Alastair Donaldson f7e73d4ee3 Add tests derived from VK-GL-CTS
This adds SPIR-V assembly and WGSL tests derived from VK-GL-CTS commit
571256871c2e2f03995373e1e4a02958d8cd8cf5. The following procedure was
followed:

- Those .amber files in VK-GL-CTS wholly owned by Google were
  identified

- All GLSL and SPIR-V shaders were extracted from the Amber files and
  converted into SPIR-V binaries

- The compact-ids pass of spirv-opt was applied to each binary

- Duplicate binaries were removed

- spirv-opt -O was used to obtain an optimized version of each remaining
  binary, with duplicates discarded

- Binaries that failed validation using spirv-val with target
  environment SPIR-V 1.3 were discarded

- Those binaries that tint could not successfully convert into WGSL were
  put aside for further investigation

- SPIR-V assembly versions of the remaining binaries are included in
  this CL

- test-runner with -generate-expected and -generate-skip was used to
  generate expected .spvasm, .msl, .hlsl and .wgsl outputs for these
  SPIR-V assembly tests

- Each successfully-generated .expected.wgsl is included in this CL
  again, as a WGLSL test

- test-runner with -generate-expected and -generate-skip was used again,
  to generate expected outputs for these WGSL tests

Change-Id: Ibe9baf2729cf97e0b633db9a426f53362a5de540
Reviewed-on: https://dawn-review.googlesource.com/c/tint/+/58842
Kokoro: Kokoro <noreply+kokoro@google.com>
Commit-Queue: Ben Clayton <bclayton@google.com>
Reviewed-by: Ben Clayton <bclayton@google.com>
2021-07-23 13:10:12 +00:00

97 lines
2.3 KiB
HLSL

cbuffer cbuffer_x_6 : register(b0, space0) {
uint4 x_6[5];
};
static float4 x_GLF_color = float4(0.0f, 0.0f, 0.0f, 0.0f);
void main_1() {
int a = 0;
int b = 0;
int c = 0;
bool x_76 = false;
bool x_83 = false;
bool x_77_phi = false;
bool x_84_phi = false;
const uint scalar_offset = ((16u * uint(0))) / 4;
const int x_31 = asint(x_6[scalar_offset / 4][scalar_offset % 4]);
a = x_31;
const int x_33 = asint(x_6[2].x);
b = x_33;
c = 1;
while (true) {
const int x_38 = b;
const int x_40 = asint(x_6[4].x);
bool tint_tmp = (x_38 < x_40);
if (tint_tmp) {
tint_tmp = (a < 10);
}
if ((tint_tmp)) {
} else {
break;
}
if ((c > 5)) {
break;
}
a = (a + 1);
c = (c + 1);
b = (b + 1);
}
while (true) {
const int x_60 = a;
const int x_62 = asint(x_6[1].x);
if ((x_60 < x_62)) {
} else {
break;
}
{
a = (a + 1);
}
}
const int x_67 = a;
const int x_69 = asint(x_6[1].x);
const bool x_70 = (x_67 == x_69);
x_77_phi = x_70;
if (x_70) {
const int x_73 = b;
const int x_75 = asint(x_6[3].x);
x_76 = (x_73 == x_75);
x_77_phi = x_76;
}
const bool x_77 = x_77_phi;
x_84_phi = x_77;
if (x_77) {
const int x_80 = c;
const int x_82 = asint(x_6[3].x);
x_83 = (x_80 == x_82);
x_84_phi = x_83;
}
if (x_84_phi) {
const int x_89 = asint(x_6[2].x);
const uint scalar_offset_1 = ((16u * uint(0))) / 4;
const int x_92 = asint(x_6[scalar_offset_1 / 4][scalar_offset_1 % 4]);
const uint scalar_offset_2 = ((16u * uint(0))) / 4;
const int x_95 = asint(x_6[scalar_offset_2 / 4][scalar_offset_2 % 4]);
const int x_98 = asint(x_6[2].x);
x_GLF_color = float4(float(x_89), float(x_92), float(x_95), float(x_98));
} else {
const uint scalar_offset_3 = ((16u * uint(0))) / 4;
const int x_102 = asint(x_6[scalar_offset_3 / 4][scalar_offset_3 % 4]);
const float x_103 = float(x_102);
x_GLF_color = float4(x_103, x_103, x_103, x_103);
}
return;
}
struct main_out {
float4 x_GLF_color_1;
};
struct tint_symbol {
float4 x_GLF_color_1 : SV_Target0;
};
tint_symbol main() {
main_1();
const main_out tint_symbol_1 = {x_GLF_color};
const tint_symbol tint_symbol_3 = {tint_symbol_1.x_GLF_color_1};
return tint_symbol_3;
}