Ben Clayton e6e96def66 tint: Add operator support to intrinsic-gen
Adapt the builtin parsing and resolving to also support operators.
Will be used to generate intrinsic table entries for operators.

This will simplify maintenance of the operators, and will greatly
simplify the [AbstractInt -> i32|u32] [AbstractFloat -> f32|f16] logic.

Bug: tint:1504
Change-Id: Id75735ea24e501877418812185796f3fba88a521
Reviewed-on: https://dawn-review.googlesource.com/c/dawn/+/89026
Commit-Queue: Ben Clayton <bclayton@chromium.org>
Kokoro: Kokoro <noreply+kokoro@google.com>
Reviewed-by: Dan Sinclair <dsinclair@chromium.org>
2022-05-09 18:08:23 +00:00

219 lines
5.4 KiB
Go

// Copyright 2021 The Tint Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Package lexer provides a basic lexer for the Tint intrinsic definition
// language
package lexer
import (
"fmt"
"unicode"
"dawn.googlesource.com/dawn/tools/src/cmd/intrinsic-gen/tok"
)
// Lex produces a list of tokens for the given source code
func Lex(src []rune, filepath string) ([]tok.Token, error) {
l := lexer{
tok.Location{Line: 1, Column: 1, Rune: 0, Filepath: filepath},
src,
[]tok.Token{},
}
if err := l.lex(); err != nil {
return nil, err
}
return l.tokens, nil
}
type lexer struct {
loc tok.Location
runes []rune
tokens []tok.Token
}
// lex() lexes the source, populating l.tokens
func (l *lexer) lex() error {
for {
switch l.peek(0) {
case 0:
return nil
case ' ', '\t':
l.next()
case '\n':
l.next()
case '(':
l.tok(1, tok.Lparen)
case ')':
l.tok(1, tok.Rparen)
case '{':
l.tok(1, tok.Lbrace)
case '}':
l.tok(1, tok.Rbrace)
case ':':
l.tok(1, tok.Colon)
case ',':
l.tok(1, tok.Comma)
case '*':
l.tok(1, tok.Star)
case '+':
l.tok(1, tok.Plus)
case '%':
l.tok(1, tok.Modulo)
case '^':
l.tok(1, tok.Xor)
case '"':
start := l.loc
l.next() // Skip opening quote
n := l.count(toFirst('\n', '"'))
if l.peek(n) != '"' {
return fmt.Errorf("%v unterminated string", start)
}
l.tok(n, tok.String)
l.next() // Skip closing quote
default:
switch {
case l.peek(0) == '/' && l.peek(1) == '/':
l.skip(l.count(toFirst('\n')))
l.next() // Consume newline
case l.match("/", tok.Divide):
case l.match("[[", tok.Ldeco):
case l.match("]]", tok.Rdeco):
case l.match("->", tok.Arrow):
case l.match("-", tok.Minus):
case l.match("fn", tok.Function):
case l.match("op", tok.Operator):
case l.match("enum", tok.Enum):
case l.match("type", tok.Type):
case l.match("match", tok.Match):
case unicode.IsLetter(l.peek(0)) || l.peek(0) == '_':
l.tok(l.count(alphaNumericOrUnderscore), tok.Identifier)
case unicode.IsNumber(l.peek(0)):
l.tok(l.count(unicode.IsNumber), tok.Integer)
case l.match("&&", tok.AndAnd):
case l.match("&", tok.And):
case l.match("||", tok.OrOr):
case l.match("|", tok.Or):
case l.match("!=", tok.NotEqual):
case l.match("==", tok.Equal):
case l.match("=", tok.Assign):
case l.match("<<", tok.Shl):
case l.match("<=", tok.Le):
case l.match("<", tok.Lt):
case l.match(">=", tok.Ge):
case l.match(">>", tok.Shr):
case l.match(">", tok.Gt):
default:
return fmt.Errorf("%v: unexpected '%v'", l.loc, string(l.runes[0]))
}
}
}
}
// next() consumes and returns the next rune in the source, or 0 if reached EOF
func (l *lexer) next() rune {
if len(l.runes) > 0 {
r := l.runes[0]
l.runes = l.runes[1:]
l.loc.Rune++
if r == '\n' {
l.loc.Line++
l.loc.Column = 1
} else {
l.loc.Column++
}
return r
}
return 0
}
// skip() consumes the next `n` runes in the source
func (l *lexer) skip(n int) {
for i := 0; i < n; i++ {
l.next()
}
}
// peek() returns the rune `i` runes ahead of the current position
func (l *lexer) peek(i int) rune {
if i >= len(l.runes) {
return 0
}
return l.runes[i]
}
// predicate is a function that can be passed to count()
type predicate func(r rune) bool
// count() returns the number of sequential runes from the current position that
// match the predicate `p`
func (l *lexer) count(p predicate) int {
for i := 0; i < len(l.runes); i++ {
if !p(l.peek(i)) {
return i
}
}
return len(l.runes)
}
// tok() appends a new token of kind `k` using the next `n` runes.
// The next `n` runes are consumed by tok().
func (l *lexer) tok(n int, k tok.Kind) {
start := l.loc
runes := l.runes[:n]
l.skip(n)
end := l.loc
src := tok.Source{S: start, E: end}
l.tokens = append(l.tokens, tok.Token{Kind: k, Source: src, Runes: runes})
}
// match() checks whether the next runes are equal to `s`. If they are, then
// these runes are used to append a new token of kind `k`, and match() returns
// true. If the next runes are not equal to `s` then false is returned, and no
// runes are consumed.
func (l *lexer) match(s string, kind tok.Kind) bool {
runes := []rune(s)
if len(l.runes) < len(runes) {
return false
}
for i, r := range runes {
if l.runes[i] != r {
return false
}
}
l.tok(len(runes), kind)
return true
}
// toFirst() returns a predicate that returns true if the rune is not in `runes`
// toFirst() is intended to be used with count(), so `count(toFirst('x'))` will
// count up to, but not including the number of consecutive runes that are not
// 'x'.
func toFirst(runes ...rune) predicate {
return func(r rune) bool {
for _, t := range runes {
if t == r {
return false
}
}
return true
}
}
// alphaNumericOrUnderscore() returns true if the rune `r` is a number, letter
// or underscore.
func alphaNumericOrUnderscore(r rune) bool {
return r == '_' || unicode.IsLetter(r) || unicode.IsNumber(r)
}