dawn-cmake/src/dawn/common/LinkedList.h
dan sinclair d53cb2ae67 Fixup explicit on some constructors.
This CL adds explicit to various single argument constructors. The
explicit is removed from zero argument constructors. None of these
changes required call sites to change.

Bug: dawn:1339
Change-Id: I7dfcf1b393e7dd379e29cd9bc613cb0626a9a967
Reviewed-on: https://dawn-review.googlesource.com/c/dawn/+/86365
Auto-Submit: Dan Sinclair <dsinclair@chromium.org>
Kokoro: Kokoro <noreply+kokoro@google.com>
Reviewed-by: Ben Clayton <bclayton@google.com>
Commit-Queue: Dan Sinclair <dsinclair@chromium.org>
2022-04-12 17:44:41 +00:00

275 lines
7.9 KiB
C++

// Copyright (c) 2009 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// This file is a copy of Chromium's /src/base/containers/linked_list.h with the following
// modifications:
// - Added iterators for ranged based iterations
// - Added in list check before removing node to prevent segfault, now returns true iff removed
// - Added MoveInto functionality for moving list elements to another list
#ifndef SRC_DAWN_COMMON_LINKEDLIST_H_
#define SRC_DAWN_COMMON_LINKEDLIST_H_
#include "dawn/common/Assert.h"
// Simple LinkedList type. (See the Q&A section to understand how this
// differs from std::list).
//
// To use, start by declaring the class which will be contained in the linked
// list, as extending LinkNode (this gives it next/previous pointers).
//
// class MyNodeType : public LinkNode<MyNodeType> {
// ...
// };
//
// Next, to keep track of the list's head/tail, use a LinkedList instance:
//
// LinkedList<MyNodeType> list;
//
// To add elements to the list, use any of LinkedList::Append,
// LinkNode::InsertBefore, or LinkNode::InsertAfter:
//
// LinkNode<MyNodeType>* n1 = ...;
// LinkNode<MyNodeType>* n2 = ...;
// LinkNode<MyNodeType>* n3 = ...;
//
// list.Append(n1);
// list.Append(n3);
// n3->InsertBefore(n3);
//
// Lastly, to iterate through the linked list forwards:
//
// for (LinkNode<MyNodeType>* node = list.head();
// node != list.end();
// node = node->next()) {
// MyNodeType* value = node->value();
// ...
// }
//
// for (LinkNode<MyNodeType*> node : list) {
// MyNodeType* value = node->value();
// ...
// }
//
// Or to iterate the linked list backwards:
//
// for (LinkNode<MyNodeType>* node = list.tail();
// node != list.end();
// node = node->previous()) {
// MyNodeType* value = node->value();
// ...
// }
//
// Questions and Answers:
//
// Q. Should I use std::list or base::LinkedList?
//
// A. The main reason to use base::LinkedList over std::list is
// performance. If you don't care about the performance differences
// then use an STL container, as it makes for better code readability.
//
// Comparing the performance of base::LinkedList<T> to std::list<T*>:
//
// * Erasing an element of type T* from base::LinkedList<T> is
// an O(1) operation. Whereas for std::list<T*> it is O(n).
// That is because with std::list<T*> you must obtain an
// iterator to the T* element before you can call erase(iterator).
//
// * Insertion operations with base::LinkedList<T> never require
// heap allocations.
//
// Q. How does base::LinkedList implementation differ from std::list?
//
// A. Doubly-linked lists are made up of nodes that contain "next" and
// "previous" pointers that reference other nodes in the list.
//
// With base::LinkedList<T>, the type being inserted already reserves
// space for the "next" and "previous" pointers (base::LinkNode<T>*).
// Whereas with std::list<T> the type can be anything, so the implementation
// needs to glue on the "next" and "previous" pointers using
// some internal node type.
// Forward declarations of the types in order for recursive referencing and friending.
template <typename T>
class LinkNode;
template <typename T>
class LinkedList;
template <typename T>
class LinkNode {
public:
LinkNode() : previous_(nullptr), next_(nullptr) {
