Alastair Donaldson f7e73d4ee3 Add tests derived from VK-GL-CTS
This adds SPIR-V assembly and WGSL tests derived from VK-GL-CTS commit
571256871c2e2f03995373e1e4a02958d8cd8cf5. The following procedure was
followed:

- Those .amber files in VK-GL-CTS wholly owned by Google were
  identified

- All GLSL and SPIR-V shaders were extracted from the Amber files and
  converted into SPIR-V binaries

- The compact-ids pass of spirv-opt was applied to each binary

- Duplicate binaries were removed

- spirv-opt -O was used to obtain an optimized version of each remaining
  binary, with duplicates discarded

- Binaries that failed validation using spirv-val with target
  environment SPIR-V 1.3 were discarded

- Those binaries that tint could not successfully convert into WGSL were
  put aside for further investigation

- SPIR-V assembly versions of the remaining binaries are included in
  this CL

- test-runner with -generate-expected and -generate-skip was used to
  generate expected .spvasm, .msl, .hlsl and .wgsl outputs for these
  SPIR-V assembly tests

- Each successfully-generated .expected.wgsl is included in this CL
  again, as a WGLSL test

- test-runner with -generate-expected and -generate-skip was used again,
  to generate expected outputs for these WGSL tests

Change-Id: Ibe9baf2729cf97e0b633db9a426f53362a5de540
Reviewed-on: https://dawn-review.googlesource.com/c/tint/+/58842
Kokoro: Kokoro <noreply+kokoro@google.com>
Commit-Queue: Ben Clayton <bclayton@google.com>
Reviewed-by: Ben Clayton <bclayton@google.com>
2021-07-23 13:10:12 +00:00

45 lines
939 B
WebGPU Shading Language

var<private> gl_FragCoord : vec4<f32>;
var<private> x_GLF_color : vec4<f32>;
fn main_1() {
var data : array<f32, 10>;
var i : i32;
data = array<f32, 10>(0.100000001, 0.200000003, 0.300000012, 0.400000006, 0.5, 0.600000024, 0.699999988, 0.800000012, 0.899999976, 1.0);
i = 0;
loop {
let x_7 : i32 = i;
if ((x_7 < 10)) {
} else {
break;
}
let x_50 : f32 = gl_FragCoord.x;
if ((x_50 < 0.0)) {
discard;
}
let x_8 : i32 = i;
let x_55 : f32 = data[x_8];
data[0] = x_55;
continuing {
let x_9 : i32 = i;
i = (x_9 + 1);
}
}
let x_58 : f32 = data[0];
x_GLF_color = vec4<f32>(x_58, 0.0, 0.0, 1.0);
return;
}
struct main_out {
[[location(0)]]
x_GLF_color_1 : vec4<f32>;
};
[[stage(fragment)]]
fn main([[builtin(position)]] gl_FragCoord_param : vec4<f32>) -> main_out {
gl_FragCoord = gl_FragCoord_param;
main_1();
return main_out(x_GLF_color);
}