1329 lines
43 KiB
C++
1329 lines
43 KiB
C++
// Copyright 2020 The Abseil Authors.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// https://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#include "absl/strings/cord.h"
|
|
|
|
#include <algorithm>
|
|
#include <atomic>
|
|
#include <cstddef>
|
|
#include <cstdio>
|
|
#include <cstdlib>
|
|
#include <iomanip>
|
|
#include <iostream>
|
|
#include <limits>
|
|
#include <ostream>
|
|
#include <sstream>
|
|
#include <type_traits>
|
|
#include <unordered_set>
|
|
#include <vector>
|
|
|
|
#include "absl/base/casts.h"
|
|
#include "absl/base/internal/raw_logging.h"
|
|
#include "absl/base/macros.h"
|
|
#include "absl/base/port.h"
|
|
#include "absl/container/fixed_array.h"
|
|
#include "absl/container/inlined_vector.h"
|
|
#include "absl/strings/cord_buffer.h"
|
|
#include "absl/strings/escaping.h"
|
|
#include "absl/strings/internal/cord_data_edge.h"
|
|
#include "absl/strings/internal/cord_internal.h"
|
|
#include "absl/strings/internal/cord_rep_btree.h"
|
|
#include "absl/strings/internal/cord_rep_crc.h"
|
|
#include "absl/strings/internal/cord_rep_flat.h"
|
|
#include "absl/strings/internal/cordz_statistics.h"
|
|
#include "absl/strings/internal/cordz_update_scope.h"
|
|
#include "absl/strings/internal/cordz_update_tracker.h"
|
|
#include "absl/strings/internal/resize_uninitialized.h"
|
|
#include "absl/strings/str_cat.h"
|
|
#include "absl/strings/str_format.h"
|
|
#include "absl/strings/str_join.h"
|
|
#include "absl/strings/string_view.h"
|
|
|
|
namespace absl {
|
|
ABSL_NAMESPACE_BEGIN
|
|
|
|
using ::absl::cord_internal::CordRep;
|
|
using ::absl::cord_internal::CordRepBtree;
|
|
using ::absl::cord_internal::CordRepCrc;
|
|
using ::absl::cord_internal::CordRepExternal;
|
|
using ::absl::cord_internal::CordRepFlat;
|
|
using ::absl::cord_internal::CordRepSubstring;
|
|
using ::absl::cord_internal::CordzUpdateTracker;
|
|
using ::absl::cord_internal::InlineData;
|
|
using ::absl::cord_internal::kMaxFlatLength;
|
|
using ::absl::cord_internal::kMinFlatLength;
|
|
|
|
using ::absl::cord_internal::kInlinedVectorSize;
|
|
using ::absl::cord_internal::kMaxBytesToCopy;
|
|
|
|
static void DumpNode(CordRep* rep, bool include_data, std::ostream* os,
|
|
int indent = 0);
|
|
static bool VerifyNode(CordRep* root, CordRep* start_node,
|
|
bool full_validation);
|
|
|
|
static inline CordRep* VerifyTree(CordRep* node) {
|
|
// Verification is expensive, so only do it in debug mode.
|
|
// Even in debug mode we normally do only light validation.
|
|
// If you are debugging Cord itself, you should define the
|
|
// macro EXTRA_CORD_VALIDATION, e.g. by adding
|
|
// --copt=-DEXTRA_CORD_VALIDATION to the blaze line.
|
|
#ifdef EXTRA_CORD_VALIDATION
|
|
assert(node == nullptr || VerifyNode(node, node, /*full_validation=*/true));
|
|
#else // EXTRA_CORD_VALIDATION
|
|
assert(node == nullptr || VerifyNode(node, node, /*full_validation=*/false));
|
|
#endif // EXTRA_CORD_VALIDATION
|
|
static_cast<void>(&VerifyNode);
|
|
|
|
return node;
|
|
}
|
|
|
|
static CordRepFlat* CreateFlat(const char* data, size_t length,
|
|
size_t alloc_hint) {
|
|
CordRepFlat* flat = CordRepFlat::New(length + alloc_hint);
|
|
flat->length = length;
|
|
memcpy(flat->Data(), data, length);
|
|
return flat;
|
|
}
|
|
|
|
// Creates a new flat or Btree out of the specified array.
|
|
// The returned node has a refcount of 1.
|
|
static CordRep* NewBtree(const char* data, size_t length, size_t alloc_hint) {
|
|
if (length <= kMaxFlatLength) {
|
|
return CreateFlat(data, length, alloc_hint);
|
|
}
|
|
CordRepFlat* flat = CreateFlat(data, kMaxFlatLength, 0);
|
|
data += kMaxFlatLength;
|
|
length -= kMaxFlatLength;
|
|
auto* root = CordRepBtree::Create(flat);
|
|
return CordRepBtree::Append(root, {data, length}, alloc_hint);
|
|
}
|
|
|
|
// Create a new tree out of the specified array.