}
LinkNode(LinkNode<T>* previous, LinkNode<T>* next) : previous_(previous), next_(next) {
}
LinkNode(LinkNode<T>&& rhs) {
next_ = rhs.next_;
rhs.next_ = nullptr;
previous_ = rhs.previous_;
rhs.previous_ = nullptr;
// If the node belongs to a list, next_ and previous_ are both non-null.
// Otherwise, they are both null.
if (next_) {
next_->previous_ = this;
previous_->next_ = this;
}
}
// Insert |this| into the linked list, before |e|.
void InsertBefore(LinkNode<T>* e) {
this->next_ = e;
this->previous_ = e->previous_;
e->previous_->next_ = this;
e->previous_ = this;
}
// Insert |this| into the linked list, after |e|.
void InsertAfter(LinkNode<T>* e) {
this->next_ = e->next_;
this->previous_ = e;
e->next_->previous_ = this;
e->next_ = this;
}
// Check if |this| is in a list.
bool IsInList() const {
ASSERT((this->previous_ == nullptr) == (this->next_ == nullptr));
return this->next_ != nullptr;
}
// Remove |this| from the linked list. Returns true iff removed from a list.
bool RemoveFromList() {
if (!IsInList()) {
return false;
}
this->previous_->next_ = this->next_;
this->next_->previous_ = this->previous_;
// next() and previous() return non-null if and only this node is not in any list.
this->next_ = nullptr;
this->previous_ = nullptr;
return true;
}
LinkNode<T>* previous() const {
return previous_;
}
LinkNode<T>* next() const {
return next_;
}
// Cast from the node-type to the value type.
const T* value() const {
return static_cast<const T*>(this);
}
T* value() {
return static_cast<T*>(this);
}
private:
friend class LinkedList<T>;
LinkNode<T>* previous_;
LinkNode<T>* next_;
};
template <typename T>
class LinkedList {
public:
// The "root" node is self-referential, and forms the basis of a circular
// list (root_.next() will point back to the start of the list,
// and root_->previous() wraps around to the end of the list).
LinkedList() : root_(&root_, &root_) {
}
~LinkedList() {
// If any LinkNodes still exist in the LinkedList, there will be outstanding references to
// root_ even after it has been freed. We should remove root_ from the list to prevent any
// future access.
root_.RemoveFromList();
}
// Appends |e| to the end of the linked list.
void Append(LinkNode<T>* e) {
e->InsertBefore(&root_);
}
// Moves all elements (in order) of the list and appends them into |l| leaving the list empty.
void MoveInto(LinkedList<T>* l) {
if (empty()) {
return;
}
l->root_.previous_->next_ = root_.next_;
root_.next_->previous_ = l->root_.previous_;
l->root_.previous_ = root_.previous_;
root_.previous_->next_ = &l->root_;
root_.next_ = &root_;
root_.previous_ = &root_;
}
LinkNode<T>* head() const {
return root_.next();
}
LinkNode<T>* tail() const {
return root_.previous();
}
const LinkNode<T>* end() const {
return &root_;
}
bool empty() const {
return head() == end();
}
private:
LinkNode<T> root_;
};
template <typename T>
class LinkedListIterator {
public:
explicit LinkedListIterator(LinkNode<T>* node) : current_(node), next_(node->next()) {
}
// We keep an early reference to the next node in the list so that even if the current element
// is modified or removed from the list, we have a valid next node.
LinkedListIterator<T> const& operator++() {
current_ = next_;
next_ = current_->next();
return *this;
}
bool operator!=(const LinkedListIterator<T>& other) const {
return current_ != other.current_;
}
LinkNode<T>* operator*() const {
return current_;
}
private:
LinkNode<T>* current_;
LinkNode<T>* next_;
};
template <typename T>
LinkedListIterator<T> begin(LinkedList<T>& l) {
return LinkedListIterator<T>(l.head());
}
// Free end function does't use LinkedList<T>::end because of it's const nature. Instead we wrap
// around from tail.
template <typename T>
LinkedListIterator<T> end(LinkedList<T>& l) {
return LinkedListIterator<T>(l.tail()->next());
}
#endif // SRC_DAWN_COMMON_LINKEDLIST_H_