt->rhs)) {
|
|
return false;
|
|
}
|
|
out << ";";
|
|
return true;
|
|
}
|
|
|
|
bool GeneratorImpl::EmitExpressionOrOneIfZero(std::ostream& out,
|
|
const ast::Expression* expr) {
|
|
// For constants, replace literal 0 with 1.
|
|
sem::Constant::Scalars elems;
|
|
if (const auto& val = builder_.Sem().Get(expr)->ConstantValue()) {
|
|
if (!val.AnyZero()) {
|
|
return EmitExpression(out, expr);
|
|
}
|
|
|
|
if (val.Type()->IsAnyOf<sem::I32, sem::U32>()) {
|
|
return EmitValue(out, val.Type(), 1);
|
|
}
|
|
|
|
if (auto* vec = val.Type()->As<sem::Vector>()) {
|
|
auto* elem_ty = vec->type();
|
|
|
|
if (!EmitType(out, val.Type(), ast::StorageClass::kNone,
|
|
ast::Access::kUndefined, "")) {
|
|
return false;
|
|
}
|
|
|
|
out << "(";
|
|
for (size_t i = 0; i < val.Elements().size(); ++i) {
|
|
if (i != 0) {
|
|
out << ", ";
|
|
}
|
|
if (!val.WithScalarAt(i, [&](auto&& s) -> bool {
|
|
// Use std::equal_to to work around -Wfloat-equal warnings
|
|
auto equals_to =
|
|
std::equal_to<std::remove_reference_t<decltype(s)>>{};
|
|
|
|
bool is_zero = equals_to(s, 0);
|
|
return EmitValue(out, elem_ty, is_zero ? 1 : static_cast<int>(s));
|
|
})) {
|
|
return false;
|
|
}
|
|
}
|
|
out << ")";
|
|
return true;
|
|
}
|
|
|
|
TINT_ICE(Writer, diagnostics_)
|
|
<< "EmitExpressionOrOneIfZero expects integer scalar or vector";
|
|
return false;
|
|
}
|
|
|
|
auto* ty = TypeOf(expr)->UnwrapRef();
|
|
|
|
// For non-constants, we need to emit runtime code to check if the value is 0,
|
|
// and return 1 in that case.
|
|
std::string zero;
|
|
{
|
|
std::ostringstream ss;
|
|
EmitValue(ss, ty, 0);
|
|
zero = ss.str();
|
|
}
|
|
std::string one;
|
|
{
|
|
std::ostringstream ss;
|
|
EmitValue(ss, ty, 1);
|
|
one = ss.str();
|
|
}
|
|
|
|
// For identifiers, no need for a function call as it's fine to evaluate
|
|
// `expr` more than once.
|
|
if (expr->Is<ast::IdentifierExpression>()) {
|
|
out << "(";
|
|
if (!EmitExpression(out, expr)) {
|
|
return false;
|
|
}
|
|
out << " == " << zero << " ? " << one << " : ";
|
|
if (!EmitExpression(out, expr)) {
|
|
return false;
|
|
}
|
|
out << ")";
|
|
return true;
|
|
}
|
|
|
|
// For non-identifier expressions, call a function to make sure `expr` is only
|
|
// evaluated once.
|
|
auto name =
|
|
utils::GetOrCreate(value_or_one_if_zero_, ty, [&]() -> std::string {
|
|
// Example:
|
|
// int4 tint_value_or_one_if_zero_int4(int4 value) {
|
|
// return value == 0 ? 0 : value;
|
|
// }
|
|
std::string ty_name;
|
|
{
|
|
std::ostringstream ss;
|
|
if (!EmitType(ss, ty, tint::ast::StorageClass::kInvalid,
|
|
ast::Access::kUndefined, "")) {
|
|
return "";
|
|
}
|
|
ty_name = ss.str();
|
|
}
|
|
|
|
std::string fn = UniqueIdentifier("value_or_one_if_zero_" + ty_name);
|
|
line(&helpers_) << ty_name << " " << fn << "(" << ty_name
|
|
<< " value) {";
|
|
{
|
|
ScopedIndent si(&helpers_);
|
|
line(&helpers_) << "return value == " << zero << " ? " << one
|
|
<< " : value;";
|
|
}
|
|
line(&helpers_) << "}";
|
|
line(&helpers_);
|
|
return fn;
|
|
});
|
|
|
|
if (name.empty()) {
|
|
return false;
|
|
}
|
|
|
|
out << name << "(";
|
|
if (!EmitExpression(out, expr)) {
|
|
return false;
|
|
}
|
|
out << ")";
|
|
return true;
|
|
}
|
|
|
|
bool GeneratorImpl::EmitBinary(std::ostream& out,
|
|
const ast::BinaryExpression* expr) {
|
|
if (expr->op == ast::BinaryOp::kLogicalAnd ||
|
|
expr->op == ast::BinaryOp::kLogicalOr) {
|
|
auto name = UniqueIdentifier(kTempNamePrefix);
|
|
|
|
{
|
|
auto pre = line();
|
|
pre << "bool " << name << " = ";
|
|
if (!EmitExpression(pre, expr->lhs)) {
|
|
return false;
|
|
}
|
|
pre << ";";
|
|
}
|
|
|
|
if (expr->op == ast::BinaryOp::kLogicalOr) {
|
|
line() << "if (!" << name << ") {";
|
|
} else {
|
|
line() << "if (" << name << ") {";
|
|
}
|
|
|
|
{
|
|
ScopedIndent si(this);
|
|
auto pre = line();
|
|
pre << name << " = ";
|
|
if (!EmitExpression(pre, expr->rhs)) {
|
|
return false;
|
|
}
|
|
pre << ";";
|
|
}
|
|
|
|
line() << "}";
|
|
|
|
out << "(" << name << ")";
|
|
return true;
|
|
}
|
|
|
|
auto* lhs_type = TypeOf(expr->lhs)->UnwrapRef();
|
|
auto* rhs_type = TypeOf(expr->rhs)->UnwrapRef();
|
|
// Multiplying by a matrix requires the use of `mul` in order to get the
|
|
// type of multiply we desire.
|
|
if (expr->op == ast::BinaryOp::kMultiply &&
|
|
((lhs_type->Is<sem::Vector>() && rhs_type->Is<sem::Matrix>()) ||
|
|
(lhs_type->Is<sem::Matrix>() && rhs_type->Is<sem::Vector>()) ||
|
|
(lhs_type->Is<sem::Matrix>() && rhs_type->Is<sem::Matrix>()))) {
|
|
// Matrices are transposed, so swap LHS and RHS.
|
|
out << "mul(";
|
|
if (!EmitExpression(out, expr->rhs)) {
|
|
return false;
|
|
}
|
|
out << ", ";
|
|
if (!EmitExpression(out, expr->lhs)) {
|
|
return false;
|
|
}
|
|
out << ")";
|
|
|
|
return true;
|
|
}
|
|
|
|
out << "(";
|
|
TINT_DEFER(out << ")");
|
|
|
|
if (!EmitExpression(out, expr->lhs)) {
|
|
return false;
|
|
}
|
|
out << " ";
|
|
|
|
switch (expr->op) {
|
|
case ast::BinaryOp::kAnd:
|
|
out << "&";
|
|
break;
|
|
case ast::BinaryOp::kOr:
|
|
out << "|";
|
|
break;
|
|
case ast::BinaryOp::kXor:
|
|
out << "^";
|
|
break;
|
|
case ast::BinaryOp::kLogicalAnd:
|
|
case ast::BinaryOp::kLogicalOr: {
|
|
// These are both handled above.
|
|
TINT_UNREACHABLE(Writer, diagnostics_);
|
|
return false;
|
|
}
|
|
case ast::BinaryOp::kEqual:
|
|
out << "==";
|
|
break;
|
|
case ast::BinaryOp::kNotEqual:
|
|
out << "!=";
|
|
break;
|
|
case ast::BinaryOp::kLessThan:
|
|
out << "<";
|
|
break;
|
|
case ast::BinaryOp::kGreaterThan:
|
|
out << ">";
|
|
break;
|
|
case ast::BinaryOp::kLessThanEqual:
|
|
out << "<=";
|
|
break;
|
|
case ast::BinaryOp::kGreaterThanEqual:
|
|
out << ">=";
|
|
break;
|
|
case ast::BinaryOp::kShiftLeft:
|
|
out << "<<";
|
|
break;
|
|
case ast::BinaryOp::kShiftRight:
|
|
// TODO(dsinclair): MSL is based on C++14, and >> in C++14 has
|
|
// implementation-defined behaviour for negative LHS. We may have to
|
|
// generate extra code to implement WGSL-specified behaviour for negative
|
|
// LHS.
|
|
out << R"(>>)";
|
|
break;
|
|
|
|
case ast::BinaryOp::kAdd:
|
|
out << "+";
|
|
break;
|
|
case ast::BinaryOp::kSubtract:
|
|
out << "-";
|
|
break;
|
|
case ast::BinaryOp::kMultiply:
|
|
out << "*";
|
|
break;
|
|
case ast::BinaryOp::kDivide:
|
|
out << "/";
|
|
// BUG(crbug.com/tint/1083): Integer divide/modulo by zero is a FXC
|
|
// compile error, and undefined behavior in WGSL.
|
|
if (TypeOf(expr->rhs)->UnwrapRef()->is_integer_scalar_or_vector()) {
|
|
out << " ";
|
|
return EmitExpressionOrOneIfZero(out, expr->rhs);
|
|
}
|
|
break;
|
|
case ast::BinaryOp::kModulo:
|
|
out << "%";
|
|
// BUG(crbug.com/tint/1083): Integer divide/modulo by zero is a FXC
|
|
// compile error, and undefined behavior in WGSL.
|
|
if (TypeOf(expr->rhs)->UnwrapRef()->is_integer_scalar_or_vector()) {
|
|
out << " ";
|
|
return EmitExpressionOrOneIfZero(out, expr->rhs);
|
|
}
|
|
break;
|
|
case ast::BinaryOp::kNone:
|
|
diagnostics_.add_error(diag::System::Writer,
|
|
"missing binary operation type");
|
|
return false;
|
|
}
|
|
out << " ";
|
|
|
|
if (!EmitExpression(out, expr->rhs)) {
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool GeneratorImpl::EmitStatements(const ast::StatementList& stmts) {
|
|
for (auto* s : stmts) {
|
|
if (!EmitStatement(s)) {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool GeneratorImpl::EmitStatementsWithIndent(const ast::StatementList& stmts) {
|
|
ScopedIndent si(this);
|
|
return EmitStatements(stmts);
|
|
}
|
|
|
|
bool GeneratorImpl::EmitBlock(const ast::BlockStatement* stmt) {
|
|
line() << "{";
|
|
if (!EmitStatementsWithIndent(stmt->statements)) {
|
|
return false;
|
|
}
|
|
line() << "}";
|
|
return true;
|
|
}
|
|
|
|
bool GeneratorImpl::EmitBreak(const ast::BreakStatement*) {
|
|
line() << "break;";
|
|
return true;
|
|
}
|
|
|
|
bool GeneratorImpl::EmitCall(std::ostream& out,
|
|
const ast::CallExpression* expr) {
|
|
auto* call = builder_.Sem().Get(expr);
|
|
auto* target = call->Target();
|
|
|
|
if (auto* func = target->As<sem::Function>()) {
|
|
return EmitFunctionCall(out, call, func);
|
|
}
|
|
if (auto* builtin = target->As<sem::Builtin>()) {
|
|
return EmitBuiltinCall(out, call, builtin);
|
|
}
|
|
if (auto* conv = target->As<sem::TypeConversion>()) {
|
|
return EmitTypeConversion(out, call, conv);
|
|
}
|
|
if (auto* ctor = target->As<sem::TypeConstructor>()) {
|
|
return EmitTypeConstructor(out, call, ctor);
|
|
}
|
|
TINT_ICE(Writer, diagnostics_)
|
|
<< "unhandled call target: " << target->TypeInfo().name;
|
|
return false;
|
|
}
|
|
|
|
bool GeneratorImpl::EmitFunctionCall(std::ostream& out,
|
|
const sem::Call* call,
|
|
const sem::Function* func) {
|
|
auto* expr = call->Declaration();
|
|
|
|
if (ast::HasAttribute<transform::CalculateArrayLength::BufferSizeIntrinsic>(
|
|
func->Declaration()->attributes)) {
|
|
// Special function generated by the CalculateArrayLength transform for
|
|
// calling X.GetDimensions(Y)
|
|
if (!EmitExpression(out, call->Arguments()[0]->Declaration())) {
|
|
return false;
|
|
}
|
|
out << ".GetDimensions(";
|
|
if (!EmitExpression(out, call->Arguments()[1]->Declaration())) {
|
|
return false;
|
|
}
|
|
out << ")";
|
|
return true;
|
|
}
|
|
|
|
if (auto* intrinsic =
|
|
ast::GetAttribute<transform::DecomposeMemoryAccess::Intrinsic>(
|
|
func->Declaration()->attributes)) {
|
|
switch (intrinsic->storage_class) {
|
|
case ast::StorageClass::kUniform:
|
|
return EmitUniformBufferAccess(out, expr, intrinsic);
|
|
case ast::StorageClass::kStorage:
|
|
return EmitStorageBufferAccess(out, expr, intrinsic);
|
|
default:
|
|
TINT_UNREACHABLE(Writer, diagnostics_)
|
|
<< "unsupported DecomposeMemoryAccess::Intrinsic storage class:"
|
|
<< intrinsic->storage_class;
|
|
return false;
|
|
}
|
|
}
|
|
|
|
out << builder_.Symbols().NameFor(func->Declaration()->symbol) << "(";
|
|
|
|
bool first = true;
|
|
for (auto* arg : call->Arguments()) {
|
|
if (!first) {
|
|
out << ", ";
|
|
}
|
|
first = false;
|
|
|
|
if (!EmitExpression(out, arg->Declaration())) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
out << ")";
|
|
return true;
|
|
}
|
|
|
|
bool GeneratorImpl::EmitBuiltinCall(std::ostream& out,
|
|
const sem::Call* call,
|
|
const sem::Builtin* builtin) {
|
|
auto* expr = call->Declaration();
|
|
if (builtin->IsTexture()) {
|
|
return EmitTextureCall(out, call, builtin);
|
|
}
|
|
if (builtin->Type() == sem::BuiltinType::kSelect) {
|
|
return EmitSelectCall(out, expr);
|
|
}
|
|
if (builtin->Type() == sem::BuiltinType::kModf) {
|
|
return EmitModfCall(out, expr, builtin);
|
|
}
|
|
if (builtin->Type() == sem::BuiltinType::kFrexp) {
|
|
return EmitFrexpCall(out, expr, builtin);
|
|
}
|
|
if (builtin->Type() == sem::BuiltinType::kIsNormal) {
|
|
return EmitIsNormalCall(out, expr, builtin);
|
|
}
|
|
if (builtin->Type() == sem::BuiltinType::kDegrees) {
|
|
return EmitDegreesCall(out, expr, builtin);
|
|
}
|
|
if (builtin->Type() == sem::BuiltinType::kRadians) {
|
|
return EmitRadiansCall(out, expr, builtin);
|
|
}
|
|
if (builtin->IsDataPacking()) {
|
|
return EmitDataPackingCall(out, expr, builtin);
|
|
}
|
|
if (builtin->IsDataUnpacking()) {
|
|
return EmitDataUnpackingCall(out, expr, builtin);
|
|
}
|
|
if (builtin->IsBarrier()) {
|
|
return EmitBarrierCall(out, builtin);
|
|
}
|
|
if (builtin->IsAtomic()) {
|
|
return EmitWorkgroupAtomicCall(out, expr, builtin);
|
|
}
|
|
auto name = generate_builtin_name(builtin);
|
|
if (name.empty()) {
|
|
return false;
|
|
}
|
|
|
|
out << name << "(";
|
|
|
|
bool first = true;
|
|
for (auto* arg : call->Arguments()) {
|
|
if (!first) {
|
|
out << ", ";
|
|
}
|
|
first = false;
|
|
|
|
if (!EmitExpression(out, arg->Declaration())) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
out << ")";
|
|
return true;
|
|
}
|
|
|
|
bool GeneratorImpl::EmitTypeConversion(std::ostream& out,
|
|
const sem::Call* call,
|
|
const sem::TypeConversion* conv) {
|
|
if (!EmitType(out, conv->Target(), ast::StorageClass::kNone,
|
|
ast::Access::kReadWrite, "")) {
|
|
return false;
|
|
}
|
|
out << "(";
|
|
|
|
if (!EmitExpression(out, call->Arguments()[0]->Declaration())) {
|
|
return false;
|
|
}
|
|
|
|
out << ")";
|
|
return true;
|
|
}
|
|
|
|
bool GeneratorImpl::EmitTypeConstructor(std::ostream& out,
|
|
const sem::Call* call,
|
|
const sem::TypeConstructor* ctor) {
|
|
auto* type = call->Type();
|
|
|
|
// If the type constructor is empty then we need to construct with the zero
|
|
// value for all components.
