mirror of
https://github.com/encounter/dawn-cmake.git
synced 2025-06-13 10:03:41 +00:00
This CL only moves code, renames client::Buffer members and does additional casts where needed. No functional changes. Bug: dawn:445 Change-Id: I2bf83ecc1c9b36d5965d0365360dd981fcd41aac Reviewed-on: https://dawn-review.googlesource.com/c/dawn/+/23860 Reviewed-by: Kai Ninomiya <kainino@chromium.org> Reviewed-by: Austin Eng <enga@chromium.org> Commit-Queue: Corentin Wallez <cwallez@chromium.org>
426 lines
18 KiB
C++
426 lines
18 KiB
C++
// Copyright 2019 The Dawn Authors
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "dawn_wire/client/Buffer.h"
|
|
|
|
#include "dawn_wire/client/ApiProcs_autogen.h"
|
|
#include "dawn_wire/client/Client.h"
|
|
#include "dawn_wire/client/Device.h"
|
|
|
|
namespace dawn_wire { namespace client {
|
|
|
|
namespace {
|
|
template <typename Handle>
|
|
void SerializeBufferMapAsync(const Buffer* buffer, uint32_t serial, Handle* handle) {
|
|
// TODO(enga): Remove the template when Read/Write handles are combined in a tagged
|
|
// pointer.
|
|
constexpr bool isWrite =
|
|
std::is_same<Handle, MemoryTransferService::WriteHandle>::value;
|
|
|
|
// Get the serialization size of the handle.
|
|
size_t handleCreateInfoLength = handle->SerializeCreateSize();
|
|
|
|
BufferMapAsyncCmd cmd;
|
|
cmd.bufferId = buffer->id;
|
|
cmd.requestSerial = serial;
|
|
cmd.isWrite = isWrite;
|
|
cmd.handleCreateInfoLength = handleCreateInfoLength;
|
|
cmd.handleCreateInfo = nullptr;
|
|
|
|
char* writeHandleSpace =
|
|
buffer->device->GetClient()->SerializeCommand(cmd, handleCreateInfoLength);
|
|
|
|
// Serialize the handle into the space after the command.
|
|
handle->SerializeCreate(writeHandleSpace);
|
|
}
|
|
} // namespace
|
|
|
|
// static
|
|
WGPUBuffer Buffer::Create(Device* device_, const WGPUBufferDescriptor* descriptor) {
|
|
WGPUDevice cDevice = reinterpret_cast<WGPUDevice>(device_);
|
|
Client* wireClient = device_->GetClient();
|
|
|
|
if ((descriptor->usage & (WGPUBufferUsage_MapRead | WGPUBufferUsage_MapWrite)) != 0 &&
|
|
descriptor->size > std::numeric_limits<size_t>::max()) {
|
|
ClientDeviceInjectError(cDevice, WGPUErrorType_OutOfMemory,
|
|
"Buffer is too large for map usage");
|
|
return ClientDeviceCreateErrorBuffer(cDevice);
|
|
}
|
|
|
|
auto* bufferObjectAndSerial = wireClient->BufferAllocator().New(device_);
|
|
Buffer* buffer = bufferObjectAndSerial->object.get();
|
|
// Store the size of the buffer so that mapping operations can allocate a
|
|
// MemoryTransfer handle of the proper size.
|
|
buffer->mSize = descriptor->size;
|
|
|
|
DeviceCreateBufferCmd cmd;
|
|
cmd.self = cDevice;
|
|
cmd.descriptor = descriptor;
|
|
cmd.result = ObjectHandle{buffer->id, bufferObjectAndSerial->generation};
|
|
|
|
wireClient->SerializeCommand(cmd);
|
|
|
|
return reinterpret_cast<WGPUBuffer>(buffer);
|
|
}
|
|
|
|
// static
|
|
WGPUCreateBufferMappedResult Buffer::CreateMapped(Device* device_,
|
|
const WGPUBufferDescriptor* descriptor) {
|
|
WGPUDevice cDevice = reinterpret_cast<WGPUDevice>(device_);
|
|
Client* wireClient = device_->GetClient();
|
|
|
|
WGPUCreateBufferMappedResult result;
|
|
result.data = nullptr;
|
|
result.dataLength = 0;
|
|
|
|
// This buffer is too large to be mapped and to make a WriteHandle for.