|
|
// The returned node has a refcount of 1.
|
|
static CordRep* NewTree(const char* data, size_t length, size_t alloc_hint) {
|
|
if (length == 0) return nullptr;
|
|
return NewBtree(data, length, alloc_hint);
|
|
}
|
|
|
|
namespace cord_internal {
|
|
|
|
void InitializeCordRepExternal(absl::string_view data, CordRepExternal* rep) {
|
|
assert(!data.empty());
|
|
rep->length = data.size();
|
|
rep->tag = EXTERNAL;
|
|
rep->base = data.data();
|
|
VerifyTree(rep);
|
|
}
|
|
|
|
} // namespace cord_internal
|
|
|
|
// Creates a CordRep from the provided string. If the string is large enough,
|
|
// and not wasteful, we move the string into an external cord rep, preserving
|
|
// the already allocated string contents.
|
|
// Requires the provided string length to be larger than `kMaxInline`.
|
|
static CordRep* CordRepFromString(std::string&& src) {
|
|
assert(src.length() > cord_internal::kMaxInline);
|
|
if (
|
|
// String is short: copy data to avoid external block overhead.
|
|
src.size() <= kMaxBytesToCopy ||
|
|
// String is wasteful: copy data to avoid pinning too much unused memory.
|
|
src.size() < src.capacity() / 2
|
|
) {
|
|
return NewTree(src.data(), src.size(), 0);
|
|
}
|
|
|
|
struct StringReleaser {
|
|
void operator()(absl::string_view /* data */) {}
|
|
std::string data;
|
|
};
|
|
const absl::string_view original_data = src;
|
|
auto* rep =
|
|
static_cast<::absl::cord_internal::CordRepExternalImpl<StringReleaser>*>(
|
|
absl::cord_internal::NewExternalRep(original_data,
|
|
StringReleaser{std::move(src)}));
|
|
// Moving src may have invalidated its data pointer, so adjust it.
|
|
rep->base = rep->template get<0>().data.data();
|
|
return rep;
|
|
}
|
|
|
|
// --------------------------------------------------------------------
|
|
// Cord::InlineRep functions
|
|
|
|
#ifdef ABSL_INTERNAL_NEED_REDUNDANT_CONSTEXPR_DECL
|
|
constexpr unsigned char Cord::InlineRep::kMaxInline;
|
|
#endif
|
|
|
|
inline void Cord::InlineRep::set_data(const char* data, size_t n) {
|
|
static_assert(kMaxInline == 15, "set_data is hard-coded for a length of 15");
|
|
|
|
cord_internal::SmallMemmove<true>(data_.as_chars(), data, n);
|
|
set_inline_size(n);
|
|
}
|
|
|
|
inline char* Cord::InlineRep::set_data(size_t n) {
|
|
assert(n <= kMaxInline);
|
|
ResetToEmpty();
|
|
set_inline_size(n);
|
|
return data_.as_chars();
|
|
}
|
|
|
|
inline void Cord::InlineRep::reduce_size(size_t n) {
|
|
size_t tag = inline_size();
|
|
assert(tag <= kMaxInline);
|
|
assert(tag >= n);
|
|
tag -= n;
|
|
memset(data_.as_chars() + tag, 0, n);
|
|
set_inline_size(static_cast<char>(tag));
|
|
}
|
|
|
|
inline void Cord::InlineRep::remove_prefix(size_t n) {
|
|
cord_internal::SmallMemmove(data_.as_chars(), data_.as_chars() + n,
|
|
inline_size() - n);
|
|
reduce_size(n);
|
|
}
|
|
|
|
// Returns `rep` converted into a CordRepBtree.
|
|
// Directly returns `rep` if `rep` is already a CordRepBtree.
