dawn-cmake/test/bug/tint/949.wgsl.expected.hlsl
Ben Clayton 51cfe26bb7 writer/hlsl: Simplify UBO accesses for static indexing
Use the new semantic constant value information to significantly reduce the complex indexing logic emitted for UBO accesses.
This will dramatically reduce the number of `for` loops that are decayed to `while` loops.

Change-Id: I1b0adb5edde2b4ed39c6beafc2e28106b86e0edd
Reviewed-on: https://dawn-review.googlesource.com/c/tint/+/57701
Kokoro: Kokoro <noreply+kokoro@google.com>
Reviewed-by: James Price <jrprice@google.com>
2021-07-13 12:18:13 +00:00

343 lines
13 KiB
HLSL

struct lightingInfo {
float3 diffuse;
float3 specular;
};
static float u_Float = 0.0f;
static float3 u_Color = float3(0.0f, 0.0f, 0.0f);
Texture2D<float4> TextureSamplerTexture : register(t1, space2);
SamplerState TextureSamplerSampler : register(s0, space2);
static float2 vMainuv = float2(0.0f, 0.0f);
cbuffer cbuffer_x_269 : register(b6, space2) {
uint4 x_269[11];
};
static float4 v_output1 = float4(0.0f, 0.0f, 0.0f, 0.0f);
static bool gl_FrontFacing = false;
static float2 v_uv = float2(0.0f, 0.0f);
static float4 v_output2 = float4(0.0f, 0.0f, 0.0f, 0.0f);
Texture2D<float4> TextureSampler1Texture : register(t3, space2);
SamplerState TextureSampler1Sampler : register(s2, space2);
cbuffer cbuffer_light0 : register(b5, space0) {
uint4 light0[6];
};
static float4 glFragColor = float4(0.0f, 0.0f, 0.0f, 0.0f);
SamplerState bumpSamplerSampler : register(s4, space2);
Texture2D<float4> bumpSamplerTexture : register(t5, space2);
float3x3 cotangent_frame_vf3_vf3_vf2_vf2_(inout float3 normal_1, inout float3 p, inout float2 uv, inout float2 tangentSpaceParams) {
float3 dp1 = float3(0.0f, 0.0f, 0.0f);
float3 dp2 = float3(0.0f, 0.0f, 0.0f);
float2 duv1 = float2(0.0f, 0.0f);
float2 duv2 = float2(0.0f, 0.0f);
float3 dp2perp = float3(0.0f, 0.0f, 0.0f);
float3 dp1perp = float3(0.0f, 0.0f, 0.0f);
float3 tangent = float3(0.0f, 0.0f, 0.0f);
float3 bitangent = float3(0.0f, 0.0f, 0.0f);
float invmax = 0.0f;
const float3 x_133 = p;
dp1 = ddx(x_133);
const float3 x_136 = p;
dp2 = ddy(x_136);
const float2 x_139 = uv;
duv1 = ddx(x_139);
const float2 x_142 = uv;
duv2 = ddy(x_142);
const float3 x_145 = dp2;
const float3 x_146 = normal_1;
dp2perp = cross(x_145, x_146);
const float3 x_149 = normal_1;
dp1perp = cross(x_149, dp1);
const float3 x_153 = dp2perp;
const float x_155 = duv1.x;
const float3 x_157 = dp1perp;
const float x_159 = duv2.x;
tangent = ((x_153 * x_155) + (x_157 * x_159));
const float3 x_163 = dp2perp;
const float x_165 = duv1.y;
const float3 x_167 = dp1perp;
const float x_169 = duv2.y;
bitangent = ((x_163 * x_165) + (x_167 * x_169));
const float x_173 = tangentSpaceParams.x;
tangent = (tangent * x_173);
const float x_177 = tangentSpaceParams.y;
bitangent = (bitangent * x_177);
invmax = rsqrt(max(dot(tangent, tangent), dot(bitangent, bitangent)));
const float3 x_191 = (tangent * invmax);
const float3 x_194 = (bitangent * invmax);
const float3 x_195 = normal_1;
return float3x3(float3(x_191.x, x_191.y, x_191.z), float3(x_194.x, x_194.y, x_194.z), float3(x_195.x, x_195.y, x_195.z));
}
float3x3 transposeMat3_mf33_(inout float3x3 inMatrix) {
float3 i0 = float3(0.0f, 0.0f, 0.0f);
float3 i1 = float3(0.0f, 0.0f, 0.0f);
float3 i2 = float3(0.0f, 0.0f, 0.0f);
float3x3 outMatrix = float3x3(0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f);