|
|
if (descriptor->size > std::numeric_limits<size_t>::max()) {
|
|
ClientDeviceInjectError(cDevice, WGPUErrorType_OutOfMemory,
|
|
"Buffer is too large for mapping");
|
|
result.buffer = ClientDeviceCreateErrorBuffer(cDevice);
|
|
return result;
|
|
}
|
|
|
|
// Create a WriteHandle for the map request. This is the client's intent to write GPU
|
|
// memory.
|
|
std::unique_ptr<MemoryTransferService::WriteHandle> writeHandle =
|
|
std::unique_ptr<MemoryTransferService::WriteHandle>(
|
|
wireClient->GetMemoryTransferService()->CreateWriteHandle(descriptor->size));
|
|
|
|
if (writeHandle == nullptr) {
|
|
ClientDeviceInjectError(cDevice, WGPUErrorType_OutOfMemory,
|
|
"Buffer mapping allocation failed");
|
|
result.buffer = ClientDeviceCreateErrorBuffer(cDevice);
|
|
return result;
|
|
}
|
|
|
|
// CreateBufferMapped is synchronous and the staging buffer for upload should be immediately
|
|
// available.
|
|
// Open the WriteHandle. This returns a pointer and size of mapped memory.
|
|
// |result.data| may be null on error.
|
|
std::tie(result.data, result.dataLength) = writeHandle->Open();
|
|
if (result.data == nullptr) {
|
|
ClientDeviceInjectError(cDevice, WGPUErrorType_OutOfMemory,
|
|
"Buffer mapping allocation failed");
|
|
result.buffer = ClientDeviceCreateErrorBuffer(cDevice);
|
|
return result;
|
|
}
|
|
|
|
auto* bufferObjectAndSerial = wireClient->BufferAllocator().New(device_);
|
|
Buffer* buffer = bufferObjectAndSerial->object.get();
|
|
buffer->mSize = descriptor->size;
|
|
// Successfully created staging memory. The buffer now owns the WriteHandle.
|
|
buffer->mWriteHandle = std::move(writeHandle);
|
|
|
|
result.buffer = reinterpret_cast<WGPUBuffer>(buffer);
|
|
|
|
// Get the serialization size of the WriteHandle.
|
|
size_t handleCreateInfoLength = buffer->mWriteHandle->SerializeCreateSize();
|
|
|
|
DeviceCreateBufferMappedCmd cmd;
|
|
cmd.device = cDevice;
|
|
cmd.descriptor = descriptor;
|
|
cmd.result = ObjectHandle{buffer->id, bufferObjectAndSerial->generation};
|
|
cmd.handleCreateInfoLength = handleCreateInfoLength;
|
|
cmd.handleCreateInfo = nullptr;
|
|
|
|
char* writeHandleSpace =
|
|
buffer->device->GetClient()->SerializeCommand(cmd, handleCreateInfoLength);
|
|
|
|
// Serialize the WriteHandle into the space after the command.
|
|
buffer->mWriteHandle->SerializeCreate(writeHandleSpace);
|
|
|
|
return result;
|
|
}
|
|
|
|
Buffer::~Buffer() {
|
|
// Callbacks need to be fired in all cases, as they can handle freeing resources
|
|
// so we call them with "Unknown" status.
|
|
ClearMapRequests(WGPUBufferMapAsyncStatus_Unknown);
|
|
}
|
|
|
|
void Buffer::ClearMapRequests(WGPUBufferMapAsyncStatus status) {
|
|
for (auto& it : mRequests) {
|
|
if (it.second.writeHandle) {
|
|
it.second.writeCallback(status, nullptr, 0, it.second.userdata);
|
|
} else {
|
|
it.second.readCallback(status, nullptr, 0, it.second.userdata);
|
|
}
|
|
}
|
|
mRequests.clear();
|
|
}
|
|
|
|
void Buffer::MapReadAsync(WGPUBufferMapReadCallback callback, void* userdata) {
|
|
uint32_t serial = mRequestSerial++;
|
|
ASSERT(mRequests.find(serial) == mRequests.end());
|
|
|
|
if (mSize > std::numeric_limits<size_t>::max()) {
|
|
// On buffer creation, we check that mappable buffers do not exceed this size.
