Alastair Donaldson f7e73d4ee3 Add tests derived from VK-GL-CTS
This adds SPIR-V assembly and WGSL tests derived from VK-GL-CTS commit
571256871c2e2f03995373e1e4a02958d8cd8cf5. The following procedure was
followed:

- Those .amber files in VK-GL-CTS wholly owned by Google were
  identified

- All GLSL and SPIR-V shaders were extracted from the Amber files and
  converted into SPIR-V binaries

- The compact-ids pass of spirv-opt was applied to each binary

- Duplicate binaries were removed

- spirv-opt -O was used to obtain an optimized version of each remaining
  binary, with duplicates discarded

- Binaries that failed validation using spirv-val with target
  environment SPIR-V 1.3 were discarded

- Those binaries that tint could not successfully convert into WGSL were
  put aside for further investigation

- SPIR-V assembly versions of the remaining binaries are included in
  this CL

- test-runner with -generate-expected and -generate-skip was used to
  generate expected .spvasm, .msl, .hlsl and .wgsl outputs for these
  SPIR-V assembly tests

- Each successfully-generated .expected.wgsl is included in this CL
  again, as a WGLSL test

- test-runner with -generate-expected and -generate-skip was used again,
  to generate expected outputs for these WGSL tests

Change-Id: Ibe9baf2729cf97e0b633db9a426f53362a5de540
Reviewed-on: https://dawn-review.googlesource.com/c/tint/+/58842
Kokoro: Kokoro <noreply+kokoro@google.com>
Commit-Queue: Ben Clayton <bclayton@google.com>
Reviewed-by: Ben Clayton <bclayton@google.com>
2021-07-23 13:10:12 +00:00

69 lines
2.1 KiB
HLSL

cbuffer cbuffer_x_7 : register(b0, space0) {
uint4 x_7[3];
};
static float4 gl_FragCoord = float4(0.0f, 0.0f, 0.0f, 0.0f);
cbuffer cbuffer_x_11 : register(b1, space0) {
uint4 x_11[1];
};
static float4 x_GLF_color = float4(0.0f, 0.0f, 0.0f, 0.0f);
void main_1() {
int arr[3] = (int[3])0;
int a = 0;
int b = 0;
int c = 0;
const int x_40 = asint(x_7[1].x);
const int x_42 = asint(x_7[1].x);
const int x_44 = asint(x_7[1].x);
const int tint_symbol_6[3] = {x_40, x_42, x_44};
arr = tint_symbol_6;
const uint scalar_offset = ((16u * uint(0))) / 4;
const int x_47 = asint(x_7[scalar_offset / 4][scalar_offset % 4]);
const int x_49 = arr[x_47];
a = x_49;
b = (a - 1);
const float x_53 = gl_FragCoord.x;
const uint scalar_offset_1 = ((16u * uint(0))) / 4;
const float x_55 = asfloat(x_11[scalar_offset_1 / 4][scalar_offset_1 % 4]);
if ((x_53 < x_55)) {
b = (b + 1);
}
const uint scalar_offset_2 = ((16u * uint(0))) / 4;
const int x_62 = asint(x_7[scalar_offset_2 / 4][scalar_offset_2 % 4]);
c = x_62;
const int x_63 = c;
const int x_65 = asint(x_7[1].x);
const int x_67 = asint(x_7[2].x);
arr[clamp(x_63, x_65, x_67)] = b;
const uint scalar_offset_3 = ((16u * uint(0))) / 4;
const int x_72 = asint(x_7[scalar_offset_3 / 4][scalar_offset_3 % 4]);
const int x_74 = arr[x_72];
const int x_77 = asint(x_7[1].x);
const int x_79 = arr[x_77];
const int x_82 = asint(x_7[1].x);
const int x_84 = arr[x_82];
const int x_87 = asint(x_7[2].x);
const int x_89 = arr[x_87];
x_GLF_color = float4(float(x_74), float(x_79), float(x_84), float(x_89));
return;
}
struct main_out {
float4 x_GLF_color_1;
};
struct tint_symbol_1 {
float4 gl_FragCoord_param : SV_Position;
};
struct tint_symbol_2 {
float4 x_GLF_color_1 : SV_Target0;
};
tint_symbol_2 main(tint_symbol_1 tint_symbol) {
const float4 gl_FragCoord_param = tint_symbol.gl_FragCoord_param;
gl_FragCoord = gl_FragCoord_param;
main_1();
const main_out tint_symbol_3 = {x_GLF_color};
const tint_symbol_2 tint_symbol_7 = {tint_symbol_3.x_GLF_color_1};
return tint_symbol_7;
}