const float3 x_60 = inMatrix[0];
i0 = x_60;
const float3 x_64 = inMatrix[1];
i1 = x_64;
const float3 x_68 = inMatrix[2];
i2 = x_68;
const float x_73 = i0.x;
const float x_75 = i1.x;
const float x_77 = i2.x;
const float3 x_78 = float3(x_73, x_75, x_77);
const float x_81 = i0.y;
const float x_83 = i1.y;
const float x_85 = i2.y;
const float3 x_86 = float3(x_81, x_83, x_85);
const float x_89 = i0.z;
const float x_91 = i1.z;
const float x_93 = i2.z;
const float3 x_94 = float3(x_89, x_91, x_93);
outMatrix = float3x3(float3(x_78.x, x_78.y, x_78.z), float3(x_86.x, x_86.y, x_86.z), float3(x_94.x, x_94.y, x_94.z));
return outMatrix;
}
float3 perturbNormalBase_mf33_vf3_f1_(inout float3x3 cotangentFrame, inout float3 normal, inout float scale) {
const float3x3 x_113 = cotangentFrame;
const float3 x_114 = normal;
return normalize(mul(x_114, x_113));
}
float3 perturbNormal_mf33_vf3_f1_(inout float3x3 cotangentFrame_1, inout float3 textureSample, inout float scale_1) {
float3x3 param = float3x3(0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f);
float3 param_1 = float3(0.0f, 0.0f, 0.0f);
float param_2 = 0.0f;
const float3 x_119 = textureSample;
const float3x3 x_125 = cotangentFrame_1;
param = x_125;
param_1 = ((x_119 * 2.0f) - float3(1.0f, 1.0f, 1.0f));
const float x_128 = scale_1;
param_2 = x_128;
const float3 x_129 = perturbNormalBase_mf33_vf3_f1_(param, param_1, param_2);
return x_129;
}
lightingInfo computeHemisphericLighting_vf3_vf3_vf4_vf3_vf3_vf3_f1_(inout float3 viewDirectionW, inout float3 vNormal, inout float4 lightData, inout float3 diffuseColor, inout float3 specularColor, inout float3 groundColor, inout float glossiness) {
float ndl = 0.0f;
lightingInfo result = (lightingInfo)0;
float3 angleW = float3(0.0f, 0.0f, 0.0f);
float specComp = 0.0f;
const float3 x_212 = vNormal;
const float4 x_213 = lightData;
ndl = ((dot(x_212, float3(x_213.x, x_213.y, x_213.z)) * 0.5f) + 0.5f);
const float3 x_220 = groundColor;
const float3 x_221 = diffuseColor;
const float x_222 = ndl;
result.diffuse = lerp(x_220, x_221, float3(x_222, x_222, x_222));
const float3 x_227 = viewDirectionW;
const float4 x_228 = lightData;
angleW = normalize((x_227 + float3(x_228.x, x_228.y, x_228.z)));
const float3 x_233 = vNormal;
specComp = max(0.0f, dot(x_233, angleW));
const float x_237 = specComp;
const float x_238 = glossiness;
specComp = pow(x_237, max(1.0f, x_238));
const float x_241 = specComp;
const float3 x_242 = specularColor;
result.specular = (x_242 * x_241);
return result;
}
void main_1() {
float4 tempTextureRead = float4(0.0f, 0.0f, 0.0f, 0.0f);
float3 rgb = float3(0.0f, 0.0f, 0.0f);
float3 output5 = float3(0.0f, 0.0f, 0.0f);
float4 output4 = float4(0.0f, 0.0f, 0.0f, 0.0f);
float2 uvOffset = float2(0.0f, 0.0f);
float normalScale = 0.0f;
float2 TBNUV = float2(0.0f, 0.0f);
float2 x_299 = float2(0.0f, 0.0f);
float3x3 TBN = float3x3(0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f);
float3 param_3 = float3(0.0f, 0.0f, 0.0f);
float3 param_4 = float3(0.0f, 0.0f, 0.0f);
float2 param_5 = float2(0.0f, 0.0f);
float2 param_6 = float2(0.0f, 0.0f);
float3x3 invTBN = float3x3(0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f);
float3x3 param_7 = float3x3(0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f);
float parallaxLimit = 0.0f;