|
|
// So this buffer must not have mappable usage. Inject a validation error.
|
|
ClientDeviceInjectError(reinterpret_cast<WGPUDevice>(device), WGPUErrorType_Validation,
|
|
"Buffer needs the correct map usage bit");
|
|
callback(WGPUBufferMapAsyncStatus_Error, nullptr, 0, userdata);
|
|
return;
|
|
}
|
|
|
|
// Create a ReadHandle for the map request. This is the client's intent to read GPU
|
|
// memory.
|
|
MemoryTransferService::ReadHandle* readHandle =
|
|
device->GetClient()->GetMemoryTransferService()->CreateReadHandle(
|
|
static_cast<size_t>(mSize));
|
|
if (readHandle == nullptr) {
|
|
ClientDeviceInjectError(reinterpret_cast<WGPUDevice>(device), WGPUErrorType_OutOfMemory,
|
|
"Failed to create buffer mapping");
|
|
callback(WGPUBufferMapAsyncStatus_Error, nullptr, 0, userdata);
|
|
return;
|
|
}
|
|
|
|
Buffer::MapRequestData request = {};
|
|
request.readCallback = callback;
|
|
request.userdata = userdata;
|
|
// The handle is owned by the MapRequest until the callback returns.
|
|
request.readHandle = std::unique_ptr<MemoryTransferService::ReadHandle>(readHandle);
|
|
|
|
// Store a mapping from serial -> MapRequest. The client can map/unmap before the map
|
|
// operations are returned by the server so multiple requests may be in flight.
|
|
mRequests[serial] = std::move(request);
|
|
|
|
SerializeBufferMapAsync(this, serial, readHandle);
|
|
}
|
|
|
|
void Buffer::MapWriteAsync(WGPUBufferMapWriteCallback callback, void* userdata) {
|
|
uint32_t serial = mRequestSerial++;
|
|
ASSERT(mRequests.find(serial) == mRequests.end());
|
|
|
|
if (mSize > std::numeric_limits<size_t>::max()) {
|
|
// On buffer creation, we check that mappable buffers do not exceed this size.
|
|
// So this buffer must not have mappable usage. Inject a validation error.
|
|
ClientDeviceInjectError(reinterpret_cast<WGPUDevice>(device), WGPUErrorType_Validation,
|
|
"Buffer needs the correct map usage bit");
|
|
callback(WGPUBufferMapAsyncStatus_Error, nullptr, 0, userdata);
|
|
return;
|
|
}
|
|
|
|
// Create a WriteHandle for the map request. This is the client's intent to write GPU
|
|
// memory.
|
|
MemoryTransferService::WriteHandle* writeHandle =
|
|
device->GetClient()->GetMemoryTransferService()->CreateWriteHandle(
|
|
static_cast<size_t>(mSize));
|
|
if (writeHandle == nullptr) {
|
|
ClientDeviceInjectError(reinterpret_cast<WGPUDevice>(device), WGPUErrorType_OutOfMemory,
|
|
"Failed to create buffer mapping");
|
|
callback(WGPUBufferMapAsyncStatus_Error, nullptr, 0, userdata);
|
|
return;
|
|
}
|
|
|
|
Buffer::MapRequestData request = {};
|
|
request.writeCallback = callback;
|
|
request.userdata = userdata;
|
|
// The handle is owned by the MapRequest until the callback returns.
|
|
request.writeHandle = std::unique_ptr<MemoryTransferService::WriteHandle>(writeHandle);
|
|
|
|
// Store a mapping from serial -> MapRequest. The client can map/unmap before the map
|
|
// operations are returned by the server so multiple requests may be in flight.