|
|
static CordRepBtree* ForceBtree(CordRep* rep) {
|
|
return rep->IsBtree()
|
|
? rep->btree()
|
|
: CordRepBtree::Create(cord_internal::RemoveCrcNode(rep));
|
|
}
|
|
|
|
void Cord::InlineRep::AppendTreeToInlined(CordRep* tree,
|
|
MethodIdentifier method) {
|
|
assert(!is_tree());
|
|
if (!data_.is_empty()) {
|
|
CordRepFlat* flat = MakeFlatWithExtraCapacity(0);
|
|
tree = CordRepBtree::Append(CordRepBtree::Create(flat), tree);
|
|
}
|
|
EmplaceTree(tree, method);
|
|
}
|
|
|
|
void Cord::InlineRep::AppendTreeToTree(CordRep* tree, MethodIdentifier method) {
|
|
assert(is_tree());
|
|
const CordzUpdateScope scope(data_.cordz_info(), method);
|
|
tree = CordRepBtree::Append(ForceBtree(data_.as_tree()), tree);
|
|
SetTree(tree, scope);
|
|
}
|
|
|
|
void Cord::InlineRep::AppendTree(CordRep* tree, MethodIdentifier method) {
|
|
assert(tree != nullptr);
|
|
assert(tree->length != 0);
|
|
assert(!tree->IsCrc());
|
|
if (data_.is_tree()) {
|
|
AppendTreeToTree(tree, method);
|
|
} else {
|
|
AppendTreeToInlined(tree, method);
|
|
}
|
|
}
|
|
|
|
void Cord::InlineRep::PrependTreeToInlined(CordRep* tree,
|
|
MethodIdentifier method) {
|
|
assert(!is_tree());
|
|
if (!data_.is_empty()) {
|
|
CordRepFlat* flat = MakeFlatWithExtraCapacity(0);
|
|
tree = CordRepBtree::Prepend(CordRepBtree::Create(flat), tree);
|
|
}
|
|
EmplaceTree(tree, method);
|
|
}
|
|
|
|
void Cord::InlineRep::PrependTreeToTree(CordRep* tree,
|
|
MethodIdentifier method) {
|
|
assert(is_tree());
|
|
const CordzUpdateScope scope(data_.cordz_info(), method);
|
|
tree = CordRepBtree::Prepend(ForceBtree(data_.as_tree()), tree);
|
|
SetTree(tree, scope);
|
|
}
|
|
|
|
void Cord::InlineRep::PrependTree(CordRep* tree, MethodIdentifier method) {
|
|
assert(tree != nullptr);
|
|
assert(tree->length != 0);
|
|
assert(!tree->IsCrc());
|
|
if (data_.is_tree()) {
|
|
PrependTreeToTree(tree, method);
|
|
} else {
|
|
PrependTreeToInlined(tree, method);
|
|
}
|
|
}
|
|
|
|
// Searches for a non-full flat node at the rightmost leaf of the tree. If a
|
|
// suitable leaf is found, the function will update the length field for all
|
|
// nodes to account for the size increase. The append region address will be
|
|
// written to region and the actual size increase will be written to size.
|
|
static inline bool PrepareAppendRegion(CordRep* root, char** region,
|
|
size_t* size, size_t max_length) {
|
|
if (root->IsBtree() && root->refcount.IsOne()) {
|
|
Span<char> span = root->btree()->GetAppendBuffer(max_length);
|
|
if (!span.empty()) {
|
|
*region = span.data();
|
|
*size = span.size();
|
|
return true;
|
|
}
|
|
}
|
|
|
|
CordRep* dst = root;
|
|
if (!dst->IsFlat() || !dst->refcount.IsOne()) {
|
|
*region = nullptr;
|
|
*size = 0;
|
|
return false;
|
|
}
|
|
|
|
const size_t in_use = dst->length;
|
|
const size_t capacity = dst->flat()->Capacity();
|
|
if (in_use == capacity) {
|
|
*region = nullptr;
|
|
*size = 0;
|
|
return false;
|
|
}
|
|
|
|
const size_t size_increase = std::min(capacity - in_use, max_length);
|
|
dst->length += size_increase;
|
|
|
|
*region = dst->flat()->Data() + in_use;
|
|
*size = size_increase;
|
|
return true;
|
|
}
|
|
|
|
void Cord::InlineRep::AssignSlow(const Cord::InlineRep& src) {
|
|
assert(&src != this);
|
|
assert(is_tree() || src.is_tree());
|
|
auto constexpr method = CordzUpdateTracker::kAssignCord;
|
|
if (ABSL_PREDICT_TRUE(!is_tree())) {
|
|
EmplaceTree(CordRep::Ref(src.as_tree()), src.data_, method);
|
|
return;
|
|
}
|
|
|
|
CordRep* tree = as_tree();
|
|
if (CordRep* src_tree = src.tree()) {
|
|
// Leave any existing `cordz_info` in place, and let MaybeTrackCord()
|
|
// decide if this cord should be (or remains to be) sampled or not.