|
|
if (call->Arguments().empty()) {
|
|
return EmitZeroValue(out, type);
|
|
}
|
|
|
|
bool brackets = type->IsAnyOf<sem::Array, sem::Struct>();
|
|
|
|
// For single-value vector initializers, swizzle the scalar to the right
|
|
// vector dimension using .x
|
|
const bool is_single_value_vector_init =
|
|
type->is_scalar_vector() && call->Arguments().size() == 1 &&
|
|
ctor->Parameters()[0]->Type()->is_scalar();
|
|
|
|
auto it = structure_builders_.find(As<sem::Struct>(type));
|
|
if (it != structure_builders_.end()) {
|
|
out << it->second << "(";
|
|
brackets = false;
|
|
} else if (brackets) {
|
|
out << "{";
|
|
} else {
|
|
if (!EmitType(out, type, ast::StorageClass::kNone, ast::Access::kReadWrite,
|
|
"")) {
|
|
return false;
|
|
}
|
|
out << "(";
|
|
}
|
|
|
|
if (is_single_value_vector_init) {
|
|
out << "(";
|
|
}
|
|
|
|
bool first = true;
|
|
for (auto* e : call->Arguments()) {
|
|
if (!first) {
|
|
out << ", ";
|
|
}
|
|
first = false;
|
|
|
|
if (!EmitExpression(out, e->Declaration())) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
if (is_single_value_vector_init) {
|
|
out << ")." << std::string(type->As<sem::Vector>()->Width(), 'x');
|
|
}
|
|
|
|
out << (brackets ? "}" : ")");
|
|
return true;
|
|
}
|
|
|
|
bool GeneratorImpl::EmitUniformBufferAccess(
|
|
std::ostream& out,
|
|
const ast::CallExpression* expr,
|
|
const transform::DecomposeMemoryAccess::Intrinsic* intrinsic) {
|
|
const auto& args = expr->args;
|
|
auto* offset_arg = builder_.Sem().Get(args[1]);
|
|
|
|
uint32_t scalar_offset_value = 0;
|
|
std::string scalar_offset_expr;
|
|
|
|
// If true, use scalar_offset_value, otherwise use scalar_offset_expr
|
|
bool scalar_offset_constant = false;
|
|
|
|
if (auto val = offset_arg->ConstantValue()) {
|
|
TINT_ASSERT(Writer, val.Type()->Is<sem::U32>());
|
|
scalar_offset_value = val.Elements()[0].u32;
|
|
scalar_offset_value /= 4; // bytes -> scalar index
|
|
scalar_offset_constant = true;
|
|
}
|
|
|
|
if (!scalar_offset_constant) {
|
|
// UBO offset not compile-time known.
|
|
// Calculate the scalar offset into a temporary.
|
|
scalar_offset_expr = UniqueIdentifier("scalar_offset");
|
|
auto pre = line();
|
|
pre << "const uint " << scalar_offset_expr << " = (";
|
|
if (!EmitExpression(pre, args[1])) { // offset
|
|
return false;
|
|
}
|
|
pre << ") / 4;";
|
|
}
|
|
|
|
using Op = transform::DecomposeMemoryAccess::Intrinsic::Op;
|
|
using DataType = transform::DecomposeMemoryAccess::Intrinsic::DataType;
|
|
switch (intrinsic->op) {
|
|
case Op::kLoad: {
|
|
auto cast = [&](const char* to, auto&& load) {
|
|
out << to << "(";
|
|
auto result = load();
|
|
out << ")";
|
|
return result;
|
|
};
|
|
auto load_scalar = [&]() {
|
|
if (!EmitExpression(out, args[0])) { // buffer
|
|
return false;
|
|
}
|
|
if (scalar_offset_constant) {
|
|
char swizzle[] = {'x', 'y', 'z', 'w'};
|
|
out << "[" << (scalar_offset_value / 4) << "]."
|
|
<< swizzle[scalar_offset_value & 3];
|
|
} else {
|
|
out << "[" << scalar_offset_expr << " / 4][" << scalar_offset_expr
|
|
<< " % 4]";
|
|
}
|
|
return true;
|
|
};
|
|
// Has a minimum alignment of 8 bytes, so is either .xy or .zw
|
|
auto load_vec2 = [&] {
|
|
if (scalar_offset_constant) {
|
|
if (!EmitExpression(out, args[0])) { // buffer
|
|
return false;
|
|
}
|
|
out << "[" << (scalar_offset_value / 4) << "]";
|
|
out << ((scalar_offset_value & 2) == 0 ? ".xy" : ".zw");
|
|
} else {
|
|
std::string ubo_load = UniqueIdentifier("ubo_load");
|
|
{
|
|
auto pre = line();
|
|
pre << "uint4 " << ubo_load << " = ";
|
|
if (!EmitExpression(pre, args[0])) { // buffer
|
|
return false;
|
|
}
|
|
pre << "[" << scalar_offset_expr << " / 4];";
|
|
}
|
|
out << "((" << scalar_offset_expr << " & 2) ? " << ubo_load
|
|
<< ".zw : " << ubo_load << ".xy)";
|
|
}
|
|
return true;
|
|
};
|
|
// vec4 has a minimum alignment of 16 bytes, easiest case
|
|
auto load_vec4 = [&] {
|
|
if (!EmitExpression(out, args[0])) { // buffer
|
|
return false;
|
|
}
|
|
if (scalar_offset_constant) {
|
|
out << "[" << (scalar_offset_value / 4) << "]";
|
|
} else {
|
|
out << "[" << scalar_offset_expr << " / 4]";
|
|
}
|
|
return true;
|
|
};
|
|
// vec3 has a minimum alignment of 16 bytes, so is just a .xyz swizzle
|
|
auto load_vec3 = [&] {
|
|
if (!load_vec4()) {
|
|
return false;
|
|
}
|
|
out << ".xyz";
|
|
return true;
|
|
};
|
|
switch (intrinsic->type) {
|
|
case DataType::kU32:
|
|
return load_scalar();
|
|
case DataType::kF32:
|
|
return cast("asfloat", load_scalar);
|
|
case DataType::kI32:
|
|
return cast("asint", load_scalar);
|
|
case DataType::kVec2U32:
|
|
return load_vec2();
|
|
case DataType::kVec2F32:
|
|
return cast("asfloat", load_vec2);
|
|
case DataType::kVec2I32:
|
|
return cast("asint", load_vec2);
|
|
case DataType::kVec3U32:
|
|
return load_vec3();
|
|
case DataType::kVec3F32:
|
|
return cast("asfloat", load_vec3);
|
|
case DataType::kVec3I32:
|
|
return cast("asint", load_vec3);
|
|
case DataType::kVec4U32:
|
|
return load_vec4();
|
|
case DataType::kVec4F32:
|
|
return cast("asfloat", load_vec4);
|
|
case DataType::kVec4I32:
|
|
return cast("asint", load_vec4);
|
|
}
|
|
TINT_UNREACHABLE(Writer, diagnostics_)
|
|
<< "unsupported DecomposeMemoryAccess::Intrinsic::DataType: "
|
|
<< static_cast<int>(intrinsic->type);
|
|
return false;
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
TINT_UNREACHABLE(Writer, diagnostics_)
|
|
<< "unsupported DecomposeMemoryAccess::Intrinsic::Op: "
|
|
<< static_cast<int>(intrinsic->op);
|
|
return false;
|
|
}
|
|
|
|
bool GeneratorImpl::EmitStorageBufferAccess(
|
|
std::ostream& out,
|
|
const ast::CallExpression* expr,
|
|
const transform::DecomposeMemoryAccess::Intrinsic* intrinsic) {
|
|
const auto& args = expr->args;
|
|
|
|
using Op = transform::DecomposeMemoryAccess::Intrinsic::Op;
|
|
using DataType = transform::DecomposeMemoryAccess::Intrinsic::DataType;
|
|
switch (intrinsic->op) {
|
|
case Op::kLoad: {
|
|
auto load = [&](const char* cast, int n) {
|
|
if (cast) {
|
|
out << cast << "(";
|
|
}
|
|
if (!EmitExpression(out, args[0])) { // buffer
|
|
return false;
|
|
}
|
|
out << ".Load";
|
|
if (n > 1) {
|
|
out << n;
|
|
}
|
|
ScopedParen sp(out);
|
|
if (!EmitExpression(out, args[1])) { // offset
|
|
return false;
|
|
}
|
|
if (cast) {
|
|
out << ")";
|
|
}
|
|
return true;
|
|
};
|
|
switch (intrinsic->type) {
|
|
case DataType::kU32:
|
|
return load(nullptr, 1);
|
|
case DataType::kF32:
|
|
return load("asfloat", 1);
|
|
case DataType::kI32:
|
|
return load("asint", 1);
|
|
case DataType::kVec2U32:
|
|
return load(nullptr, 2);
|
|
case DataType::kVec2F32:
|
|
return load("asfloat", 2);
|
|
case DataType::kVec2I32:
|
|
return load("asint", 2);
|
|
case DataType::kVec3U32:
|
|
return load(nullptr, 3);
|
|
case DataType::kVec3F32:
|
|
return load("asfloat", 3);
|
|
case DataType::kVec3I32:
|
|
return load("asint", 3);
|
|
case DataType::kVec4U32:
|
|
return load(nullptr, 4);
|
|
case DataType::kVec4F32:
|
|
return load("asfloat", 4);
|
|
case DataType::kVec4I32:
|
|
return load("asint", 4);
|
|
}
|
|
TINT_UNREACHABLE(Writer, diagnostics_)
|
|
<< "unsupported DecomposeMemoryAccess::Intrinsic::DataType: "
|
|
<< static_cast<int>(intrinsic->type);
|
|
return false;
|
|
}
|
|
|
|
case Op::kStore: {
|
|
auto store = [&](int n) {
|
|
if (!EmitExpression(out, args[0])) { // buffer
|
|
return false;
|
|
}
|
|
out << ".Store";
|
|
if (n > 1) {
|
|
out << n;
|
|
}
|
|
ScopedParen sp1(out);
|
|
if (!EmitExpression(out, args[1])) { // offset
|
|
return false;
|
|
}
|
|
out << ", asuint";
|
|
ScopedParen sp2(out);
|
|
if (!EmitExpression(out, args[2])) { // value
|
|
return false;
|
|
}
|
|
return true;
|
|
};
|
|
switch (intrinsic->type) {
|
|
case DataType::kU32:
|
|
return store(1);
|
|
case DataType::kF32:
|
|
return store(1);
|
|
case DataType::kI32:
|
|
return store(1);
|
|
case DataType::kVec2U32:
|
|
return store(2);
|
|
case DataType::kVec2F32:
|
|
return store(2);
|
|
case DataType::kVec2I32:
|
|
return store(2);
|
|
case DataType::kVec3U32:
|
|
return store(3);
|
|
case DataType::kVec3F32:
|
|
return store(3);
|
|
case DataType::kVec3I32:
|
|
return store(3);
|
|
case DataType::kVec4U32:
|
|
return store(4);
|
|
case DataType::kVec4F32:
|
|
return store(4);
|
|
case DataType::kVec4I32:
|
|
return store(4);
|
|
}
|
|
TINT_UNREACHABLE(Writer, diagnostics_)
|
|
<< "unsupported DecomposeMemoryAccess::Intrinsic::DataType: "
|
|
<< static_cast<int>(intrinsic->type);
|
|
return false;
|
|
}
|
|
|
|
case Op::kAtomicLoad:
|
|
case Op::kAtomicStore:
|
|
case Op::kAtomicAdd:
|
|
case Op::kAtomicSub:
|
|
case Op::kAtomicMax:
|
|
case Op::kAtomicMin:
|
|
case Op::kAtomicAnd:
|
|
case Op::kAtomicOr:
|
|
case Op::kAtomicXor:
|
|
case Op::kAtomicExchange:
|
|
case Op::kAtomicCompareExchangeWeak:
|
|
return EmitStorageAtomicCall(out, expr, intrinsic);
|
|
}
|
|
|
|
TINT_UNREACHABLE(Writer, diagnostics_)
|
|
<< "unsupported DecomposeMemoryAccess::Intrinsic::Op: "
|
|
<< static_cast<int>(intrinsic->op);
|
|
return false;
|
|
}
|
|
|
|
bool GeneratorImpl::EmitStorageAtomicCall(
|
|
std::ostream& out,
|
|
const ast::CallExpression* expr,
|
|
const transform::DecomposeMemoryAccess::Intrinsic* intrinsic) {
|
|
using Op = transform::DecomposeMemoryAccess::Intrinsic::Op;
|
|
|
|
auto* result_ty = TypeOf(expr);
|
|
|
|
auto& buf = helpers_;
|
|
|
|
// generate_helper() generates a helper function that translates the
|
|
// DecomposeMemoryAccess::Intrinsic call into the corresponding HLSL
|
|
// atomic intrinsic function.
|
|
auto generate_helper = [&]() -> std::string {
|
|
auto rmw = [&](const char* wgsl, const char* hlsl) -> std::string {
|
|
auto name = UniqueIdentifier(wgsl);
|
|
{
|
|
auto fn = line(&buf);
|
|
if (!EmitTypeAndName(fn, result_ty, ast::StorageClass::kNone,
|
|
ast::Access::kUndefined, name)) {
|
|
return "";
|
|
}
|
|
fn << "(RWByteAddressBuffer buffer, uint offset, ";
|
|
if (!EmitTypeAndName(fn, result_ty, ast::StorageClass::kNone,
|
|
ast::Access::kUndefined, "value")) {
|
|
return "";
|
|
}
|
|
fn << ") {";
|
|
}
|
|
|
|
buf.IncrementIndent();
|
|
TINT_DEFER({
|
|
buf.DecrementIndent();
|
|
line(&buf) << "}";
|
|
line(&buf);
|
|
});
|
|
|
|
{
|
|
auto l = line(&buf);
|
|
if (!EmitTypeAndName(l, result_ty, ast::StorageClass::kNone,
|
|
ast::Access::kUndefined, "original_value")) {
|
|
return "";
|
|
}
|
|
l << " = 0;";
|
|
}
|
|
{
|
|
auto l = line(&buf);
|
|
l << "buffer." << hlsl << "(offset, ";
|
|
if (intrinsic->op == Op::kAtomicSub) {
|
|
l << "-";
|
|
}
|
|
l << "value, original_value);";
|
|
}
|
|
line(&buf) << "return original_value;";
|
|
return name;
|
|
};
|
|
|
|
switch (intrinsic->op) {
|
|
case Op::kAtomicAdd:
|
|
return rmw("atomicAdd", "InterlockedAdd");
|
|
|
|
case Op::kAtomicSub:
|
|
// Use add with the operand negated.