float2 vOffsetDir = float2(0.0f, 0.0f);
float2 vMaxOffset = float2(0.0f, 0.0f);
float numSamples = 0.0f;
float stepSize = 0.0f;
float currRayHeight = 0.0f;
float2 vCurrOffset = float2(0.0f, 0.0f);
float2 vLastOffset = float2(0.0f, 0.0f);
float lastSampledHeight = 0.0f;
float currSampledHeight = 0.0f;
int i = 0;
float delta1 = 0.0f;
float delta2 = 0.0f;
float ratio = 0.0f;
float2 parallaxOcclusion_0 = float2(0.0f, 0.0f);
float3x3 param_8 = float3x3(0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f);
float3 param_9 = float3(0.0f, 0.0f, 0.0f);
float param_10 = 0.0f;
float2 output6 = float2(0.0f, 0.0f);
float4 tempTextureRead1 = float4(0.0f, 0.0f, 0.0f, 0.0f);
float3 rgb1 = float3(0.0f, 0.0f, 0.0f);
float3 viewDirectionW_1 = float3(0.0f, 0.0f, 0.0f);
float shadow = 0.0f;
float glossiness_1 = 0.0f;
float3 diffuseBase = float3(0.0f, 0.0f, 0.0f);
float3 specularBase = float3(0.0f, 0.0f, 0.0f);
float3 normalW = float3(0.0f, 0.0f, 0.0f);
lightingInfo info = (lightingInfo)0;
float3 param_11 = float3(0.0f, 0.0f, 0.0f);
float3 param_12 = float3(0.0f, 0.0f, 0.0f);
float4 param_13 = float4(0.0f, 0.0f, 0.0f, 0.0f);
float3 param_14 = float3(0.0f, 0.0f, 0.0f);
float3 param_15 = float3(0.0f, 0.0f, 0.0f);
float3 param_16 = float3(0.0f, 0.0f, 0.0f);
float param_17 = 0.0f;
float3 diffuseOutput = float3(0.0f, 0.0f, 0.0f);
float3 specularOutput = float3(0.0f, 0.0f, 0.0f);
float3 output3 = float3(0.0f, 0.0f, 0.0f);
u_Float = 100.0f;
u_Color = float3(0.5f, 0.5f, 0.5f);
const float4 x_262 = TextureSamplerTexture.Sample(TextureSamplerSampler, vMainuv);
tempTextureRead = x_262;
const float4 x_264 = tempTextureRead;
const float x_273 = asfloat(x_269[10].x);
rgb = (float3(x_264.x, x_264.y, x_264.z) * x_273);
const float3 x_279 = asfloat(x_269[9].xyz);
const float4 x_282 = v_output1;
output5 = normalize((x_279 - float3(x_282.x, x_282.y, x_282.z)));
output4 = float4(0.0f, 0.0f, 0.0f, 0.0f);
uvOffset = float2(0.0f, 0.0f);
const float x_292 = asfloat(x_269[8].x);
normalScale = (1.0f / x_292);
if (gl_FrontFacing) {
x_299 = v_uv;
} else {
x_299 = -(v_uv);
}
TBNUV = x_299;
const float4 x_310 = v_output2;
param_3 = (float3(x_310.x, x_310.y, x_310.z) * normalScale);
const float4 x_317 = v_output1;
param_4 = float3(x_317.x, x_317.y, x_317.z);
param_5 = TBNUV;
const float2 x_324 = asfloat(x_269[10].zw);
param_6 = x_324;
const float3x3 x_325 = cotangent_frame_vf3_vf3_vf2_vf2_(param_3, param_4, param_5, param_6);
TBN = x_325;
param_7 = TBN;
const float3x3 x_329 = transposeMat3_mf33_(param_7);
invTBN = x_329;
const float3 x_334 = mul(-(output5), invTBN);
parallaxLimit = (length(float2(x_334.x, x_334.y)) / mul(-(output5), invTBN).z);
const float x_345 = asfloat(x_269[9].w);
parallaxLimit = (parallaxLimit * x_345);
const float3 x_352 = mul(-(output5), invTBN);
vOffsetDir = normalize(float2(x_352.x, x_352.y));
vMaxOffset = (vOffsetDir * parallaxLimit);
const float4 x_366 = v_output2;
numSamples = (15.0f + (dot(mul(-(output5), invTBN), mul(float3(x_366.x, x_366.y, x_366.z), invTBN)) * -11.0f));
stepSize = (1.0f / numSamples);
currRayHeight = 1.0f;
vCurrOffset = float2(0.0f, 0.0f);
vLastOffset = float2(0.0f, 0.0f);
lastSampledHeight = 1.0f;
currSampledHeight = 1.0f;
i = 0;
{
for(; (i < 15); i = (i + 1)) {
const float4 x_397 = TextureSamplerTexture.Sample(TextureSamplerSampler, (v_uv + vCurrOffset));
currSampledHeight = x_397.w;