|
|
data_.set_tree(CordRep::Ref(src_tree));
|
|
CordzInfo::MaybeTrackCord(data_, src.data_, method);
|
|
} else {
|
|
CordzInfo::MaybeUntrackCord(data_.cordz_info());
|
|
data_ = src.data_;
|
|
}
|
|
CordRep::Unref(tree);
|
|
}
|
|
|
|
void Cord::InlineRep::UnrefTree() {
|
|
if (is_tree()) {
|
|
CordzInfo::MaybeUntrackCord(data_.cordz_info());
|
|
CordRep::Unref(tree());
|
|
}
|
|
}
|
|
|
|
// --------------------------------------------------------------------
|
|
// Constructors and destructors
|
|
|
|
Cord::Cord(absl::string_view src, MethodIdentifier method)
|
|
: contents_(InlineData::kDefaultInit) {
|
|
const size_t n = src.size();
|
|
if (n <= InlineRep::kMaxInline) {
|
|
contents_.set_data(src.data(), n);
|
|
} else {
|
|
CordRep* rep = NewTree(src.data(), n, 0);
|
|
contents_.EmplaceTree(rep, method);
|
|
}
|
|
}
|
|
|
|
template <typename T, Cord::EnableIfString<T>>
|
|
Cord::Cord(T&& src) : contents_(InlineData::kDefaultInit) {
|
|
if (src.size() <= InlineRep::kMaxInline) {
|
|
contents_.set_data(src.data(), src.size());
|
|
} else {
|
|
CordRep* rep = CordRepFromString(std::forward<T>(src));
|
|
contents_.EmplaceTree(rep, CordzUpdateTracker::kConstructorString);
|
|
}
|
|
}
|
|
|
|
template Cord::Cord(std::string&& src);
|
|
|
|
// The destruction code is separate so that the compiler can determine
|
|
// that it does not need to call the destructor on a moved-from Cord.
|
|
void Cord::DestroyCordSlow() {
|
|
assert(contents_.is_tree());
|
|
CordzInfo::MaybeUntrackCord(contents_.cordz_info());
|
|
CordRep::Unref(VerifyTree(contents_.as_tree()));
|
|
}
|
|
|
|
// --------------------------------------------------------------------
|
|
// Mutators
|
|
|
|
void Cord::Clear() {
|
|
if (CordRep* tree = contents_.clear()) {
|
|
CordRep::Unref(tree);
|
|
}
|
|
}
|
|
|
|
Cord& Cord::AssignLargeString(std::string&& src) {
|
|
auto constexpr method = CordzUpdateTracker::kAssignString;
|
|
assert(src.size() > kMaxBytesToCopy);
|
|
CordRep* rep = CordRepFromString(std::move(src));
|
|
if (CordRep* tree = contents_.tree()) {
|
|
CordzUpdateScope scope(contents_.cordz_info(), method);
|
|
contents_.SetTree(rep, scope);
|
|
CordRep::Unref(tree);
|
|
} else {
|
|
contents_.EmplaceTree(rep, method);
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
Cord& Cord::operator=(absl::string_view src) {
|
|
auto constexpr method = CordzUpdateTracker::kAssignString;
|
|
const char* data = src.data();
|
|
size_t length = src.size();
|
|
CordRep* tree = contents_.tree();
|
|
if (length <= InlineRep::kMaxInline) {
|
|
// Embed into this->contents_, which is somewhat subtle:
|
|
// - MaybeUntrackCord must be called before Unref(tree).
|
|
// - MaybeUntrackCord must be called before set_data() clobbers cordz_info.
|
|
// - set_data() must be called before Unref(tree) as it may reference tree.
|
|
if (tree != nullptr) CordzInfo::MaybeUntrackCord(contents_.cordz_info());
|
|
contents_.set_data(data, length);
|
|
if (tree != nullptr) CordRep::Unref(tree);
|
|
return *this;
|
|
}
|
|
if (tree != nullptr) {
|
|
CordzUpdateScope scope(contents_.cordz_info(), method);
|
|
if (tree->IsFlat() && tree->flat()->Capacity() >= length &&
|
|
tree->refcount.IsOne()) {
|
|
// Copy in place if the existing FLAT node is reusable.
|
|
memmove(tree->flat()->Data(), data, length);
|
|
tree->length = length;
|
|
VerifyTree(tree);
|
|
return *this;
|
|
}
|
|
contents_.SetTree(NewTree(data, length, 0), scope);
|
|
CordRep::Unref(tree);
|
|
} else {
|
|
contents_.EmplaceTree(NewTree(data, length, 0), method);
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
// TODO(sanjay): Move to Cord::InlineRep section of file. For now,
|
|
// we keep it here to make diffs easier.
|
|
void Cord::InlineRep::AppendArray(absl::string_view src,
|
|
MethodIdentifier method) {
|
|
if (src.empty()) return; // memcpy(_, nullptr, 0) is undefined.
|
|
|
|
size_t appended = 0;
|
|
CordRep* rep = tree();
|
|
const CordRep* const root = rep;
|
|
CordzUpdateScope scope(root ? cordz_info() : nullptr, method);
|
|
if (root != nullptr) {
|
|
rep = cord_internal::RemoveCrcNode(rep);
|
|
char* region;
|
|
if (PrepareAppendRegion(rep, ®ion, &appended, src.size())) {
|
|
memcpy(region, src.data(), appended);
|
|
}
|
|
} else {
|
|
// Try to fit in the inline buffer if possible.