|
|
return rmw("atomicSub", "InterlockedAdd");
|
|
|
|
case Op::kAtomicMax:
|
|
return rmw("atomicMax", "InterlockedMax");
|
|
|
|
case Op::kAtomicMin:
|
|
return rmw("atomicMin", "InterlockedMin");
|
|
|
|
case Op::kAtomicAnd:
|
|
return rmw("atomicAnd", "InterlockedAnd");
|
|
|
|
case Op::kAtomicOr:
|
|
return rmw("atomicOr", "InterlockedOr");
|
|
|
|
case Op::kAtomicXor:
|
|
return rmw("atomicXor", "InterlockedXor");
|
|
|
|
case Op::kAtomicExchange:
|
|
return rmw("atomicExchange", "InterlockedExchange");
|
|
|
|
case Op::kAtomicLoad: {
|
|
// HLSL does not have an InterlockedLoad, so we emulate it with
|
|
// InterlockedOr using 0 as the OR value
|
|
auto name = UniqueIdentifier("atomicLoad");
|
|
{
|
|
auto fn = line(&buf);
|
|
if (!EmitTypeAndName(fn, result_ty, ast::StorageClass::kNone,
|
|
ast::Access::kUndefined, name)) {
|
|
return "";
|
|
}
|
|
fn << "(RWByteAddressBuffer buffer, uint offset) {";
|
|
}
|
|
|
|
buf.IncrementIndent();
|
|
TINT_DEFER({
|
|
buf.DecrementIndent();
|
|
line(&buf) << "}";
|
|
line(&buf);
|
|
});
|
|
|
|
{
|
|
auto l = line(&buf);
|
|
if (!EmitTypeAndName(l, result_ty, ast::StorageClass::kNone,
|
|
ast::Access::kUndefined, "value")) {
|
|
return "";
|
|
}
|
|
l << " = 0;";
|
|
}
|
|
|
|
line(&buf) << "buffer.InterlockedOr(offset, 0, value);";
|
|
line(&buf) << "return value;";
|
|
return name;
|
|
}
|
|
case Op::kAtomicStore: {
|
|
// HLSL does not have an InterlockedStore, so we emulate it with
|
|
// InterlockedExchange and discard the returned value
|
|
auto* value_ty = TypeOf(expr->args[2])->UnwrapRef();
|
|
auto name = UniqueIdentifier("atomicStore");
|
|
{
|
|
auto fn = line(&buf);
|
|
fn << "void " << name << "(RWByteAddressBuffer buffer, uint offset, ";
|
|
if (!EmitTypeAndName(fn, value_ty, ast::StorageClass::kNone,
|
|
ast::Access::kUndefined, "value")) {
|
|
return "";
|
|
}
|
|
fn << ") {";
|
|
}
|
|
|
|
buf.IncrementIndent();
|
|
TINT_DEFER({
|
|
buf.DecrementIndent();
|
|
line(&buf) << "}";
|
|
line(&buf);
|
|
});
|
|
|
|
{
|
|
auto l = line(&buf);
|
|
if (!EmitTypeAndName(l, value_ty, ast::StorageClass::kNone,
|
|
ast::Access::kUndefined, "ignored")) {
|
|
return "";
|
|
}
|
|
l << ";";
|
|
}
|
|
line(&buf) << "buffer.InterlockedExchange(offset, value, ignored);";
|
|
return name;
|
|
}
|
|
case Op::kAtomicCompareExchangeWeak: {
|
|
auto* value_ty = TypeOf(expr->args[2])->UnwrapRef();
|
|
|
|
auto name = UniqueIdentifier("atomicCompareExchangeWeak");
|
|
{
|
|
auto fn = line(&buf);
|
|
if (!EmitTypeAndName(fn, result_ty, ast::StorageClass::kNone,
|
|
ast::Access::kUndefined, name)) {
|
|
return "";
|
|
}
|
|
fn << "(RWByteAddressBuffer buffer, uint offset, ";
|
|
if (!EmitTypeAndName(fn, value_ty, ast::StorageClass::kNone,
|
|
ast::Access::kUndefined, "compare")) {
|
|
return "";
|
|
}
|
|
fn << ", ";
|
|
if (!EmitTypeAndName(fn, value_ty, ast::StorageClass::kNone,
|
|
ast::Access::kUndefined, "value")) {
|
|
return "";
|
|
}
|
|
fn << ") {";
|
|
}
|
|
|
|
buf.IncrementIndent();
|
|
TINT_DEFER({
|
|
buf.DecrementIndent();
|
|
line(&buf) << "}";
|
|
line(&buf);
|
|
});
|
|
|
|
{ // T result = {0, 0};
|
|
auto l = line(&buf);
|
|
if (!EmitTypeAndName(l, result_ty, ast::StorageClass::kNone,
|
|
ast::Access::kUndefined, "result")) {
|
|
return "";
|
|
}
|
|
l << " = {0, 0};";
|
|
}
|
|
line(&buf) << "buffer.InterlockedCompareExchange(offset, compare, "
|
|
"value, result.x);";
|
|
line(&buf) << "result.y = result.x == compare;";
|
|
line(&buf) << "return result;";
|
|
return name;
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
TINT_UNREACHABLE(Writer, diagnostics_)
|
|
<< "unsupported atomic DecomposeMemoryAccess::Intrinsic::Op: "
|
|
<< static_cast<int>(intrinsic->op);
|
|
return "";
|
|
};
|
|
|
|
auto func = utils::GetOrCreate(dma_intrinsics_,
|
|
DMAIntrinsic{intrinsic->op, intrinsic->type},
|
|
generate_helper);
|
|
if (func.empty()) {
|
|
return false;
|
|
}
|
|
|
|
out << func;
|
|
{
|
|
ScopedParen sp(out);
|
|
bool first = true;
|
|
for (auto* arg : expr->args) {
|
|
if (!first) {
|
|
out << ", ";
|
|
}
|
|
first = false;
|
|
if (!EmitExpression(out, arg)) {
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool GeneratorImpl::EmitWorkgroupAtomicCall(std::ostream& out,
|
|
const ast::CallExpression* expr,
|
|
const sem::Builtin* builtin) {
|
|
std::string result = UniqueIdentifier("atomic_result");
|
|
|
|
if (!builtin->ReturnType()->Is<sem::Void>()) {
|
|
auto pre = line();
|
|
if (!EmitTypeAndName(pre, builtin->ReturnType(), ast::StorageClass::kNone,
|
|
ast::Access::kUndefined, result)) {
|
|
return false;
|
|
}
|
|
pre << " = ";
|
|
if (!EmitZeroValue(pre, builtin->ReturnType())) {
|
|
return false;
|
|
}
|
|
pre << ";";
|
|
}
|
|
|
|
auto call = [&](const char* name) {
|
|
auto pre = line();
|
|
pre << name;
|
|
|
|
{
|
|
ScopedParen sp(pre);
|
|
for (size_t i = 0; i < expr->args.size(); i++) {
|
|
auto* arg = expr->args[i];
|
|
if (i > 0) {
|
|
pre << ", ";
|
|
}
|
|
if (i == 1 && builtin->Type() == sem::BuiltinType::kAtomicSub) {
|
|
// Sub uses InterlockedAdd with the operand negated.
|
|
pre << "-";
|
|
}
|
|
if (!EmitExpression(pre, arg)) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
pre << ", " << result;
|
|
}
|
|
|
|
pre << ";";
|
|
|
|
out << result;
|
|
return true;
|
|
};
|
|
|
|
switch (builtin->Type()) {
|
|
case sem::BuiltinType::kAtomicLoad: {
|
|
// HLSL does not have an InterlockedLoad, so we emulate it with
|
|
// InterlockedOr using 0 as the OR value
|
|
auto pre = line();
|
|
pre << "InterlockedOr";
|
|
{
|
|
ScopedParen sp(pre);
|
|
if (!EmitExpression(pre, expr->args[0])) {
|
|
return false;
|
|
}
|
|
pre << ", 0, " << result;
|
|
}
|
|
pre << ";";
|
|
|
|
out << result;
|
|
return true;
|
|
}
|
|
case sem::BuiltinType::kAtomicStore: {
|
|
// HLSL does not have an InterlockedStore, so we emulate it with
|
|
// InterlockedExchange and discard the returned value
|
|
{ // T result = 0;
|
|
auto pre = line();
|
|
auto* value_ty = builtin->Parameters()[1]->Type()->UnwrapRef();
|
|
if (!EmitTypeAndName(pre, value_ty, ast::StorageClass::kNone,
|
|
ast::Access::kUndefined, result)) {
|
|
return false;
|
|
}
|
|
pre << " = ";
|
|
if (!EmitZeroValue(pre, value_ty)) {
|
|
return false;
|
|
}
|
|
pre << ";";
|
|
}
|
|
|
|
out << "InterlockedExchange";
|
|
{
|
|
ScopedParen sp(out);
|
|
if (!EmitExpression(out, expr->args[0])) {
|
|
return false;
|
|
}
|
|
out << ", ";
|
|
if (!EmitExpression(out, expr->args[1])) {
|
|
return false;
|
|
}
|
|
out << ", " << result;
|
|
}
|
|
return true;
|
|
}
|
|
case sem::BuiltinType::kAtomicCompareExchangeWeak: {
|
|
auto* dest = expr->args[0];
|
|
auto* compare_value = expr->args[1];
|
|
auto* value = expr->args[2];
|
|
|
|
std::string compare = UniqueIdentifier("atomic_compare_value");
|
|
|
|
{ // T compare_value = <compare_value>;
|
|
auto pre = line();
|
|
if (!EmitTypeAndName(pre, TypeOf(compare_value),
|
|
ast::StorageClass::kNone, ast::Access::kUndefined,
|
|
compare)) {
|
|
return false;
|
|
}
|
|
pre << " = ";
|
|
if (!EmitExpression(pre, compare_value)) {
|
|
return false;
|
|
}
|
|
pre << ";";
|
|
}
|
|
|
|
{ // InterlockedCompareExchange(dst, compare, value, result.x);
|
|
auto pre = line();
|
|
pre << "InterlockedCompareExchange";
|
|
{
|
|
ScopedParen sp(pre);
|
|
if (!EmitExpression(pre, dest)) {
|
|
return false;
|
|
}
|
|
pre << ", " << compare << ", ";
|
|
if (!EmitExpression(pre, value)) {
|
|
return false;
|
|
}
|
|
pre << ", " << result << ".x";
|
|
}
|
|
pre << ";";
|
|
}
|
|
|
|
{ // result.y = result.x == compare;
|
|
line() << result << ".y = " << result << ".x == " << compare << ";";
|
|
}
|
|
|
|
out << result;
|
|
return true;
|
|
}
|
|
|
|
case sem::BuiltinType::kAtomicAdd:
|
|
case sem::BuiltinType::kAtomicSub:
|
|
return call("InterlockedAdd");
|
|
|
|
case sem::BuiltinType::kAtomicMax:
|
|
return call("InterlockedMax");
|
|
|
|
case sem::BuiltinType::kAtomicMin:
|
|
return call("InterlockedMin");
|
|
|
|
case sem::BuiltinType::kAtomicAnd:
|
|
return call("InterlockedAnd");
|
|
|
|
case sem::BuiltinType::kAtomicOr:
|
|
return call("InterlockedOr");
|
|
|
|
case sem::BuiltinType::kAtomicXor:
|
|
return call("InterlockedXor");
|
|
|
|
case sem::BuiltinType::kAtomicExchange:
|
|
return call("InterlockedExchange");
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
TINT_UNREACHABLE(Writer, diagnostics_)
|
|
<< "unsupported atomic builtin: " << builtin->Type();
|
|
return false;
|
|
}
|
|
|
|
bool GeneratorImpl::EmitSelectCall(std::ostream& out,
|
|
const ast::CallExpression* expr) {
|
|
auto* expr_false = expr->args[0];
|
|
auto* expr_true = expr->args[1];
|
|
auto* expr_cond = expr->args[2];
|
|
ScopedParen paren(out);
|
|
if (!EmitExpression(out, expr_cond)) {
|
|
return false;
|
|
}
|
|
|
|
out << " ? ";
|
|
|
|
if (!EmitExpression(out, expr_true)) {
|
|
return false;
|
|
}
|
|
|
|
out << " : ";
|
|
|
|
if (!EmitExpression(out, expr_false)) {
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool GeneratorImpl::EmitModfCall(std::ostream& out,
|
|
const ast::CallExpression* expr,
|
|
const sem::Builtin* builtin) {
|
|
return CallBuiltinHelper(
|
|
out, expr, builtin,
|
|
[&](TextBuffer* b, const std::vector<std::string>& params) {
|
|
auto* ty = builtin->Parameters()[0]->Type();
|
|
auto in = params[0];
|
|
|
|
std::string width;
|
|
if (auto* vec = ty->As<sem::Vector>()) {
|
|
width = std::to_string(vec->Width());
|
|
}
|
|
|
|
// Emit the builtin return type unique to this overload. This does not
|
|
// exist in the AST, so it will not be generated in Generate().
|
|
if (!EmitStructType(&helpers_,
|
|
builtin->ReturnType()->As<sem::Struct>())) {
|
|
return false;
|
|
}
|
|
|
|
line(b) << "float" << width << " whole;";
|
|
line(b) << "float" << width << " fract = modf(" << in << ", whole);";
|
|
{
|
|
auto l = line(b);
|
|
if (!EmitType(l, builtin->ReturnType(), ast::StorageClass::kNone,
|
|
ast::Access::kUndefined, "")) {
|
|
return false;
|
|
}
|
|
l << " result = {fract, whole};";
|
|
}
|
|
line(b) << "return result;";
|
|
return true;
|
|
});
|
|
}
|
|
|
|
bool GeneratorImpl::EmitFrexpCall(std::ostream& out,
|
|
const ast::CallExpression* expr,
|
|
const sem::Builtin* builtin) {
|
|
return CallBuiltinHelper(
|
|
out, expr, builtin,
|
|
[&](TextBuffer* b, const std::vector<std::string>& params) {
|
|
auto* ty = builtin->Parameters()[0]->Type();
|
|
auto in = params[0];
|
|
|
|
std::string width;
|
|
if (auto* vec = ty->As<sem::Vector>()) {
|
|
width = std::to_string(vec->Width());
|
|
}
|
|
|
|
// Emit the builtin return type unique to this overload. This does not
|
|
// exist in the AST, so it will not be generated in Generate().