|
|
mRequests[serial] = std::move(request);
|
|
|
|
SerializeBufferMapAsync(this, serial, writeHandle);
|
|
}
|
|
|
|
bool Buffer::OnMapReadAsyncCallback(uint32_t requestSerial,
|
|
uint32_t status,
|
|
uint64_t initialDataInfoLength,
|
|
const uint8_t* initialDataInfo) {
|
|
// The requests can have been deleted via an Unmap so this isn't an error.
|
|
auto requestIt = mRequests.find(requestSerial);
|
|
if (requestIt == mRequests.end()) {
|
|
return true;
|
|
}
|
|
|
|
auto request = std::move(requestIt->second);
|
|
// Delete the request before calling the callback otherwise the callback could be fired a
|
|
// second time. If, for example, buffer.Unmap() is called inside the callback.
|
|
mRequests.erase(requestIt);
|
|
|
|
const void* mappedData = nullptr;
|
|
size_t mappedDataLength = 0;
|
|
|
|
auto GetMappedData = [&]() -> bool {
|
|
// It is an error for the server to call the read callback when we asked for a map write
|
|
if (request.writeHandle) {
|
|
return false;
|
|
}
|
|
|
|
if (status == WGPUBufferMapAsyncStatus_Success) {
|
|
if (mReadHandle || mWriteHandle) {
|
|
// Buffer is already mapped.
|
|
return false;
|
|
}
|
|
if (initialDataInfoLength > std::numeric_limits<size_t>::max()) {
|
|
// This is the size of data deserialized from the command stream, which must be
|
|
// CPU-addressable.
|
|
return false;
|
|
}
|
|
ASSERT(request.readHandle != nullptr);
|
|
|
|
// The server serializes metadata to initialize the contents of the ReadHandle.
|
|
// Deserialize the message and return a pointer and size of the mapped data for
|
|
// reading.
|
|
if (!request.readHandle->DeserializeInitialData(
|
|
initialDataInfo, static_cast<size_t>(initialDataInfoLength), &mappedData,
|
|
&mappedDataLength)) {
|
|
// Deserialization shouldn't fail. This is a fatal error.
|
|
return false;
|
|
}
|
|
ASSERT(mappedData != nullptr);
|
|
|
|
// The MapRead request was successful. The buffer now owns the ReadHandle until
|
|
// Unmap().
|
|
mReadHandle = std::move(request.readHandle);
|
|
}
|
|
|
|
return true;
|
|
};
|
|
|
|
if (!GetMappedData()) {
|
|
// Dawn promises that all callbacks are called in finite time. Even if a fatal error
|
|
// occurs, the callback is called.
|
|
request.readCallback(WGPUBufferMapAsyncStatus_DeviceLost, nullptr, 0, request.userdata);
|
|
return false;
|
|
} else {
|
|
request.readCallback(static_cast<WGPUBufferMapAsyncStatus>(status), mappedData,
|
|
static_cast<uint64_t>(mappedDataLength), request.userdata);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
bool Buffer::OnMapWriteAsyncCallback(uint32_t requestSerial, uint32_t status) {
|
|
// The requests can have been deleted via an Unmap so this isn't an error.
|
|
auto requestIt = mRequests.find(requestSerial);
|
|
if (requestIt == mRequests.end()) {
|
|
return true;
|
|
}
|
|
|
|
auto request = std::move(requestIt->second);
|
|
// Delete the request before calling the callback otherwise the callback could be fired a
|
|
// second time. If, for example, buffer.Unmap() is called inside the callback.
|
|
mRequests.erase(requestIt);
|
|
|
|
void* mappedData = nullptr;
|
|
size_t mappedDataLength = 0;
|
|
|
|
auto GetMappedData = [&]() -> bool {
|
|
// It is an error for the server to call the write callback when we asked for a map read
|
|
if (request.readHandle) {
|
|
return false;
|
|
}
|
|
|
|
if (status == WGPUBufferMapAsyncStatus_Success) {
|
|
if (mReadHandle || mWriteHandle) {
|
|
// Buffer is already mapped.