|
|
size_t inline_length = inline_size();
|
|
if (src.size() <= kMaxInline - inline_length) {
|
|
// Append new data to embedded array
|
|
memcpy(data_.as_chars() + inline_length, src.data(), src.size());
|
|
set_inline_size(inline_length + src.size());
|
|
return;
|
|
}
|
|
|
|
// Allocate flat to be a perfect fit on first append exceeding inlined size.
|
|
// Subsequent growth will use amortized growth until we reach maximum flat
|
|
// size.
|
|
rep = CordRepFlat::New(inline_length + src.size());
|
|
appended = std::min(src.size(), rep->flat()->Capacity() - inline_length);
|
|
memcpy(rep->flat()->Data(), data_.as_chars(), inline_length);
|
|
memcpy(rep->flat()->Data() + inline_length, src.data(), appended);
|
|
rep->length = inline_length + appended;
|
|
}
|
|
|
|
src.remove_prefix(appended);
|
|
if (src.empty()) {
|
|
CommitTree(root, rep, scope, method);
|
|
return;
|
|
}
|
|
|
|
// TODO(b/192061034): keep legacy 10% growth rate: consider other rates.
|
|
rep = ForceBtree(rep);
|
|
const size_t min_growth = std::max<size_t>(rep->length / 10, src.size());
|
|
rep = CordRepBtree::Append(rep->btree(), src, min_growth - src.size());
|
|
|
|
CommitTree(root, rep, scope, method);
|
|
}
|
|
|
|
inline CordRep* Cord::TakeRep() const& {
|
|
return CordRep::Ref(contents_.tree());
|
|
}
|
|
|
|
inline CordRep* Cord::TakeRep() && {
|
|
CordRep* rep = contents_.tree();
|
|
contents_.clear();
|
|
return rep;
|
|
}
|
|
|
|
template <typename C>
|
|
inline void Cord::AppendImpl(C&& src) {
|
|
auto constexpr method = CordzUpdateTracker::kAppendCord;
|
|
if (empty()) {
|
|
// Since destination is empty, we can avoid allocating a node,
|
|
if (src.contents_.is_tree()) {
|
|
// by taking the tree directly
|
|
CordRep* rep =
|
|
cord_internal::RemoveCrcNode(std::forward<C>(src).TakeRep());
|
|
contents_.EmplaceTree(rep, method);
|
|
} else {
|
|
// or copying over inline data
|
|
contents_.data_ = src.contents_.data_;
|
|
}
|
|
return;
|
|
}
|
|
|
|
// For short cords, it is faster to copy data if there is room in dst.
|
|
const size_t src_size = src.contents_.size();
|
|
if (src_size <= kMaxBytesToCopy) {
|
|
CordRep* src_tree = src.contents_.tree();
|
|
if (src_tree == nullptr) {
|
|
// src has embedded data.
|
|
contents_.AppendArray({src.contents_.data(), src_size}, method);
|
|
return;
|
|
}
|
|
if (src_tree->IsFlat()) {
|
|
// src tree just has one flat node.
|
|
contents_.AppendArray({src_tree->flat()->Data(), src_size}, method);
|
|
return;
|
|
}
|
|
if (&src == this) {
|
|
// ChunkIterator below assumes that src is not modified during traversal.
|
|
Append(Cord(src));
|
|
return;
|
|
}
|
|
// TODO(mec): Should we only do this if "dst" has space?
|
|
for (absl::string_view chunk : src.Chunks()) {
|
|
Append(chunk);
|
|
}
|
|
return;
|
|
}
|
|
|
|
// Guaranteed to be a tree (kMaxBytesToCopy > kInlinedSize)
|
|
CordRep* rep = cord_internal::RemoveCrcNode(std::forward<C>(src).TakeRep());
|
|
contents_.AppendTree(rep, CordzUpdateTracker::kAppendCord);
|
|
}
|
|
|
|
static CordRep::ExtractResult ExtractAppendBuffer(CordRep* rep,
|
|
size_t min_capacity) {
|
|
switch (rep->tag) {
|
|
case cord_internal::BTREE:
|
|
return CordRepBtree::ExtractAppendBuffer(rep->btree(), min_capacity);
|
|
default:
|
|
if (rep->IsFlat() && rep->refcount.IsOne() &&
|
|
rep->flat()->Capacity() - rep->length >= min_capacity) {
|
|
return {nullptr, rep};
|
|
}
|
|
return {rep, nullptr};
|
|
}
|
|
}
|
|
|
|
static CordBuffer CreateAppendBuffer(InlineData& data, size_t capacity) {
|
|
// Watch out for overflow, people can ask for size_t::max().