|
|
if (!EmitStructType(&helpers_,
|
|
builtin->ReturnType()->As<sem::Struct>())) {
|
|
return false;
|
|
}
|
|
|
|
line(b) << "float" << width << " exp;";
|
|
line(b) << "float" << width << " sig = frexp(" << in << ", exp);";
|
|
{
|
|
auto l = line(b);
|
|
if (!EmitType(l, builtin->ReturnType(), ast::StorageClass::kNone,
|
|
ast::Access::kUndefined, "")) {
|
|
return false;
|
|
}
|
|
l << " result = {sig, int" << width << "(exp)};";
|
|
}
|
|
line(b) << "return result;";
|
|
return true;
|
|
});
|
|
}
|
|
|
|
bool GeneratorImpl::EmitIsNormalCall(std::ostream& out,
|
|
const ast::CallExpression* expr,
|
|
const sem::Builtin* builtin) {
|
|
// HLSL doesn't have a isNormal builtin, we need to emulate
|
|
return CallBuiltinHelper(
|
|
out, expr, builtin,
|
|
[&](TextBuffer* b, const std::vector<std::string>& params) {
|
|
auto* input_ty = builtin->Parameters()[0]->Type();
|
|
|
|
std::string width;
|
|
if (auto* vec = input_ty->As<sem::Vector>()) {
|
|
width = std::to_string(vec->Width());
|
|
}
|
|
|
|
constexpr auto* kExponentMask = "0x7f80000";
|
|
constexpr auto* kMinNormalExponent = "0x0080000";
|
|
constexpr auto* kMaxNormalExponent = "0x7f00000";
|
|
|
|
line(b) << "uint" << width << " exponent = asuint(" << params[0]
|
|
<< ") & " << kExponentMask << ";";
|
|
line(b) << "uint" << width << " clamped = "
|
|
<< "clamp(exponent, " << kMinNormalExponent << ", "
|
|
<< kMaxNormalExponent << ");";
|
|
line(b) << "return clamped == exponent;";
|
|
return true;
|
|
});
|
|
}
|
|
|
|
bool GeneratorImpl::EmitDegreesCall(std::ostream& out,
|
|
const ast::CallExpression* expr,
|
|
const sem::Builtin* builtin) {
|
|
return CallBuiltinHelper(
|
|
out, expr, builtin,
|
|
[&](TextBuffer* b, const std::vector<std::string>& params) {
|
|
line(b) << "return " << params[0] << " * " << std::setprecision(20)
|
|
<< sem::kRadToDeg << ";";
|
|
return true;
|
|
});
|
|
}
|
|
|
|
bool GeneratorImpl::EmitRadiansCall(std::ostream& out,
|
|
const ast::CallExpression* expr,
|
|
const sem::Builtin* builtin) {
|
|
return CallBuiltinHelper(
|
|
out, expr, builtin,
|
|
[&](TextBuffer* b, const std::vector<std::string>& params) {
|
|
line(b) << "return " << params[0] << " * " << std::setprecision(20)
|
|
<< sem::kDegToRad << ";";
|
|
return true;
|
|
});
|
|
}
|
|
|
|
bool GeneratorImpl::EmitDataPackingCall(std::ostream& out,
|
|
const ast::CallExpression* expr,
|
|
const sem::Builtin* builtin) {
|
|
return CallBuiltinHelper(
|
|
out, expr, builtin,
|
|
[&](TextBuffer* b, const std::vector<std::string>& params) {
|
|
uint32_t dims = 2;
|
|
bool is_signed = false;
|
|
uint32_t scale = 65535;
|
|
if (builtin->Type() == sem::BuiltinType::kPack4x8snorm ||
|
|
builtin->Type() == sem::BuiltinType::kPack4x8unorm) {
|
|
dims = 4;
|
|
scale = 255;
|
|
}
|
|
if (builtin->Type() == sem::BuiltinType::kPack4x8snorm ||
|
|
builtin->Type() == sem::BuiltinType::kPack2x16snorm) {
|
|
is_signed = true;
|
|
scale = (scale - 1) / 2;
|
|
}
|
|
switch (builtin->Type()) {
|
|
case sem::BuiltinType::kPack4x8snorm:
|
|
case sem::BuiltinType::kPack4x8unorm:
|
|
case sem::BuiltinType::kPack2x16snorm:
|
|
case sem::BuiltinType::kPack2x16unorm: {
|
|
{
|
|
auto l = line(b);
|
|
l << (is_signed ? "" : "u") << "int" << dims
|
|
<< " i = " << (is_signed ? "" : "u") << "int" << dims
|
|
<< "(round(clamp(" << params[0] << ", "
|
|
<< (is_signed ? "-1.0" : "0.0") << ", 1.0) * " << scale
|
|
<< ".0))";
|
|
if (is_signed) {
|
|
l << " & " << (dims == 4 ? "0xff" : "0xffff");
|
|
}
|
|
l << ";";
|
|
}
|
|
{
|
|
auto l = line(b);
|
|
l << "return ";
|
|
if (is_signed) {
|
|
l << "asuint";
|
|
}
|
|
l << "(i.x | i.y << " << (32 / dims);
|
|
if (dims == 4) {
|
|
l << " | i.z << 16 | i.w << 24";
|
|
}
|
|
l << ");";
|
|
}
|
|
break;
|
|
}
|
|
case sem::BuiltinType::kPack2x16float: {
|
|
line(b) << "uint2 i = f32tof16(" << params[0] << ");";
|
|
line(b) << "return i.x | (i.y << 16);";
|
|
break;
|
|
}
|
|
default:
|
|
diagnostics_.add_error(
|
|
diag::System::Writer,
|
|
"Internal error: unhandled data packing builtin");
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
});
|
|
}
|
|
|
|
bool GeneratorImpl::EmitDataUnpackingCall(std::ostream& out,
|
|
const ast::CallExpression* expr,
|
|
const sem::Builtin* builtin) {
|
|
return CallBuiltinHelper(
|
|
out, expr, builtin,
|
|
[&](TextBuffer* b, const std::vector<std::string>& params) {
|
|
uint32_t dims = 2;
|
|
bool is_signed = false;
|
|
uint32_t scale = 65535;
|
|
if (builtin->Type() == sem::BuiltinType::kUnpack4x8snorm ||
|
|
builtin->Type() == sem::BuiltinType::kUnpack4x8unorm) {
|
|
dims = 4;
|
|
scale = 255;
|
|
}
|
|
if (builtin->Type() == sem::BuiltinType::kUnpack4x8snorm ||
|
|
builtin->Type() == sem::BuiltinType::kUnpack2x16snorm) {
|
|
is_signed = true;
|
|
scale = (scale - 1) / 2;
|
|
}
|
|
switch (builtin->Type()) {
|
|
case sem::BuiltinType::kUnpack4x8snorm:
|
|
case sem::BuiltinType::kUnpack2x16snorm: {
|
|
line(b) << "int j = int(" << params[0] << ");";
|
|
{ // Perform sign extension on the converted values.
|
|
auto l = line(b);
|
|
l << "int" << dims << " i = int" << dims << "(";
|
|
if (dims == 2) {
|
|
l << "j << 16, j) >> 16";
|
|
} else {
|
|
l << "j << 24, j << 16, j << 8, j) >> 24";
|
|
}
|
|
l << ";";
|
|
}
|
|
line(b) << "return clamp(float" << dims << "(i) / " << scale
|
|
<< ".0, " << (is_signed ? "-1.0" : "0.0") << ", 1.0);";
|
|
break;
|
|
}
|
|
case sem::BuiltinType::kUnpack4x8unorm:
|
|
case sem::BuiltinType::kUnpack2x16unorm: {
|
|
line(b) << "uint j = " << params[0] << ";";
|
|
{
|
|
auto l = line(b);
|
|
l << "uint" << dims << " i = uint" << dims << "(";
|
|
l << "j & " << (dims == 2 ? "0xffff" : "0xff") << ", ";
|
|
if (dims == 4) {
|
|
l << "(j >> " << (32 / dims)
|
|
<< ") & 0xff, (j >> 16) & 0xff, j >> 24";
|
|
} else {
|
|
l << "j >> " << (32 / dims);
|
|
}
|
|
l << ");";
|
|
}
|
|
line(b) << "return float" << dims << "(i) / " << scale << ".0;";
|
|
break;
|
|
}
|
|
case sem::BuiltinType::kUnpack2x16float:
|
|
line(b) << "uint i = " << params[0] << ";";
|
|
line(b) << "return f16tof32(uint2(i & 0xffff, i >> 16));";
|
|
break;
|
|
default:
|
|
diagnostics_.add_error(
|
|
diag::System::Writer,
|
|
"Internal error: unhandled data packing builtin");
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
});
|
|
}
|
|
|
|
bool GeneratorImpl::EmitBarrierCall(std::ostream& out,
|
|
const sem::Builtin* builtin) {
|
|
// TODO(crbug.com/tint/661): Combine sequential barriers to a single
|
|
// instruction.
|
|
if (builtin->Type() == sem::BuiltinType::kWorkgroupBarrier) {
|
|
out << "GroupMemoryBarrierWithGroupSync()";
|
|
} else if (builtin->Type() == sem::BuiltinType::kStorageBarrier) {
|
|
out << "DeviceMemoryBarrierWithGroupSync()";
|
|
} else {
|
|
TINT_UNREACHABLE(Writer, diagnostics_)
|
|
<< "unexpected barrier builtin type " << sem::str(builtin->Type());
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool GeneratorImpl::EmitTextureCall(std::ostream& out,
|
|
const sem::Call* call,
|
|
const sem::Builtin* builtin) {
|
|
using Usage = sem::ParameterUsage;
|
|
|
|
auto& signature = builtin->Signature();
|
|
auto* expr = call->Declaration();
|
|
auto arguments = expr->args;
|
|
|
|
// Returns the argument with the given usage
|
|
auto arg = [&](Usage usage) {
|
|
int idx = signature.IndexOf(usage);
|
|
return (idx >= 0) ? arguments[idx] : nullptr;
|
|
};
|
|
|
|
auto* texture = arg(Usage::kTexture);
|
|
if (!texture) {
|
|
TINT_ICE(Writer, diagnostics_) << "missing texture argument";
|
|
return false;
|
|
}
|
|
|
|
auto* texture_type = TypeOf(texture)->UnwrapRef()->As<sem::Texture>();
|
|
|
|
switch (builtin->Type()) {
|
|
case sem::BuiltinType::kTextureDimensions:
|
|
case sem::BuiltinType::kTextureNumLayers:
|
|
case sem::BuiltinType::kTextureNumLevels:
|
|
case sem::BuiltinType::kTextureNumSamples: {
|
|
// All of these builtins use the GetDimensions() method on the texture
|
|
bool is_ms = texture_type->IsAnyOf<sem::MultisampledTexture,
|
|
sem::DepthMultisampledTexture>();
|
|
int num_dimensions = 0;
|
|
std::string swizzle;
|
|
|
|
switch (builtin->Type()) {
|
|
case sem::BuiltinType::kTextureDimensions:
|
|
switch (texture_type->dim()) {
|
|
case ast::TextureDimension::kNone:
|
|
TINT_ICE(Writer, diagnostics_) << "texture dimension is kNone";
|
|
return false;
|
|
case ast::TextureDimension::k1d:
|
|
num_dimensions = 1;
|
|
break;
|
|
case ast::TextureDimension::k2d:
|
|
num_dimensions = is_ms ? 3 : 2;
|
|
swizzle = is_ms ? ".xy" : "";
|
|
break;
|
|
case ast::TextureDimension::k2dArray:
|
|
num_dimensions = is_ms ? 4 : 3;
|
|
swizzle = ".xy";
|
|
break;
|
|
case ast::TextureDimension::k3d:
|
|
num_dimensions = 3;
|
|
break;
|
|
case ast::TextureDimension::kCube:
|
|
num_dimensions = 2;
|
|
break;
|
|
case ast::TextureDimension::kCubeArray:
|
|
num_dimensions = 3;
|
|
swizzle = ".xy";
|
|
break;
|
|
}
|
|
break;
|
|
case sem::BuiltinType::kTextureNumLayers:
|
|
switch (texture_type->dim()) {
|
|
default:
|
|
TINT_ICE(Writer, diagnostics_)
|
|
<< "texture dimension is not arrayed";
|
|
return false;
|
|
case ast::TextureDimension::k2dArray:
|
|
num_dimensions = is_ms ? 4 : 3;
|
|
swizzle = ".z";
|
|
break;
|
|
case ast::TextureDimension::kCubeArray:
|
|
num_dimensions = 3;
|
|
swizzle = ".z";
|
|
break;
|
|
}
|
|
break;
|
|
case sem::BuiltinType::kTextureNumLevels:
|
|
switch (texture_type->dim()) {
|
|
default:
|
|
TINT_ICE(Writer, diagnostics_)
|
|
<< "texture dimension does not support mips";
|
|
return false;
|
|
case ast::TextureDimension::k1d:
|
|
num_dimensions = 2;
|
|
swizzle = ".y";
|
|
break;
|
|
case ast::TextureDimension::k2d:
|
|
case ast::TextureDimension::kCube:
|
|
num_dimensions = 3;
|
|
swizzle = ".z";
|
|
break;
|
|
case ast::TextureDimension::k2dArray:
|
|
case ast::TextureDimension::k3d:
|
|
case ast::TextureDimension::kCubeArray:
|
|
num_dimensions = 4;
|
|
swizzle = ".w";
|
|
break;
|
|
}
|
|
break;
|
|
case sem::BuiltinType::kTextureNumSamples:
|
|
switch (texture_type->dim()) {
|
|
default:
|
|
TINT_ICE(Writer, diagnostics_)
|
|
<< "texture dimension does not support multisampling";
|
|
return false;
|
|
case ast::TextureDimension::k2d:
|
|
num_dimensions = 3;
|
|
swizzle = ".z";
|
|
break;
|
|
case ast::TextureDimension::k2dArray:
|
|
num_dimensions = 4;
|
|
swizzle = ".w";
|
|
break;
|
|
}
|
|
break;
|
|
default:
|
|
TINT_ICE(Writer, diagnostics_) << "unexpected builtin";
|
|
return false;
|
|
}
|
|
|
|
auto* level_arg = arg(Usage::kLevel);
|
|
|
|
if (level_arg) {
|
|
// `NumberOfLevels` is a non-optional argument if `MipLevel` was passed.
|
|
// Increment the number of dimensions for the temporary vector to
|
|
// accommodate this.
|
|
num_dimensions++;
|
|
|
|
// If the swizzle was empty, the expression will evaluate to the whole
|
|
// vector. As we've grown the vector by one element, we now need to
|
|
// swizzle to keep the result expression equivalent.
|
|
if (swizzle.empty()) {
|
|
static constexpr const char* swizzles[] = {"", ".x", ".xy", ".xyz"};
|
|
swizzle = swizzles[num_dimensions - 1];
|
|
}
|
|
}
|
|
|
|
if (num_dimensions > 4) {
|
|
TINT_ICE(Writer, diagnostics_)
|
|
<< "Texture query builtin temporary vector has " << num_dimensions
|
|
<< " dimensions";
|
|
return false;
|
|
}
|
|
|
|
// Declare a variable to hold the queried texture info
|
|
auto dims = UniqueIdentifier(kTempNamePrefix);
|
|
if (num_dimensions == 1) {
|
|
line() << "int " << dims << ";";
|
|
} else {
|
|
line() << "int" << num_dimensions << " " << dims << ";";
|
|
}
|
|
|
|
{ // texture.GetDimensions(...)