|
|
return false;
|
|
}
|
|
ASSERT(request.writeHandle != nullptr);
|
|
|
|
// Open the WriteHandle. This returns a pointer and size of mapped memory.
|
|
// On failure, |mappedData| may be null.
|
|
std::tie(mappedData, mappedDataLength) = request.writeHandle->Open();
|
|
|
|
if (mappedData == nullptr) {
|
|
return false;
|
|
}
|
|
|
|
// The MapWrite request was successful. The buffer now owns the WriteHandle until
|
|
// Unmap().
|
|
mWriteHandle = std::move(request.writeHandle);
|
|
}
|
|
|
|
return true;
|
|
};
|
|
|
|
if (!GetMappedData()) {
|
|
// Dawn promises that all callbacks are called in finite time. Even if a fatal error
|
|
// occurs, the callback is called.
|
|
request.writeCallback(WGPUBufferMapAsyncStatus_DeviceLost, nullptr, 0,
|
|
request.userdata);
|
|
return false;
|
|
} else {
|
|
request.writeCallback(static_cast<WGPUBufferMapAsyncStatus>(status), mappedData,
|
|
static_cast<uint64_t>(mappedDataLength), request.userdata);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
void Buffer::Unmap() {
|
|
// Invalidate the local pointer, and cancel all other in-flight requests that would
|
|
// turn into errors anyway (you can't double map). This prevents race when the following
|
|
// happens, where the application code would have unmapped a buffer but still receive a
|
|
// callback:
|
|
// - Client -> Server: MapRequest1, Unmap, MapRequest2
|
|
// - Server -> Client: Result of MapRequest1
|
|
// - Unmap locally on the client
|
|
// - Server -> Client: Result of MapRequest2
|
|
if (mWriteHandle) {
|
|
// Writes need to be flushed before Unmap is sent. Unmap calls all associated
|
|
// in-flight callbacks which may read the updated data.
|
|
ASSERT(mReadHandle == nullptr);
|
|
|
|
// Get the serialization size of metadata to flush writes.
|
|
size_t writeFlushInfoLength = mWriteHandle->SerializeFlushSize();
|
|
|
|
BufferUpdateMappedDataCmd cmd;
|
|
cmd.bufferId = id;
|
|
cmd.writeFlushInfoLength = writeFlushInfoLength;
|
|
cmd.writeFlushInfo = nullptr;
|
|
|
|
char* writeHandleSpace =
|
|
device->GetClient()->SerializeCommand(cmd, writeFlushInfoLength);
|
|
|
|
// Serialize flush metadata into the space after the command.
|
|
// This closes the handle for writing.
|
|
mWriteHandle->SerializeFlush(writeHandleSpace);
|
|
mWriteHandle = nullptr;
|
|
|
|
} else if (mReadHandle) {
|
|
mReadHandle = nullptr;
|
|
}
|
|
ClearMapRequests(WGPUBufferMapAsyncStatus_Unknown);
|
|
|
|
BufferUnmapCmd cmd;
|
|
cmd.self = reinterpret_cast<WGPUBuffer>(this);
|
|
device->GetClient()->SerializeCommand(cmd);
|
|
}
|
|
|
|
void Buffer::Destroy() {
|
|
// Cancel or remove all mappings
|
|
mWriteHandle = nullptr;
|
|
mReadHandle = nullptr;
|
|
ClearMapRequests(WGPUBufferMapAsyncStatus_Unknown);
|
|
|
|
BufferDestroyCmd cmd;
|
|
cmd.self = reinterpret_cast<WGPUBuffer>(this);
|
|
device->GetClient()->SerializeCommand(cmd);
|
|
}
|
|
|
|
void Buffer::SetSubData(uint64_t start, uint64_t count, const void* data) {
|
|
BufferSetSubDataInternalCmd cmd;
|
|
cmd.bufferId = id;
|
|
cmd.start = start;
|
|
cmd.count = count;
|
|
cmd.data = static_cast<const uint8_t*>(data);
|
|
|
|
device->GetClient()->SerializeCommand(cmd);
|
|
}
|
|
|
|
}} // namespace dawn_wire::client
|