|
|
const size_t size = data.inline_size();
|
|
capacity = (std::min)(std::numeric_limits<size_t>::max() - size, capacity);
|
|
CordBuffer buffer = CordBuffer::CreateWithDefaultLimit(size + capacity);
|
|
cord_internal::SmallMemmove(buffer.data(), data.as_chars(), size);
|
|
buffer.SetLength(size);
|
|
data = {};
|
|
return buffer;
|
|
}
|
|
|
|
CordBuffer Cord::GetAppendBufferSlowPath(size_t capacity, size_t min_capacity) {
|
|
auto constexpr method = CordzUpdateTracker::kGetAppendBuffer;
|
|
CordRep* tree = contents_.tree();
|
|
if (tree != nullptr) {
|
|
CordzUpdateScope scope(contents_.cordz_info(), method);
|
|
CordRep::ExtractResult result = ExtractAppendBuffer(tree, min_capacity);
|
|
if (result.extracted != nullptr) {
|
|
contents_.SetTreeOrEmpty(result.tree, scope);
|
|
return CordBuffer(result.extracted->flat());
|
|
}
|
|
return CordBuffer::CreateWithDefaultLimit(capacity);
|
|
}
|
|
return CreateAppendBuffer(contents_.data_, capacity);
|
|
}
|
|
|
|
void Cord::Append(const Cord& src) {
|
|
AppendImpl(src);
|
|
}
|
|
|
|
void Cord::Append(Cord&& src) {
|
|
AppendImpl(std::move(src));
|
|
}
|
|
|
|
template <typename T, Cord::EnableIfString<T>>
|
|
void Cord::Append(T&& src) {
|
|
if (src.size() <= kMaxBytesToCopy) {
|
|
Append(absl::string_view(src));
|
|
} else {
|
|
CordRep* rep = CordRepFromString(std::forward<T>(src));
|
|
contents_.AppendTree(rep, CordzUpdateTracker::kAppendString);
|
|
}
|
|
}
|
|
|
|
template void Cord::Append(std::string&& src);
|
|
|
|
void Cord::Prepend(const Cord& src) {
|
|
CordRep* src_tree = src.contents_.tree();
|
|
if (src_tree != nullptr) {
|
|
CordRep::Ref(src_tree);
|
|
contents_.PrependTree(cord_internal::RemoveCrcNode(src_tree),
|
|
CordzUpdateTracker::kPrependCord);
|
|
return;
|
|
}
|
|
|
|
// `src` cord is inlined.
|
|
absl::string_view src_contents(src.contents_.data(), src.contents_.size());
|
|
return Prepend(src_contents);
|
|
}
|
|
|
|
void Cord::PrependArray(absl::string_view src, MethodIdentifier method) {
|
|
if (src.empty()) return; // memcpy(_, nullptr, 0) is undefined.
|
|
if (!contents_.is_tree()) {
|
|
size_t cur_size = contents_.inline_size();
|
|
if (cur_size + src.size() <= InlineRep::kMaxInline) {
|
|
// Use embedded storage.
|
|
char data[InlineRep::kMaxInline + 1] = {0};
|
|
memcpy(data, src.data(), src.size());
|
|
memcpy(data + src.size(), contents_.data(), cur_size);
|
|
memcpy(contents_.data_.as_chars(), data, InlineRep::kMaxInline + 1);
|
|
contents_.set_inline_size(cur_size + src.size());
|
|
return;
|
|
}
|
|
}
|
|
CordRep* rep = NewTree(src.data(), src.size(), 0);
|
|
contents_.PrependTree(rep, method);
|
|
}
|
|
|
|
void Cord::AppendPrecise(absl::string_view src, MethodIdentifier method) {
|
|
assert(!src.empty());
|
|
assert(src.size() <= cord_internal::kMaxFlatLength);
|
|
if (contents_.remaining_inline_capacity() >= src.size()) {
|
|
const size_t inline_length = contents_.inline_size();
|
|
memcpy(contents_.data_.as_chars() + inline_length, src.data(), src.size());
|
|
contents_.set_inline_size(inline_length + src.size());
|
|
} else {
|
|
contents_.AppendTree(CordRepFlat::Create(src), method);
|
|
}
|
|
}
|
|
|
|
void Cord::PrependPrecise(absl::string_view src, MethodIdentifier method) {
|
|
assert(!src.empty());
|
|
assert(src.size() <= cord_internal::kMaxFlatLength);
|
|
if (contents_.remaining_inline_capacity() >= src.size()) {
|
|
const size_t inline_length = contents_.inline_size();
|
|
char data[InlineRep::kMaxInline + 1] = {0};
|
|
memcpy(data, src.data(), src.size());
|
|
memcpy(data + src.size(), contents_.data(), inline_length);
|
|