|
|
auto pre = line();
|
|
if (!EmitExpression(pre, texture)) {
|
|
return false;
|
|
}
|
|
pre << ".GetDimensions(";
|
|
|
|
if (level_arg) {
|
|
if (!EmitExpression(pre, level_arg)) {
|
|
return false;
|
|
}
|
|
pre << ", ";
|
|
} else if (builtin->Type() == sem::BuiltinType::kTextureNumLevels) {
|
|
pre << "0, ";
|
|
}
|
|
|
|
if (num_dimensions == 1) {
|
|
pre << dims;
|
|
} else {
|
|
static constexpr char xyzw[] = {'x', 'y', 'z', 'w'};
|
|
if (num_dimensions < 0 || num_dimensions > 4) {
|
|
TINT_ICE(Writer, diagnostics_)
|
|
<< "vector dimensions are " << num_dimensions;
|
|
return false;
|
|
}
|
|
for (int i = 0; i < num_dimensions; i++) {
|
|
if (i > 0) {
|
|
pre << ", ";
|
|
}
|
|
pre << dims << "." << xyzw[i];
|
|
}
|
|
}
|
|
|
|
pre << ");";
|
|
}
|
|
|
|
// The out parameters of the GetDimensions() call is now in temporary
|
|
// `dims` variable. This may be packed with other data, so the final
|
|
// expression may require a swizzle.
|
|
out << dims << swizzle;
|
|
return true;
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
|
|
if (!EmitExpression(out, texture))
|
|
return false;
|
|
|
|
// If pack_level_in_coords is true, then the mip level will be appended as the
|
|
// last value of the coordinates argument. If the WGSL builtin overload does
|
|
// not have a level parameter and pack_level_in_coords is true, then a zero
|
|
// mip level will be inserted.
|
|
bool pack_level_in_coords = false;
|
|
|
|
uint32_t hlsl_ret_width = 4u;
|
|
|
|
switch (builtin->Type()) {
|
|
case sem::BuiltinType::kTextureSample:
|
|
out << ".Sample(";
|
|
break;
|
|
case sem::BuiltinType::kTextureSampleBias:
|
|
out << ".SampleBias(";
|
|
break;
|
|
case sem::BuiltinType::kTextureSampleLevel:
|
|
out << ".SampleLevel(";
|
|
break;
|
|
case sem::BuiltinType::kTextureSampleGrad:
|
|
out << ".SampleGrad(";
|
|
break;
|
|
case sem::BuiltinType::kTextureSampleCompare:
|
|
out << ".SampleCmp(";
|
|
hlsl_ret_width = 1;
|
|
break;
|
|
case sem::BuiltinType::kTextureSampleCompareLevel:
|
|
out << ".SampleCmpLevelZero(";
|
|
hlsl_ret_width = 1;
|
|
break;
|
|
case sem::BuiltinType::kTextureLoad:
|
|
out << ".Load(";
|
|
// Multisampled textures do not support mip-levels.
|
|
if (!texture_type->Is<sem::MultisampledTexture>()) {
|
|
pack_level_in_coords = true;
|
|
}
|
|
break;
|
|
case sem::BuiltinType::kTextureGather:
|
|
out << ".Gather";
|
|
if (builtin->Parameters()[0]->Usage() ==
|
|
sem::ParameterUsage::kComponent) {
|
|
switch (call->Arguments()[0]->ConstantValue().Elements()[0].i32) {
|
|
case 0:
|
|
out << "Red";
|
|
break;
|
|
case 1:
|
|
out << "Green";
|
|
break;
|
|
case 2:
|
|
out << "Blue";
|
|
break;
|
|
case 3:
|
|
out << "Alpha";
|
|
break;
|
|
}
|
|
}
|
|
out << "(";
|
|
break;
|
|
case sem::BuiltinType::kTextureGatherCompare:
|
|
out << ".GatherCmp(";
|
|
break;
|
|
case sem::BuiltinType::kTextureStore:
|
|
out << "[";
|
|
break;
|
|
default:
|
|
diagnostics_.add_error(
|
|
diag::System::Writer,
|
|
"Internal compiler error: Unhandled texture builtin '" +
|
|
std::string(builtin->str()) + "'");
|
|
return false;
|
|
}
|
|
|
|
if (auto* sampler = arg(Usage::kSampler)) {
|
|
if (!EmitExpression(out, sampler))
|
|
return false;
|
|
out << ", ";
|
|
}
|
|
|
|
auto* param_coords = arg(Usage::kCoords);
|
|
if (!param_coords) {
|
|
TINT_ICE(Writer, diagnostics_) << "missing coords argument";
|
|
return false;
|
|
}
|
|
|
|
auto emit_vector_appended_with_i32_zero = [&](const ast::Expression* vector) {
|
|
auto* i32 = builder_.create<sem::I32>();
|
|
auto* zero = builder_.Expr(0);
|
|
auto* stmt = builder_.Sem().Get(vector)->Stmt();
|
|
builder_.Sem().Add(zero, builder_.create<sem::Expression>(zero, i32, stmt,
|
|
sem::Constant{}));
|
|
auto* packed = AppendVector(&builder_, vector, zero);
|
|
return EmitExpression(out, packed->Declaration());
|
|
};
|
|
|
|
auto emit_vector_appended_with_level = [&](const ast::Expression* vector) {
|
|
if (auto* level = arg(Usage::kLevel)) {
|
|
auto* packed = AppendVector(&builder_, vector, level);
|
|
return EmitExpression(out, packed->Declaration());
|
|
}
|
|
return emit_vector_appended_with_i32_zero(vector);
|
|
};
|
|
|
|
if (auto* array_index = arg(Usage::kArrayIndex)) {
|
|
// Array index needs to be appended to the coordinates.
|
|
auto* packed = AppendVector(&builder_, param_coords, array_index);
|
|
if (pack_level_in_coords) {
|
|
// Then mip level needs to be appended to the coordinates.
|
|
if (!emit_vector_appended_with_level(packed->Declaration())) {
|
|
return false;
|
|
}
|
|
} else {
|
|
if (!EmitExpression(out, packed->Declaration())) {
|
|
return false;
|
|
}
|
|
}
|
|
} else if (pack_level_in_coords) {
|
|
// Mip level needs to be appended to the coordinates.
|
|
if (!emit_vector_appended_with_level(param_coords)) {
|
|
return false;
|
|
}
|
|
} else {
|
|
if (!EmitExpression(out, param_coords)) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
for (auto usage : {Usage::kDepthRef, Usage::kBias, Usage::kLevel, Usage::kDdx,
|
|
Usage::kDdy, Usage::kSampleIndex, Usage::kOffset}) {
|
|
if (usage == Usage::kLevel && pack_level_in_coords) {
|
|
continue; // mip level already packed in coordinates.
|
|
}
|
|
if (auto* e = arg(usage)) {
|
|
out << ", ";
|
|
if (!EmitExpression(out, e)) {
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (builtin->Type() == sem::BuiltinType::kTextureStore) {
|
|
out << "] = ";
|
|
if (!EmitExpression(out, arg(Usage::kValue))) {
|
|
return false;
|
|
}
|
|
} else {
|
|
out << ")";
|
|
|
|
// If the builtin return type does not match the number of elements of the
|
|
// HLSL builtin, we need to swizzle the expression to generate the correct
|
|
// number of components.
|
|
uint32_t wgsl_ret_width = 1;
|
|
if (auto* vec = builtin->ReturnType()->As<sem::Vector>()) {
|
|
wgsl_ret_width = vec->Width();
|
|
}
|
|
if (wgsl_ret_width < hlsl_ret_width) {
|
|
out << ".";
|
|
for (uint32_t i = 0; i < wgsl_ret_width; i++) {
|
|
out << "xyz"[i];
|
|
}
|
|
}
|
|
if (wgsl_ret_width > hlsl_ret_width) {
|
|
TINT_ICE(Writer, diagnostics_)
|
|
<< "WGSL return width (" << wgsl_ret_width
|
|
<< ") is wider than HLSL return width (" << hlsl_ret_width << ") for "
|
|
<< builtin->Type();
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
std::string GeneratorImpl::generate_builtin_name(const sem::Builtin* builtin) {
|
|
switch (builtin->Type()) {
|
|
case sem::BuiltinType::kAbs:
|
|
case sem::BuiltinType::kAcos:
|
|
case sem::BuiltinType::kAll:
|
|
case sem::BuiltinType::kAny:
|
|
case sem::BuiltinType::kAsin:
|
|
case sem::BuiltinType::kAtan:
|
|
case sem::BuiltinType::kAtan2:
|
|
case sem::BuiltinType::kCeil:
|
|
case sem::BuiltinType::kClamp:
|
|
case sem::BuiltinType::kCos:
|
|
case sem::BuiltinType::kCosh:
|
|
case sem::BuiltinType::kCross:
|
|
case sem::BuiltinType::kDeterminant:
|
|
case sem::BuiltinType::kDistance:
|
|
case sem::BuiltinType::kDot:
|
|
case sem::BuiltinType::kExp:
|
|
case sem::BuiltinType::kExp2:
|
|
case sem::BuiltinType::kFloor:
|
|
case sem::BuiltinType::kFrexp:
|
|
case sem::BuiltinType::kLdexp:
|
|
case sem::BuiltinType::kLength:
|
|
case sem::BuiltinType::kLog:
|
|
case sem::BuiltinType::kLog2:
|
|
case sem::BuiltinType::kMax:
|
|
case sem::BuiltinType::kMin:
|
|
case sem::BuiltinType::kModf:
|
|
case sem::BuiltinType::kNormalize:
|
|
case sem::BuiltinType::kPow:
|
|
case sem::BuiltinType::kReflect:
|
|
case sem::BuiltinType::kRefract:
|
|
case sem::BuiltinType::kRound:
|
|
case sem::BuiltinType::kSign:
|
|
case sem::BuiltinType::kSin:
|
|
case sem::BuiltinType::kSinh:
|
|
case sem::BuiltinType::kSqrt:
|
|
case sem::BuiltinType::kStep:
|
|
case sem::BuiltinType::kTan:
|
|
case sem::BuiltinType::kTanh:
|
|
case sem::BuiltinType::kTranspose:
|
|
case sem::BuiltinType::kTrunc:
|
|
return builtin->str();
|
|
case sem::BuiltinType::kCountOneBits:
|
|
return "countbits";
|
|
case sem::BuiltinType::kDpdx:
|
|
return "ddx";
|
|
case sem::BuiltinType::kDpdxCoarse:
|
|
return "ddx_coarse";
|
|
case sem::BuiltinType::kDpdxFine:
|
|
return "ddx_fine";
|
|
case sem::BuiltinType::kDpdy:
|
|
return "ddy";
|
|
case sem::BuiltinType::kDpdyCoarse:
|
|
return "ddy_coarse";
|
|
case sem::BuiltinType::kDpdyFine:
|
|
return "ddy_fine";
|
|
case sem::BuiltinType::kFaceForward:
|
|
return "faceforward";
|
|
case sem::BuiltinType::kFract:
|
|
return "frac";
|
|
case sem::BuiltinType::kFma:
|
|
return "mad";
|
|
case sem::BuiltinType::kFwidth:
|
|
case sem::BuiltinType::kFwidthCoarse:
|
|
case sem::BuiltinType::kFwidthFine:
|
|
return "fwidth";
|
|
case sem::BuiltinType::kInverseSqrt:
|
|
return "rsqrt";
|
|
case sem::BuiltinType::kIsFinite:
|
|
return "isfinite";
|
|
case sem::BuiltinType::kIsInf:
|
|
return "isinf";
|
|
case sem::BuiltinType::kIsNan:
|
|
return "isnan";
|
|
case sem::BuiltinType::kMix:
|
|
return "lerp";
|
|
case sem::BuiltinType::kReverseBits:
|
|
return "reversebits";
|
|
case sem::BuiltinType::kSmoothStep:
|
|
return "smoothstep";
|
|
default:
|
|
diagnostics_.add_error(
|
|
diag::System::Writer,
|
|
"Unknown builtin method: " + std::string(builtin->str()));
|
|
}
|
|
|
|
return "";
|
|
}
|
|
|
|
bool GeneratorImpl::EmitCase(const ast::SwitchStatement* s, size_t case_idx) {
|
|
auto* stmt = s->body[case_idx];
|
|
if (stmt->IsDefault()) {
|
|
line() << "default: {";
|
|
} else {
|
|
for (auto* selector : stmt->selectors) {
|
|
auto out = line();
|
|
out << "case ";
|
|
if (!EmitLiteral(out, selector)) {
|
|
return false;
|
|
}
|
|
out << ":";
|
|
if (selector == stmt->selectors.back()) {
|
|
out << " {";
|
|
}
|
|
}
|
|
}
|
|
|
|
increment_indent();
|
|
TINT_DEFER({
|
|
decrement_indent();
|
|
line() << "}";
|
|
});
|
|
|
|
// Emit the case statement
|
|
if (!EmitStatements(stmt->body->statements)) {
|
|
return false;
|
|
}
|
|
|
|
// Inline all fallthrough case statements. FXC cannot handle fallthroughs.
|
|
while (tint::Is<ast::FallthroughStatement>(stmt->body->Last())) {
|
|
case_idx++;
|
|
stmt = s->body[case_idx];
|
|
// Generate each fallthrough case statement in a new block. This is done to
|
|
// prevent symbol collision of variables declared in these cases statements.
|
|
if (!EmitBlock(stmt->body)) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
if (!tint::IsAnyOf<ast::BreakStatement, ast::FallthroughStatement>(
|
|
stmt->body->Last())) {
|
|
line() << "break;";
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool GeneratorImpl::EmitContinue(const ast::ContinueStatement*) {
|
|
if (!emit_continuing_()) {
|
|
return false;
|
|
}
|
|
line() << "continue;";
|
|
return true;
|
|
}
|
|
|
|
bool GeneratorImpl::EmitDiscard(const ast::DiscardStatement*) {
|
|
// TODO(dsinclair): Verify this is correct when the discard semantics are
|
|
// defined for WGSL (https://github.com/gpuweb/gpuweb/issues/361)
|
|
line() << "discard;";
|
|
return true;
|
|
}
|
|
|
|
bool GeneratorImpl::EmitExpression(std::ostream& out,
|
|
const ast::Expression* expr) {
|
|
if (auto* a = expr->As<ast::IndexAccessorExpression>()) {
|
|
return EmitIndexAccessor(out, a);
|
|
}
|
|
if (auto* b = expr->As<ast::BinaryExpression>()) {
|
|
return EmitBinary(out, b);
|
|
}
|
|
if (auto* b = expr->As<ast::BitcastExpression>()) {
|
|
return EmitBitcast(out, b);
|
|
}
|
|
if (auto* c = expr->As<ast::CallExpression>()) {
|
|
return EmitCall(out, c);
|
|
}
|
|
if (auto* i = expr->As<ast::IdentifierExpression>()) {
|
|
return EmitIdentifier(out, i);
|
|
}
|
|
if (auto* l = expr->As<ast::LiteralExpression>()) {
|
|
return EmitLiteral(out, l);
|
|
}
|
|
if (auto* m = expr->As<ast::MemberAccessorExpression>()) {
|
|
return EmitMemberAccessor(out, m);
|
|
}
|
|
if (auto* u = expr->As<ast::UnaryOpExpression>()) {
|
|
return EmitUnaryOp(out, u);
|
|
}
|
|
|
|
diagnostics_.add_error(
|
|
diag::System::Writer,
|
|
"unknown expression type: " + std::string(expr->TypeInfo().name));
|
|
return false;
|
|
}
|
|
|
|
bool GeneratorImpl::EmitIdentifier(std::ostream& out,
|
|
const ast::IdentifierExpression* expr) {
|
|
out << builder_.Symbols().NameFor(expr->symbol);
|
|
return true;
|
|
}
|
|
|
|
bool GeneratorImpl::EmitIf(const ast::IfStatement* stmt) {
|
|
{
|
|
auto out = line();
|
|
out << "if (";
|
|
if (!EmitExpression(out, stmt->condition)) {
|
|
return false;
|
|
}
|
|
out << ") {";
|
|
}
|
|
|
|
if (!EmitStatementsWithIndent(stmt->body->statements)) {
|
|
return false;
|
|
}
|
|
|
|
for (auto* e : stmt->else_statements) {
|
|
if (e->condition) {
|
|
line() << "} else {";
|
|
increment_indent();
|
|
|
|
{
|
|
auto out = line();
|
|
out << "if (";
|
|
if (!EmitExpression(out, e->condition)) {
|
|
return false;
|
|
}
|
|
out << ") {";
|
|
}
|
|
} else {
|
|
line() << "} else {";
|
|
}
|
|
|
|
if (!EmitStatementsWithIndent(e->body->statements)) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
line() << "}";
|
|
|
|
for (auto* e : stmt->else_statements) {
|
|
if (e->condition) {
|
|
decrement_indent();
|
|
line() << "}";
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool GeneratorImpl::EmitFunction(const ast::Function* func) {
|
|
auto* sem = builder_.Sem().Get(func);
|
|
|
|
if (ast::HasAttribute<ast::InternalAttribute>(func->attributes)) {
|
|
// An internal function. Do not emit.