if ((currSampledHeight > currRayHeight)) {
delta1 = (currSampledHeight - currRayHeight);
delta2 = ((currRayHeight + stepSize) - lastSampledHeight);
ratio = (delta1 / (delta1 + delta2));
vCurrOffset = ((vLastOffset * ratio) + (vCurrOffset * (1.0f - ratio)));
break;
} else {
currRayHeight = (currRayHeight - stepSize);
vLastOffset = vCurrOffset;
vCurrOffset = (vCurrOffset + (vMaxOffset * stepSize));
lastSampledHeight = currSampledHeight;
}
}
}
parallaxOcclusion_0 = vCurrOffset;
uvOffset = parallaxOcclusion_0;
const float4 x_452 = TextureSamplerTexture.Sample(TextureSamplerSampler, (v_uv + uvOffset));
const float x_454 = asfloat(x_269[8].x);
param_8 = TBN;
param_9 = float3(x_452.x, x_452.y, x_452.z);
param_10 = (1.0f / x_454);
const float3 x_461 = perturbNormal_mf33_vf3_f1_(param_8, param_9, param_10);
output4 = float4(x_461.x, x_461.y, x_461.z, output4.w);
output6 = (v_uv + uvOffset);
const float4 x_475 = TextureSampler1Texture.Sample(TextureSampler1Sampler, output6);
tempTextureRead1 = x_475;
const float4 x_477 = tempTextureRead1;
rgb1 = float3(x_477.x, x_477.y, x_477.z);
const float3 x_481 = asfloat(x_269[9].xyz);
const float4 x_482 = v_output1;
viewDirectionW_1 = normalize((x_481 - float3(x_482.x, x_482.y, x_482.z)));
shadow = 1.0f;
glossiness_1 = (1.0f * u_Float);
diffuseBase = float3(0.0f, 0.0f, 0.0f);
specularBase = float3(0.0f, 0.0f, 0.0f);
const float4 x_494 = output4;
normalW = float3(x_494.x, x_494.y, x_494.z);
param_11 = viewDirectionW_1;
param_12 = normalW;
const float4 x_507 = asfloat(light0[0]);
param_13 = x_507;
const float4 x_510 = asfloat(light0[1]);
param_14 = float3(x_510.x, x_510.y, x_510.z);
const float4 x_514 = asfloat(light0[2]);
param_15 = float3(x_514.x, x_514.y, x_514.z);
const float3 x_518 = asfloat(light0[3].xyz);
param_16 = x_518;
param_17 = glossiness_1;
const lightingInfo x_521 = computeHemisphericLighting_vf3_vf3_vf4_vf3_vf3_vf3_f1_(param_11, param_12, param_13, param_14, param_15, param_16, param_17);
info = x_521;
shadow = 1.0f;
const float3 x_523 = info.diffuse;
diffuseBase = (diffuseBase + (x_523 * shadow));
const float3 x_529 = info.specular;
specularBase = (specularBase + (x_529 * shadow));
diffuseOutput = (diffuseBase * rgb1);
specularOutput = (specularBase * u_Color);
output3 = (diffuseOutput + specularOutput);
const float3 x_548 = output3;
glFragColor = float4(x_548.x, x_548.y, x_548.z, 1.0f);
return;
}
struct main_out {
float4 glFragColor_1;
};
struct tint_symbol_1 {
float4 v_output1_param : TEXCOORD0;
float2 vMainuv_param : TEXCOORD1;
float4 v_output2_param : TEXCOORD2;
float2 v_uv_param : TEXCOORD3;
bool gl_FrontFacing_param : SV_IsFrontFace;
};
struct tint_symbol_2 {
float4 glFragColor_1 : SV_Target0;
};
tint_symbol_2 main(tint_symbol_1 tint_symbol) {
const float2 vMainuv_param = tint_symbol.vMainuv_param;
const float4 v_output1_param = tint_symbol.v_output1_param;
const bool gl_FrontFacing_param = tint_symbol.gl_FrontFacing_param;
const float2 v_uv_param = tint_symbol.v_uv_param;
const float4 v_output2_param = tint_symbol.v_output2_param;
vMainuv = vMainuv_param;
v_output1 = v_output1_param;
gl_FrontFacing = gl_FrontFacing_param;
v_uv = v_uv_param;
v_output2 = v_output2_param;
main_1();
const main_out tint_symbol_3 = {glFragColor};
const tint_symbol_2 tint_symbol_9 = {tint_symbol_3.glFragColor_1};
return tint_symbol_9;
}