memcpy(contents_.data_.as_chars(), data, InlineRep::kMaxInline + 1);
|
|
contents_.set_inline_size(inline_length + src.size());
|
|
} else {
|
|
contents_.PrependTree(CordRepFlat::Create(src), method);
|
|
}
|
|
}
|
|
|
|
template <typename T, Cord::EnableIfString<T>>
|
|
inline void Cord::Prepend(T&& src) {
|
|
if (src.size() <= kMaxBytesToCopy) {
|
|
Prepend(absl::string_view(src));
|
|
} else {
|
|
CordRep* rep = CordRepFromString(std::forward<T>(src));
|
|
contents_.PrependTree(rep, CordzUpdateTracker::kPrependString);
|
|
}
|
|
}
|
|
|
|
template void Cord::Prepend(std::string&& src);
|
|
|
|
void Cord::RemovePrefix(size_t n) {
|
|
ABSL_INTERNAL_CHECK(n <= size(),
|
|
absl::StrCat("Requested prefix size ", n,
|
|
" exceeds Cord's size ", size()));
|
|
CordRep* tree = contents_.tree();
|
|
if (tree == nullptr) {
|
|
contents_.remove_prefix(n);
|
|
} else {
|
|
auto constexpr method = CordzUpdateTracker::kRemovePrefix;
|
|
CordzUpdateScope scope(contents_.cordz_info(), method);
|
|
tree = cord_internal::RemoveCrcNode(tree);
|
|
if (n >= tree->length) {
|
|
CordRep::Unref(tree);
|
|
tree = nullptr;
|
|
} else if (tree->IsBtree()) {
|
|
CordRep* old = tree;
|
|
tree = tree->btree()->SubTree(n, tree->length - n);
|
|
CordRep::Unref(old);
|
|
} else if (tree->IsSubstring() && tree->refcount.IsOne()) {
|
|
tree->substring()->start += n;
|
|
tree->length -= n;
|
|
} else {
|
|
CordRep* rep = CordRepSubstring::Substring(tree, n, tree->length - n);
|
|
CordRep::Unref(tree);
|
|
tree = rep;
|
|
}
|
|
contents_.SetTreeOrEmpty(tree, scope);
|
|
}
|
|
}
|
|
|
|
void Cord::RemoveSuffix(size_t n) {
|
|
ABSL_INTERNAL_CHECK(n <= size(),
|
|
absl::StrCat("Requested suffix size ", n,
|
|
" exceeds Cord's size ", size()));
|
|
CordRep* tree = contents_.tree();
|
|
if (tree == nullptr) {
|
|
contents_.reduce_size(n);
|
|
} else {
|
|
auto constexpr method = CordzUpdateTracker::kRemoveSuffix;
|
|
CordzUpdateScope scope(contents_.cordz_info(), method);
|
|
tree = cord_internal::RemoveCrcNode(tree);
|
|
if (n >= tree->length) {
|
|
CordRep::Unref(tree);
|
|
tree = nullptr;
|
|
} else if (tree->IsBtree()) {
|
|
tree = CordRepBtree::RemoveSuffix(tree->btree(), n);
|
|
} else if (!tree->IsExternal() && tree->refcount.IsOne()) {
|
|
assert(tree->IsFlat() || tree->IsSubstring());
|
|
tree->length -= n;
|
|
} else {
|
|
CordRep* rep = CordRepSubstring::Substring(tree, 0, tree->length - n);
|
|
CordRep::Unref(tree);
|
|
tree = rep;
|
|
}
|
|
contents_.SetTreeOrEmpty(tree, scope);
|
|
}
|
|
}
|
|
|
|
Cord Cord::Subcord(size_t pos, size_t new_size) const {
|
|
Cord sub_cord;
|
|
size_t length = size();
|
|
if (pos > length) pos = length;
|
|
if (new_size > length - pos) new_size = length - pos;
|
|
if (new_size == 0) return sub_cord;
|
|
|
|
CordRep* tree = contents_.tree();
|
|
if (tree == nullptr) {
|
|
sub_cord.contents_.set_data(contents_.data() + pos, new_size);
|
|
return sub_cord;
|
|
}
|
|
|
|
if (new_size <= InlineRep::kMaxInline) {
|
|
char* dest = sub_cord.contents_.data_.as_chars();
|
|
Cord::ChunkIterator it = chunk_begin();
|
|
it.AdvanceBytes(pos);
|
|
size_t remaining_size = new_size;
|
|
while (remaining_size > it->size()) {
|
|
cord_internal::SmallMemmove(dest, it->data(), it->size());
|
|
remaining_size -= it->size();
|
|
dest += it->size();
|
|
++it;
|
|
}
|
|
cord_internal::SmallMemmove(dest, it->data(), remaining_size);
|
|
sub_cord.contents_.set_inline_size(new_size);
|
|
return sub_cord;
|
|
}
|
|
|
|
tree = cord_internal::SkipCrcNode(tree);
|
|
if (tree->IsBtree()) {
|
|
tree = tree->btree()->SubTree(pos, new_size);
|
|
} else {
|
|