|
|
return true;
|
|
}
|
|
|
|
{
|
|
auto out = line();
|
|
auto name = builder_.Symbols().NameFor(func->symbol);
|
|
// If the function returns an array, then we need to declare a typedef for
|
|
// this.
|
|
if (sem->ReturnType()->Is<sem::Array>()) {
|
|
auto typedef_name = UniqueIdentifier(name + "_ret");
|
|
auto pre = line();
|
|
pre << "typedef ";
|
|
if (!EmitTypeAndName(pre, sem->ReturnType(), ast::StorageClass::kNone,
|
|
ast::Access::kReadWrite, typedef_name)) {
|
|
return false;
|
|
}
|
|
pre << ";";
|
|
out << typedef_name;
|
|
} else {
|
|
if (!EmitType(out, sem->ReturnType(), ast::StorageClass::kNone,
|
|
ast::Access::kReadWrite, "")) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
out << " " << name << "(";
|
|
|
|
bool first = true;
|
|
|
|
for (auto* v : sem->Parameters()) {
|
|
if (!first) {
|
|
out << ", ";
|
|
}
|
|
first = false;
|
|
|
|
auto const* type = v->Type();
|
|
|
|
if (auto* ptr = type->As<sem::Pointer>()) {
|
|
// Transform pointer parameters in to `inout` parameters.
|
|
// The WGSL spec is highly restrictive in what can be passed in pointer
|
|
// parameters, which allows for this transformation. See:
|
|
// https://gpuweb.github.io/gpuweb/wgsl/#function-restriction
|
|
out << "inout ";
|
|
type = ptr->StoreType();
|
|
}
|
|
|
|
// Note: WGSL only allows for StorageClass::kNone on parameters, however
|
|
// the sanitizer transforms generates load / store functions for storage
|
|
// or uniform buffers. These functions have a buffer parameter with
|
|
// StorageClass::kStorage or StorageClass::kUniform. This is required to
|
|
// correctly translate the parameter to a [RW]ByteAddressBuffer for
|
|
// storage buffers and a uint4[N] for uniform buffers.
|
|
if (!EmitTypeAndName(
|
|
out, type, v->StorageClass(), v->Access(),
|
|
builder_.Symbols().NameFor(v->Declaration()->symbol))) {
|
|
return false;
|
|
}
|
|
}
|
|
out << ") {";
|
|
}
|
|
|
|
if (sem->HasDiscard() && !sem->ReturnType()->Is<sem::Void>()) {
|
|
// BUG(crbug.com/tint/1081): work around non-void functions with discard
|
|
// failing compilation sometimes
|
|
if (!EmitFunctionBodyWithDiscard(func)) {
|
|
return false;
|
|
}
|
|
} else {
|
|
if (!EmitStatementsWithIndent(func->body->statements)) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
line() << "}";
|
|
|
|
return true;
|
|
}
|
|
|
|
bool GeneratorImpl::EmitFunctionBodyWithDiscard(const ast::Function* func) {
|
|
// FXC sometimes fails to compile functions that discard with 'Not all control
|
|
// paths return a value'. We work around this by wrapping the function body
|
|
// within an "if (true) { <body> } return <default return type obj>;" so that
|
|
// there is always an (unused) return statement.
|
|
|
|
auto* sem = builder_.Sem().Get(func);
|
|
TINT_ASSERT(Writer, sem->HasDiscard() && !sem->ReturnType()->Is<sem::Void>());
|
|
|
|
ScopedIndent si(this);
|
|
line() << "if (true) {";
|
|
|
|
if (!EmitStatementsWithIndent(func->body->statements)) {
|
|
return false;
|
|
}
|
|
|
|
line() << "}";
|
|
|
|
// Return an unused result that matches the type of the return value
|
|
auto name = builder_.Symbols().NameFor(builder_.Symbols().New("unused"));
|
|
{
|
|
auto out = line();
|
|
if (!EmitTypeAndName(out, sem->ReturnType(), ast::StorageClass::kNone,
|
|
ast::Access::kReadWrite, name)) {
|
|
return false;
|
|
}
|
|
out << ";";
|
|
}
|
|
line() << "return " << name << ";";
|
|
|
|
return true;
|
|
}
|
|
|
|
bool GeneratorImpl::EmitGlobalVariable(const ast::Variable* global) {
|
|
if (global->is_const) {
|
|
return EmitProgramConstVariable(global);
|
|
}
|
|
|
|
auto* sem = builder_.Sem().Get(global);
|
|
switch (sem->StorageClass()) {
|
|
case ast::StorageClass::kUniform:
|
|
return EmitUniformVariable(sem);
|
|
case ast::StorageClass::kStorage:
|
|
return EmitStorageVariable(sem);
|
|
case ast::StorageClass::kUniformConstant:
|
|
return EmitHandleVariable(sem);
|
|
case ast::StorageClass::kPrivate:
|
|
return EmitPrivateVariable(sem);
|
|
case ast::StorageClass::kWorkgroup:
|
|
return EmitWorkgroupVariable(sem);
|
|
default:
|
|
break;
|
|
}
|
|
|
|
TINT_ICE(Writer, diagnostics_)
|
|
<< "unhandled storage class " << sem->StorageClass();
|
|
return false;
|
|
}
|
|
|
|
bool GeneratorImpl::EmitUniformVariable(const sem::Variable* var) {
|
|
auto* decl = var->Declaration();
|
|
auto binding_point = decl->BindingPoint();
|
|
auto* type = var->Type()->UnwrapRef();
|
|
auto name = builder_.Symbols().NameFor(decl->symbol);
|
|
line() << "cbuffer cbuffer_" << name << RegisterAndSpace('b', binding_point)
|
|
<< " {";
|
|
|
|
{
|
|
ScopedIndent si(this);
|
|
auto out = line();
|
|
if (!EmitTypeAndName(out, type, ast::StorageClass::kUniform, var->Access(),
|
|
name)) {
|
|
return false;
|
|
}
|
|
out << ";";
|
|
}
|
|
|
|
line() << "};";
|
|
|
|
return true;
|
|
}
|
|
|
|
bool GeneratorImpl::EmitStorageVariable(const sem::Variable* var) {
|
|
auto* decl = var->Declaration();
|
|
auto* type = var->Type()->UnwrapRef();
|
|
auto out = line();
|
|
if (!EmitTypeAndName(out, type, ast::StorageClass::kStorage, var->Access(),
|
|
builder_.Symbols().NameFor(decl->symbol))) {
|
|
return false;
|
|
}
|
|
|
|
out << RegisterAndSpace(var->Access() == ast::Access::kRead ? 't' : 'u',
|
|
decl->BindingPoint())
|
|
<< ";";
|
|
|
|
return true;
|
|
}
|
|
|
|
bool GeneratorImpl::EmitHandleVariable(const sem::Variable* var) {
|
|
auto* decl = var->Declaration();
|
|
auto* unwrapped_type = var->Type()->UnwrapRef();
|
|
auto out = line();
|
|
|
|
auto name = builder_.Symbols().NameFor(decl->symbol);
|
|
auto* type = var->Type()->UnwrapRef();
|
|
if (!EmitTypeAndName(out, type, var->StorageClass(), var->Access(), name)) {
|
|
return false;
|
|
}
|
|
|
|
const char* register_space = nullptr;
|
|
|
|
if (unwrapped_type->Is<sem::Texture>()) {
|
|
register_space = "t";
|
|
if (unwrapped_type->Is<sem::StorageTexture>()) {
|
|
register_space = "u";
|
|
}
|
|
} else if (unwrapped_type->Is<sem::Sampler>()) {
|
|
register_space = "s";
|
|
}
|
|
|
|
if (register_space) {
|
|
auto bp = decl->BindingPoint();
|
|
out << " : register(" << register_space << bp.binding->value << ", space"
|
|
<< bp.group->value << ")";
|
|
}
|
|
|
|
out << ";";
|
|
return true;
|
|
}
|
|
|
|
bool GeneratorImpl::EmitPrivateVariable(const sem::Variable* var) {
|
|
auto* decl = var->Declaration();
|
|
auto out = line();
|
|
|
|
out << "static ";
|
|
|
|
auto name = builder_.Symbols().NameFor(decl->symbol);
|
|
auto* type = var->Type()->UnwrapRef();
|
|
if (!EmitTypeAndName(out, type, var->StorageClass(), var->Access(), name)) {
|
|
return false;
|
|
}
|
|
|
|
out << " = ";
|
|
if (auto* constructor = decl->constructor) {
|
|
if (!EmitExpression(out, constructor)) {
|
|
return false;
|
|
}
|
|
} else {
|
|
if (!EmitZeroValue(out, var->Type()->UnwrapRef())) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
out << ";";
|
|
return true;
|
|
}
|
|
|
|
bool GeneratorImpl::EmitWorkgroupVariable(const sem::Variable* var) {
|
|
auto* decl = var->Declaration();
|
|
auto out = line();
|
|
|
|
out << "groupshared ";
|
|
|
|
auto name = builder_.Symbols().NameFor(decl->symbol);
|
|
auto* type = var->Type()->UnwrapRef();
|
|
if (!EmitTypeAndName(out, type, var->StorageClass(), var->Access(), name)) {
|
|
return false;
|
|
}
|
|
|
|
if (auto* constructor = decl->constructor) {
|
|
out << " = ";
|
|
if (!EmitExpression(out, constructor)) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
out << ";";
|
|
return true;
|
|
}
|
|
|
|
std::string GeneratorImpl::builtin_to_attribute(ast::Builtin builtin) const {
|
|
switch (builtin) {
|
|
case ast::Builtin::kPosition:
|
|
return "SV_Position";
|
|
case ast::Builtin::kVertexIndex:
|
|
return "SV_VertexID";
|
|
case ast::Builtin::kInstanceIndex:
|
|
return "SV_InstanceID";
|
|
case ast::Builtin::kFrontFacing:
|
|
return "SV_IsFrontFace";
|
|
case ast::Builtin::kFragDepth:
|
|
return "SV_Depth";
|
|
case ast::Builtin::kLocalInvocationId:
|
|
return "SV_GroupThreadID";
|
|
case ast::Builtin::kLocalInvocationIndex:
|
|
return "SV_GroupIndex";
|
|
case ast::Builtin::kGlobalInvocationId:
|
|
return "SV_DispatchThreadID";
|
|
case ast::Builtin::kWorkgroupId:
|
|
return "SV_GroupID";
|
|
case ast::Builtin::kSampleIndex:
|
|
return "SV_SampleIndex";
|
|
case ast::Builtin::kSampleMask:
|
|
return "SV_Coverage";
|
|
default:
|
|
break;
|
|
}
|
|
return "";
|
|
}
|
|
|
|
std::string GeneratorImpl::interpolation_to_modifiers(
|
|
ast::InterpolationType type,
|
|
ast::InterpolationSampling sampling) const {
|
|
std::string modifiers;
|
|
switch (type) {
|
|
case ast::InterpolationType::kPerspective:
|
|
modifiers += "linear ";
|
|
break;
|
|
case ast::InterpolationType::kLinear:
|
|
modifiers += "noperspective ";
|
|
break;
|
|
case ast::InterpolationType::kFlat:
|
|
modifiers += "nointerpolation ";
|
|
break;
|
|
}
|
|
switch (sampling) {
|
|
case ast::InterpolationSampling::kCentroid:
|
|
modifiers += "centroid ";
|
|
break;
|
|
case ast::InterpolationSampling::kSample:
|
|
modifiers += "sample ";
|
|
break;
|
|
case ast::InterpolationSampling::kCenter:
|
|
case ast::InterpolationSampling::kNone:
|
|
break;
|
|
}
|
|
return modifiers;
|
|
}
|
|
|
|
bool GeneratorImpl::EmitEntryPointFunction(const ast::Function* func) {
|
|
auto* func_sem = builder_.Sem().Get(func);
|
|
|
|
{
|
|
auto out = line();
|
|
if (func->PipelineStage() == ast::PipelineStage::kCompute) {
|
|
// Emit the workgroup_size attribute.
|
|
auto wgsize = func_sem->WorkgroupSize();
|
|
out << "[numthreads(";
|
|
for (int i = 0; i < 3; i++) {
|
|
if (i > 0) {
|
|
out << ", ";
|
|
}
|
|
|
|
if (wgsize[i].overridable_const) {
|
|
auto* global = builder_.Sem().Get<sem::GlobalVariable>(
|
|
wgsize[i].overridable_const);
|
|
if (!global->IsOverridable()) {
|
|
TINT_ICE(Writer, builder_.Diagnostics())
|
|
<< "expected a pipeline-overridable constant";
|
|
}
|
|
out << kSpecConstantPrefix << global->ConstantId();
|
|
} else {
|
|
out << std::to_string(wgsize[i].value);
|
|
}
|
|
}
|
|
out << ")]" << std::endl;
|
|
}
|
|
|
|
out << func->return_type->FriendlyName(builder_.Symbols());
|
|
|
|
out << " " << builder_.Symbols().NameFor(func->symbol) << "(";
|
|
|
|
bool first = true;
|
|
|
|
// Emit entry point parameters.
|
|
for (auto* var : func->params) {
|
|
auto* sem = builder_.Sem().Get(var);
|
|
auto* type = sem->Type();
|
|
if (!type->Is<sem::Struct>()) {
|
|
// ICE likely indicates that the CanonicalizeEntryPointIO transform was
|
|
// not run, or a builtin parameter was added after it was run.
|
|
TINT_ICE(Writer, diagnostics_)
|
|
<< "Unsupported non-struct entry point parameter";
|
|
}
|
|
|
|
if (!first) {
|
|
out << ", ";
|
|
}
|
|
first = false;
|
|
|
|
if (!EmitTypeAndName(out, type, sem->StorageClass(), sem->Access(),
|
|
builder_.Symbols().NameFor(var->symbol))) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
out << ") {";
|
|
}
|
|
|
|
{
|
|
ScopedIndent si(this);
|
|
|
|
if (!EmitStatements(func->body->statements)) {
|
|
return false;
|
|
}
|
|
|
|
if (!Is<ast::ReturnStatement>(func->body->Last())) {
|
|
ast::ReturnStatement ret(ProgramID(), Source{});
|
|
if (!EmitStatement(&ret)) {
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
line() << "}";
|
|
|
|
return true;
|
|
}
|
|
|
|
bool GeneratorImpl::EmitLiteral(std::ostream& out,
|
|
const ast::LiteralExpression* lit) {
|
|
if (auto* l = lit->As<ast::BoolLiteralExpression>()) {
|
|
out << (l->value ? "true" : "false");
|
|
} else if (auto* fl = lit->As<ast::FloatLiteralExpression>()) {
|
|
if (std::isinf(fl->value)) {
|
|
out << (fl->value >= 0 ? "asfloat(0x7f800000u)" : "asfloat(0xff800000u)");
|
|
} else if (std::isnan(fl->value)) {
|
|
out << "asfloat(0x7fc00000u)";
|
|
} else {
|
|
out << FloatToString(fl->value) << "f";
|
|
}
|
|
} else if (auto* sl = lit->As<ast::SintLiteralExpression>()) {
|
|
out << sl->value;
|
|
} else if (auto* ul = lit->As<ast::UintLiteralExpression>()) {
|
|
out << ul->value << "u";
|
|
} else {
|
|
diagnostics_.add_error(diag::System::Writer, "unknown literal type");
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool GeneratorImpl::EmitValue(std::ostream& out,
|
|
const sem::Type* type,
|
|
int value) {
|
|
if (type->Is<sem::Bool>()) {
|
|
out << (value == 0 ? "false" : "true");
|
|
} else if (type->Is<sem::F32>()) {
|
|
out << value << ".0f";
|
|
} else if (type->Is<sem::I32>()) {
|
|
out << value;
|
|
} else if (type->Is<sem::U32>()) {
|
|
out << value << "u";
|
|
} else if (auto* vec = type->As<sem::Vector>()) {
|
|
if (!EmitType(out, type, ast::StorageClass::kNone, ast::Access::kReadWrite,
|
|
"")) {
|
|
return false;
|
|
}
|
|
ScopedParen sp(out);
|
|
for (uint32_t i = 0; i < vec->Width(); i++) {
|
|
if (i != 0) {
|
|
out << ", ";
|
|
}
|
|
if (!EmitValue(out, vec->type(), value)) {
|
|
return false;
|
|
}
|
|
}
|
|
} else if (auto* mat = type->As<sem::Matrix>()) {
|
|
if (!EmitType(out, type, ast::StorageClass::kNone, ast::Access::kReadWrite,
|
|
"")) {
|
|
return false;
|
|
}
|
|
ScopedParen sp(out);
|
|
for (uint32_t i = 0; i < (mat->rows() * mat->columns()); i++) {
|
|
if (i != 0) {
|
|
out << ", ";
|
|
}
|
|
if (!EmitValue(out, mat->type(), value)) {
|
|
return false;
|
|
}
|
|
}
|
|
} else if (type->IsAnyOf<sem::Struct, sem::Array>()) {
|
|
out << "(";
|
|
if (!EmitType(out, type, ast::StorageClass::kNone, ast::Access::kUndefined,
|
|
"")) {
|
|
return false;
|
|
}
|
|
out << ")" << value;
|
|
} else {
|
|
diagnostics_.add_error(
|
|
diag::System::Writer,
|
|
"Invalid type for value emission: " + type->type_name());
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool GeneratorImpl::EmitZeroValue(std::ostream& out, const sem::Type* type) {
|
|
return EmitValue(out, type, 0);
|
|
}
|
|
|
|
bool GeneratorImpl::EmitLoop(const ast::LoopStatement* stmt) {
|
|
auto emit_continuing = [this, stmt]() {
|
|
if (stmt->continuing && !stmt->continuing->Empty()) {
|
|
if (!EmitBlock(stmt->continuing)) {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
};
|
|
|
|
TINT_SCOPED_ASSIGNMENT(emit_continuing_, emit_continuing);
|
|
line() << LoopAttribute() << "while (true) {";
|
|
{
|
|
ScopedIndent si(this);
|
|
if (!EmitStatements(stmt->body->statements)) {
|
|
return false;
|
|
}
|
|
if (!emit_continuing_()) {
|
|
return false;
|
|
}
|
|
}
|
|
line() << "}";
|
|
|
|
return true;
|
|
}
|
|
|
|
bool GeneratorImpl::EmitForLoop(const ast::ForLoopStatement* stmt) {
|
|
// Nest a for loop with a new block. In HLSL the initializer scope is not
|
|
// nested by the for-loop, so we may get variable redefinitions.
|
|
line() << "{";
|
|
increment_indent();
|
|
TINT_DEFER({
|
|
decrement_indent();
|
|
line() << "}";
|
|
});
|
|
|
|
TextBuffer init_buf;
|
|
if (auto* init = stmt->initializer) {
|
|
TINT_SCOPED_ASSIGNMENT(current_buffer_, &init_buf);
|
|
if (!EmitStatement(init)) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
TextBuffer cond_pre;
|
|
std::stringstream cond_buf;
|
|
if (auto* cond = stmt->condition) {
|
|
TINT_SCOPED_ASSIGNMENT(current_buffer_, &cond_pre);
|
|
if (!EmitExpression(cond_buf, cond)) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
TextBuffer cont_buf;
|
|
if (auto* cont = stmt->continuing) {
|
|
TINT_SCOPED_ASSIGNMENT(current_buffer_, &cont_buf);
|
|
if (!EmitStatement(cont)) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// If the for-loop has a multi-statement conditional and / or continuing, then
|
|
// we cannot emit this as a regular for-loop in HLSL. Instead we need to
|
|
// generate a `while(true)` loop.
|
|
bool emit_as_loop = cond_pre.lines.size() > 0 || cont_buf.lines.size() > 1;
|
|
|
|
// If the for-loop has multi-statement initializer, or is going to be emitted
|
|
// as a `while(true)` loop, then declare the initializer statement(s) before
|
|
// the loop.
|
|
if (init_buf.lines.size() > 1 || (stmt->initializer && emit_as_loop)) {
|
|
current_buffer_->Append(init_buf);
|
|
init_buf.lines.clear(); // Don't emit the initializer again in the 'for'
|
|
}
|
|
|
|
if (emit_as_loop) {
|
|
auto emit_continuing = [&]() {
|
|
current_buffer_->Append(cont_buf);
|
|
return true;
|
|
};
|
|
|
|
TINT_SCOPED_ASSIGNMENT(emit_continuing_, emit_continuing);
|
|
line() << LoopAttribute() << "while (true) {";
|
|
increment_indent();
|
|
TINT_DEFER({
|
|
decrement_indent();
|
|
line() << "}";
|
|
});
|
|
|
|
if (stmt->condition) {
|
|
current_buffer_->Append(cond_pre);
|
|
line() << "if (!(" << cond_buf.str() << ")) { break; }";
|
|
}
|
|
|
|
if (!EmitStatements(stmt->body->statements)) {
|
|
return false;
|
|
}
|
|
|
|
if (!emit_continuing_()) {
|
|
return false;
|
|
}
|
|
} else {
|
|
// For-loop can be generated.
|
|
{
|
|
auto out = line();
|
|
out << LoopAttribute() << "for";
|
|
{
|
|
ScopedParen sp(out);
|
|
|
|
if (!init_buf.lines.empty()) {
|
|
out << init_buf.lines[0].content << " ";
|
|
} else {
|
|
out << "; ";
|
|
}
|
|
|
|
out << cond_buf.str() << "; ";
|
|
|
|
if (!cont_buf.lines.empty()) {
|
|
out << TrimSuffix(cont_buf.lines[0].content, ";");
|
|
}
|
|
}
|
|
out << " {";
|
|
}
|
|
{
|
|
auto emit_continuing = [] { return true; };
|
|
TINT_SCOPED_ASSIGNMENT(emit_continuing_, emit_continuing);
|
|
if (!EmitStatementsWithIndent(stmt->body->statements)) {
|
|
return false;
|
|
}
|
|
}
|
|
line() << "}";
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool GeneratorImpl::EmitMemberAccessor(
|
|
std::ostream& out,
|
|
const ast::MemberAccessorExpression* expr) {
|
|
if (!EmitExpression(out, expr->structure)) {
|
|
return false;
|
|
}
|
|
out << ".";
|
|
|
|
// Swizzles output the name directly
|
|
if (builder_.Sem().Get(expr)->Is<sem::Swizzle>()) {
|
|
out << builder_.Symbols().NameFor(expr->member->symbol);
|
|
} else if (!EmitExpression(out, expr->member)) {
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool GeneratorImpl::EmitReturn(const ast::ReturnStatement* stmt) {
|
|
if (stmt->value) {
|
|
auto out = line();
|
|
out << "return ";
|
|
if (!EmitExpression(out, stmt->value)) {
|
|
return false;
|
|
}
|
|
out << ";";
|
|
} else {
|
|
line() << "return;";
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool GeneratorImpl::EmitStatement(const ast::Statement* stmt) {
|
|
if (auto* a = stmt->As<ast::AssignmentStatement>()) {
|
|
return EmitAssign(a);
|
|
}
|
|
if (auto* b = stmt->As<ast::BlockStatement>()) {
|
|
return EmitBlock(b);
|
|
}
|
|
if (auto* b = stmt->As<ast::BreakStatement>()) {
|
|
return EmitBreak(b);
|
|
}
|
|
if (auto* c = stmt->As<ast::CallStatement>()) {
|
|
auto out = line();
|
|
if (!EmitCall(out, c->expr)) {
|
|
return false;
|
|
}
|
|
out << ";";
|
|
return true;
|
|
}
|
|
if (auto* c = stmt->As<ast::ContinueStatement>()) {
|
|
return EmitContinue(c);
|
|
}
|
|
if (auto* d = stmt->As<ast::DiscardStatement>()) {
|
|
return EmitDiscard(d);
|
|
}
|
|
if (stmt->As<ast::FallthroughStatement>()) {
|
|
line() << "/* fallthrough */";
|
|
return true;
|
|
}
|
|
if (auto* i = stmt->As<ast::IfStatement>()) {
|
|
return EmitIf(i);
|
|
}
|
|
if (auto* l = stmt->As<ast::LoopStatement>()) {
|
|
return EmitLoop(l);
|
|
}
|
|
if (auto* l = stmt->As<ast::ForLoopStatement>()) {
|
|
return EmitForLoop(l);
|
|
}
|
|
if (auto* r = stmt->As<ast::ReturnStatement>()) {
|
|
return EmitReturn(r);
|
|
}
|
|
if (auto* s = stmt->As<ast::SwitchStatement>()) {
|
|
return EmitSwitch(s);
|
|
}
|
|
if (auto* v = stmt->As<ast::VariableDeclStatement>()) {
|
|
return EmitVariable(v->variable);
|
|
}
|
|
|
|
diagnostics_.add_error(
|
|
diag::System::Writer,
|
|
"unknown statement type: " + std::string(stmt->TypeInfo().name));
|
|
return false;
|
|
}
|
|
|
|
bool GeneratorImpl::EmitDefaultOnlySwitch(const ast::SwitchStatement* stmt) {
|
|
TINT_ASSERT(Writer, stmt->body.size() == 1 && stmt->body[0]->IsDefault());
|
|
|
|
// FXC fails to compile a switch with just a default case, ignoring the
|
|
// default case body. We work around this here by emitting the default case
|
|
// without the switch.
|
|
|
|
// Emit the switch condition as-is in case it has side-effects (e.g.
|
|
// function call). Note that's it's fine not to assign the result of the
|
|
// expression.
|
|
{
|
|
auto out = line();
|
|
if (!EmitExpression(out, stmt->condition)) {
|
|
return false;
|
|
}
|
|
out << ";";
|
|
}
|
|
|
|
// Emit "do { <default case body> } while(false);". We use a 'do' loop so
|
|
// that break statements work as expected, and make it 'while (false)' in
|
|
// case there isn't a break statement.
|
|
line() << "do {";
|
|
{
|
|
ScopedIndent si(this);
|
|
if (!EmitStatements(stmt->body[0]->body->statements)) {
|
|
return false;
|
|
}
|
|
}
|
|
line() << "} while (false);";
|
|
return true;
|
|
}
|
|
|
|
bool GeneratorImpl::EmitSwitch(const ast::SwitchStatement* stmt) {
|
|
// BUG(crbug.com/tint/1188): work around default-only switches
|
|
if (stmt->body.size() == 1 && stmt->body[0]->IsDefault()) {
|
|
return EmitDefaultOnlySwitch(stmt);
|
|
}
|
|
|
|
{ // switch(expr) {
|
|
auto out = line();
|
|
out << "switch(";
|
|
if (!EmitExpression(out, stmt->condition)) {
|
|
return false;
|
|
}
|
|
out << ") {";
|
|
}
|
|
|
|
{
|
|
ScopedIndent si(this);
|
|
for (size_t i = 0; i < stmt->body.size(); i++) {
|
|
if (!EmitCase(stmt, i)) {
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
line() << "}";
|
|
|
|
return true;
|
|
}
|
|
|
|
bool GeneratorImpl::EmitType(std::ostream& out,
|
|
const sem::Type* type,
|
|
ast::StorageClass storage_class,
|
|
ast::Access access,
|
|
const std::string& name,
|
|
bool* name_printed /* = nullptr */) {
|
|
if (name_printed) {
|
|
*name_printed = false;
|
|
}
|
|
switch (storage_class) {
|
|
case ast::StorageClass::kStorage:
|
|
if (access != ast::Access::kRead) {
|
|
out << "RW";
|
|
}
|
|
out << "ByteAddressBuffer";
|
|
return true;
|
|
case ast::StorageClass::kUniform: {
|
|
auto array_length = (type->Size() + 15) / 16;
|
|
out << "uint4 " << name << "[" << array_length << "]";
|
|
if (name_printed) {
|
|
*name_printed = true;
|
|
}
|
|
return true;
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
|
|
if (auto* ary = type->As<sem::Array>()) {
|
|
const sem::Type* base_type = ary;
|
|
std::vector<uint32_t> sizes;
|
|
while (auto* arr = base_type->As<sem::Array>()) {
|
|
if (arr->IsRuntimeSized()) {
|
|
TINT_ICE(Writer, diagnostics_)
|
|
<< "Runtime arrays may only exist in storage buffers, which should "
|
|
"have been transformed into a ByteAddressBuffer";
|
|
return false;
|
|
}
|
|
sizes.push_back(arr->Count());
|
|
base_type = arr->ElemType();
|
|
}
|
|
if (!EmitType(out, base_type, storage_class, access, "")) {
|
|
return false;
|
|
}
|
|
if (!name.empty()) {
|
|
out << " " << name;
|
|
if (name_printed) {
|
|
*name_printed = true;
|
|
}
|
|
}
|
|
for (uint32_t size : sizes) {
|
|
out << "[" << size << "]";
|
|
}
|
|
} else if (type->Is<sem::Bool>()) {
|
|
out << "bool";
|
|
} else if (type->Is<sem::F32>()) {
|
|
out << "float";
|
|
} else if (type->Is<sem::I32>()) {
|
|
out << "int";
|
|
} else if (auto* mat = type->As<sem::Matrix>()) {
|
|
if (!EmitType(out, mat->type(), storage_class, access, "")) {
|
|
return false;
|
|
}
|
|
// Note: HLSL's matrices are declared as <type>NxM, where N is the number of
|
|
// rows and M is the number of columns. Despite HLSL's matrices being
|
|
// column-major by default, the index operator and constructors actually
|
|
// operate on row-vectors, where as WGSL operates on column vectors.
|
|
// To simplify everything we use the transpose of the matrices.
|
|
// See:
|
|
// https://docs.microsoft.com/en-us/windows/win32/direct3dhlsl/dx-graphics-hlsl-per-component-math#matrix-ordering
|
|
out << mat->columns() << "x" << mat->rows();
|
|
} else if (type->Is<sem::Pointer>()) {
|
|
TINT_ICE(Writer, diagnostics_)
|
|
<< "Attempting to emit pointer type. These should have been removed "
|
|
"with the InlinePointerLets transform";
|
|
return false;
|
|
} else if (auto* sampler = type->As<sem::Sampler>()) {
|
|
out << "Sampler";
|
|
if (sampler->IsComparison()) {
|
|
out << "Comparison";
|
|
}
|
|
out << "State";
|
|
} else if (auto* str = type->As<sem::Struct>()) {
|
|
out << StructName(str);
|
|
} else if (auto* tex = type->As<sem::Texture>()) {
|
|
auto* storage = tex->As<sem::StorageTexture>();
|
|
auto* ms = tex->As<sem::MultisampledTexture>();
|
|
auto* depth_ms = tex->As<sem::DepthMultisampledTexture>();
|
|
auto* sampled = tex->As<sem::SampledTexture>();
|
|
|
|
if (storage && storage->access() != ast::Access::kRead) {
|
|
out << "RW";
|
|
}
|
|
out << "Texture";
|
|
|
|
switch (tex->dim()) {
|
|
case ast::TextureDimension::k1d:
|
|
out << "1D";
|
|
break;
|
|
case ast::TextureDimension::k2d:
|
|
out << ((ms || depth_ms) ? "2DMS" : "2D");
|
|
break;
|
|
case ast::TextureDimension::k2dArray:
|
|
out << ((ms || depth_ms) ? "2DMSArray" : "2DArray");
|
|
break;
|
|
case ast::TextureDimension::k3d:
|
|
out << "3D";
|
|
break;
|
|
case ast::TextureDimension::kCube:
|
|
out << "Cube";
|
|
break;
|
|
case ast::TextureDimension::kCubeArray:
|
|
out << "CubeArray";
|
|
break;
|
|
default:
|
|
TINT_UNREACHABLE(Writer, diagnostics_)
|
|
<< "unexpected TextureDimension " << tex->dim();
|
|
return false;
|
|
}
|
|
|
|
if (storage) {
|
|
auto* component = image_format_to_rwtexture_type(storage->texel_format());
|
|
if (component == nullptr) {
|
|
TINT_ICE(Writer, diagnostics_)
|
|
<< "Unsupported StorageTexture TexelFormat: "
|
|
<< static_cast<int>(storage->texel_format());
|
|
return false;
|
|
}
|
|
out << "<" << component << ">";
|
|
} else if (depth_ms) {
|
|
out << "<float4>";
|
|
} else if (sampled || ms) {
|
|
auto* subtype = sampled ? sampled->type() : ms->type();
|
|
out << "<";
|
|
if (subtype->Is<sem::F32>()) {
|
|
out << "float4";
|
|
} else if (subtype->Is<sem::I32>()) {
|
|
out << "int4";
|
|
} else if (subtype->Is<sem::U32>()) {
|
|
out << "uint4";
|
|
} else {
|
|
TINT_ICE(Writer, diagnostics_)
|
|
<< "Unsupported multisampled texture type";
|
|
return false;
|
|
}
|
|
out << ">";
|
|
}
|
|
} else if (type->Is<sem::U32>()) {
|
|
out << "uint";
|
|
} else if (auto* vec = type->As<sem::Vector>()) {
|
|
auto width = vec->Width();
|
|
if (vec->type()->Is<sem::F32>() && width >= 1 && width <= 4) {
|
|
out << "float" << width;
|
|
} else if (vec->type()->Is<sem::I32>() && width >= 1 && width <= 4) {
|
|
out << "int" << width;
|
|
} else if (vec->type()->Is<sem::U32>() && width >= 1 && width <= 4) {
|
|
out << "uint" << width;
|
|
} else if (vec->type()->Is<sem::Bool>() && width >= 1 && width <= 4) {
|
|
out << "bool" << width;
|
|
} else {
|
|
out << "vector<";
|
|
if (!EmitType(out, vec->type(), storage_class, access, "")) {
|
|
return false;
|
|
}
|
|
out << ", " << width << ">";
|
|
}
|
|
} else if (auto* atomic = type->As<sem::Atomic>()) {
|
|
if (!EmitType(out, atomic->Type(), storage_class, access, name)) {
|
|
return false;
|
|
}
|
|
} else if (type->Is<sem::Void>()) {
|
|
out << "void";
|
|
} else {
|
|
diagnostics_.add_error(diag::System::Writer, "unknown type in EmitType");
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool GeneratorImpl::EmitTypeAndName(std::ostream& out,
|
|
const sem::Type* type,
|
|
ast::StorageClass storage_class,
|
|
ast::Access access,
|
|
const std::string& name) {
|
|
bool name_printed = false;
|
|
if (!EmitType(out, type, storage_class, access, name, &name_printed)) {
|
|
return false;
|
|
}
|
|
if (!name.empty() && !name_printed) {
|
|
out << " " << name;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool GeneratorImpl::EmitStructType(TextBuffer* b, const sem::Struct* str) {
|
|
line(b) << "struct " << StructName(str) << " {";
|
|
{
|
|
ScopedIndent si(b);
|
|
for (auto* mem : str->Members()) {
|
|
auto mem_name = builder_.Symbols().NameFor(mem->Name());
|
|
|
|
auto* ty = mem->Type();
|
|
|
|
auto out = line(b);
|
|
|
|
std::string pre, post;
|
|
|
|
if (auto* decl = mem->Declaration()) {
|
|
for (auto* attr : decl->attributes) {
|
|
if (auto* location = attr->As<ast::LocationAttribute>()) {
|
|
auto& pipeline_stage_uses = str->PipelineStageUses();
|
|
if (pipeline_stage_uses.size() != 1) {
|
|
TINT_ICE(Writer, diagnostics_)
|
|
<< "invalid entry point IO struct uses";
|
|
}
|
|
|
|
if (pipeline_stage_uses.count(
|
|
sem::PipelineStageUsage::kVertexInput)) {
|
|
post += " : TEXCOORD" + std::to_string(location->value);
|
|
} else if (pipeline_stage_uses.count(
|
|
sem::PipelineStageUsage::kVertexOutput)) {
|
|
post += " : TEXCOORD" + std::to_string(location->value);
|
|
} else if (pipeline_stage_uses.count(
|
|
sem::PipelineStageUsage::kFragmentInput)) {
|
|
post += " : TEXCOORD" + std::to_string(location->value);
|
|
} else if (pipeline_stage_uses.count(
|
|
sem::PipelineStageUsage::kFragmentOutput)) {
|
|
post += " : SV_Target" + std::to_string(location->value);
|
|
} else {
|
|
TINT_ICE(Writer, diagnostics_)
|
|
<< "invalid use of location attribute";
|
|
}
|
|
} else if (auto* builtin = attr->As<ast::BuiltinAttribute>()) {
|
|
auto name = builtin_to_attribute(builtin->builtin);
|
|
if (name.empty()) {
|
|
diagnostics_.add_error(diag::System::Writer,
|
|
"unsupported builtin");
|
|
return false;
|
|
}
|
|
post += " : " + name;
|
|
} else if (auto* interpolate =
|
|
attr->As<ast::InterpolateAttribute>()) {
|
|
auto mod = interpolation_to_modifiers(interpolate->type,
|
|
interpolate->sampling);
|
|
if (mod.empty()) {
|
|
diagnostics_.add_error(diag::System::Writer,
|
|
"unsupported interpolation");
|
|
return false;
|
|
}
|
|
pre += mod;
|
|
|
|
} else if (attr->Is<ast::InvariantAttribute>()) {
|
|
// Note: `precise` is not exactly the same as `invariant`, but is
|
|
// stricter and therefore provides the necessary guarantees.
|
|
// See discussion here: https://github.com/gpuweb/gpuweb/issues/893
|
|
pre += "precise ";
|
|
} else if (!attr->IsAnyOf<ast::StructMemberAlignAttribute,
|
|
ast::StructMemberOffsetAttribute,
|
|
ast::StructMemberSizeAttribute>()) {
|
|
TINT_ICE(Writer, diagnostics_)
|
|
<< "unhandled struct member attribute: " << attr->Name();
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
out << pre;
|
|
if (!EmitTypeAndName(out, ty, ast::StorageClass::kNone,
|
|
ast::Access::kReadWrite, mem_name)) {
|
|
return false;
|
|
}
|
|
out << post << ";";
|
|
}
|
|
}
|
|
|
|
line(b) << "};";
|
|
|
|
return true;
|
|
}
|
|
|
|
bool GeneratorImpl::EmitUnaryOp(std::ostream& out,
|
|
const ast::UnaryOpExpression* expr) {
|
|
switch (expr->op) {
|
|
case ast::UnaryOp::kIndirection:
|
|
case ast::UnaryOp::kAddressOf:
|
|
return EmitExpression(out, expr->expr);
|
|
case ast::UnaryOp::kComplement:
|
|
out << "~";
|
|
break;
|
|
case ast::UnaryOp::kNot:
|
|
out << "!";
|
|
break;
|
|
case ast::UnaryOp::kNegation:
|
|
out << "-";
|
|
break;
|
|
}
|
|
out << "(";
|
|
|
|
if (!EmitExpression(out, expr->expr)) {
|
|
return false;
|
|
}
|
|
|
|
out << ")";
|
|
|
|
return true;
|
|
}
|
|
|
|
bool GeneratorImpl::EmitVariable(const ast::Variable* var) {
|
|
auto* sem = builder_.Sem().Get(var);
|
|
auto* type = sem->Type()->UnwrapRef();
|
|
|
|
// TODO(dsinclair): Handle variable attributes
|
|
if (!var->attributes.empty()) {
|
|
diagnostics_.add_error(diag::System::Writer,
|
|
"Variable attributes are not handled yet");
|
|
return false;
|
|
}
|
|
|
|
auto out = line();
|
|
if (var->is_const) {
|
|
out << "const ";
|
|
}
|
|
if (!EmitTypeAndName(out, type, sem->StorageClass(), sem->Access(),
|
|
builder_.Symbols().NameFor(var->symbol))) {
|
|
return false;
|
|
}
|
|
|
|
out << " = ";
|
|
|
|
if (var->constructor) {
|
|
if (!EmitExpression(out, var->constructor)) {
|
|
return false;
|
|
}
|
|
} else {
|
|
if (!EmitZeroValue(out, type)) {
|
|
return false;
|
|
}
|
|
}
|
|
out << ";";
|
|
|
|
return true;
|
|
}
|
|
|
|
bool GeneratorImpl::EmitProgramConstVariable(const ast::Variable* var) {
|
|
for (auto* d : var->attributes) {
|
|
if (!d->Is<ast::OverrideAttribute>()) {
|
|
diagnostics_.add_error(diag::System::Writer,
|
|
"Decorated const values not valid");
|
|
return false;
|
|
}
|
|
}
|
|
if (!var->is_const) {
|
|
diagnostics_.add_error(diag::System::Writer, "Expected a const value");
|
|
return false;
|
|
}
|
|
|
|
auto* sem = builder_.Sem().Get(var);
|
|
auto* type = sem->Type();
|
|
|
|
auto* global = sem->As<sem::GlobalVariable>();
|
|
if (global && global->IsOverridable()) {
|
|
auto const_id = global->ConstantId();
|
|
|
|
line() << "#ifndef " << kSpecConstantPrefix << const_id;
|
|
|
|
if (var->constructor != nullptr) {
|
|
auto out = line();
|
|
out << "#define " << kSpecConstantPrefix << const_id << " ";
|
|
if (!EmitExpression(out, var->constructor)) {
|
|
return false;
|
|
}
|
|
} else {
|
|
line() << "#error spec constant required for constant id " << const_id;
|
|
}
|
|
line() << "#endif";
|
|
{
|
|
auto out = line();
|
|
out << "static const ";
|
|
if (!EmitTypeAndName(out, type, sem->StorageClass(), sem->Access(),
|
|
builder_.Symbols().NameFor(var->symbol))) {
|
|
return false;
|
|
}
|
|
out << " = " << kSpecConstantPrefix << const_id << ";";
|
|
}
|
|
} else {
|
|
auto out = line();
|
|
out << "static const ";
|
|
if (!EmitTypeAndName(out, type, sem->StorageClass(), sem->Access(),
|
|
builder_.Symbols().NameFor(var->symbol))) {
|
|
return false;
|
|
}
|
|
out << " = ";
|
|
if (!EmitExpression(out, var->constructor)) {
|
|
return false;
|
|
}
|
|
out << ";";
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
template <typename F>
|
|
bool GeneratorImpl::CallBuiltinHelper(std::ostream& out,
|
|
const ast::CallExpression* call,
|
|
const sem::Builtin* builtin,
|
|
F&& build) {
|
|
// Generate the helper function if it hasn't been created already
|
|
auto fn = utils::GetOrCreate(builtins_, builtin, [&]() -> std::string {
|
|
TextBuffer b;
|
|
TINT_DEFER(helpers_.Append(b));
|
|
|
|
auto fn_name =
|
|
UniqueIdentifier(std::string("tint_") + sem::str(builtin->Type()));
|
|
std::vector<std::string> parameter_names;
|
|
{
|
|
auto decl = line(&b);
|
|
if (!EmitTypeAndName(decl, builtin->ReturnType(),
|
|
ast::StorageClass::kNone, ast::Access::kUndefined,
|
|
fn_name)) {
|
|
return "";
|
|
}
|
|
{
|
|
ScopedParen sp(decl);
|
|
for (auto* param : builtin->Parameters()) {
|
|
if (!parameter_names.empty()) {
|
|
decl << ", ";
|
|
}
|
|
auto param_name = "param_" + std::to_string(parameter_names.size());
|
|
const auto* ty = param->Type();
|
|
if (auto* ptr = ty->As<sem::Pointer>()) {
|
|
decl << "inout ";
|
|
ty = ptr->StoreType();
|
|
}
|
|
if (!EmitTypeAndName(decl, ty, ast::StorageClass::kNone,
|
|
ast::Access::kUndefined, param_name)) {
|
|
return "";
|
|
}
|
|
parameter_names.emplace_back(std::move(param_name));
|
|
}
|
|
}
|
|
decl << " {";
|
|
}
|
|
{
|
|
ScopedIndent si(&b);
|
|
if (!build(&b, parameter_names)) {
|
|
return "";
|
|
}
|
|
}
|
|
line(&b) << "}";
|
|
line(&b);
|
|
return fn_name;
|
|
});
|
|
|
|
if (fn.empty()) {
|
|
return false;
|
|
}
|
|
|
|
// Call the helper
|
|
out << fn;
|
|
{
|
|
ScopedParen sp(out);
|
|
bool first = true;
|
|
for (auto* arg : call->args) {
|
|
if (!first) {
|
|
out << ", ";
|
|
}
|
|
first = false;
|
|
if (!EmitExpression(out, arg)) {
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
} // namespace hlsl
|
|
} // namespace writer
|
|
} // namespace tint
|