tree = CordRepSubstring::Substring(tree, pos, new_size);
|
|
}
|
|
sub_cord.contents_.EmplaceTree(tree, contents_.data_,
|
|
CordzUpdateTracker::kSubCord);
|
|
return sub_cord;
|
|
}
|
|
|
|
// --------------------------------------------------------------------
|
|
// Comparators
|
|
|
|
namespace {
|
|
|
|
int ClampResult(int memcmp_res) {
|
|
return static_cast<int>(memcmp_res > 0) - static_cast<int>(memcmp_res < 0);
|
|
}
|
|
|
|
int CompareChunks(absl::string_view* lhs, absl::string_view* rhs,
|
|
size_t* size_to_compare) {
|
|
size_t compared_size = std::min(lhs->size(), rhs->size());
|
|
assert(*size_to_compare >= compared_size);
|
|
*size_to_compare -= compared_size;
|
|
|
|
int memcmp_res = ::memcmp(lhs->data(), rhs->data(), compared_size);
|
|
if (memcmp_res != 0) return memcmp_res;
|
|
|
|
lhs->remove_prefix(compared_size);
|
|
rhs->remove_prefix(compared_size);
|
|
|
|
return 0;
|
|
}
|
|
|
|
// This overload set computes comparison results from memcmp result. This
|
|
// interface is used inside GenericCompare below. Differet implementations
|
|
// are specialized for int and bool. For int we clamp result to {-1, 0, 1}
|
|
// set. For bool we just interested in "value == 0".
|
|
template <typename ResultType>
|
|
ResultType ComputeCompareResult(int memcmp_res) {
|
|
return ClampResult(memcmp_res);
|
|
}
|
|
template <>
|
|
bool ComputeCompareResult<bool>(int memcmp_res) {
|
|
return memcmp_res == 0;
|
|
}
|
|
|
|
} // namespace
|
|
|
|
// Helper routine. Locates the first flat or external chunk of the Cord without
|
|
// initializing the iterator, and returns a string_view referencing the data.
|
|
inline absl::string_view Cord::InlineRep::FindFlatStartPiece() const {
|
|
if (!is_tree()) {
|
|
return absl::string_view(data_.as_chars(), data_.inline_size());
|
|
}
|
|
|
|
CordRep* node = cord_internal::SkipCrcNode(tree());
|
|
if (node->IsFlat()) {
|
|
return absl::string_view(node->flat()->Data(), node->length);
|
|
}
|
|
|
|
if (node->IsExternal()) {
|
|
return absl::string_view(node->external()->base, node->length);
|
|
}
|
|
|
|
if (node->IsBtree()) {
|
|
CordRepBtree* tree = node->btree();
|
|
int height = tree->height();
|
|
while (--height >= 0) {
|
|
tree = tree->Edge(CordRepBtree::kFront)->btree();
|
|
}
|
|
return tree->Data(tree->begin());
|
|
}
|
|
|
|
// Get the child node if we encounter a SUBSTRING.
|
|
size_t offset = 0;
|
|
size_t length = node->length;
|
|
assert(length != 0);
|
|
|
|
if (node->IsSubstring()) {
|
|
offset = node->substring()->start;
|
|
node = node->substring()->child;
|
|
}
|
|
|
|
if (node->IsFlat()) {
|
|
return absl::string_view(node->flat()->Data() + offset, length);
|
|
}
|
|
|
|
assert(node->IsExternal() && "Expect FLAT or EXTERNAL node here");
|
|
|
|
return absl::string_view(node->external()->base + offset, length);
|
|
}
|
|
|
|
void Cord::SetExpectedChecksum(uint32_t crc) {
|
|
auto constexpr method = CordzUpdateTracker::kSetExpectedChecksum;
|
|
if (empty()) return;
|
|
|
|
if (!contents_.is_tree()) {
|
|
CordRep* rep = contents_.MakeFlatWithExtraCapacity(0);
|
|
rep = CordRepCrc::New(rep, crc);
|
|
contents_.EmplaceTree(rep, method);
|
|
} else {
|
|
const CordzUpdateScope scope(contents_.data_.cordz_info(), method);
|
|
CordRep* rep = CordRepCrc::New(contents_.data_.as_tree(), crc);
|
|
contents_.SetTree(rep, scope);
|
|
}
|
|
}
|
|
|
|
absl::optional<uint32_t> Cord::ExpectedChecksum() const {
|
|
if (!contents_.is_tree() || !contents_.tree()->IsCrc()) {
|
|
return absl::nullopt;
|
|
}
|
|
return contents_.tree()->crc()->crc;
|
|
}
|
|
|
|
inline int Cord::CompareSlowPath(absl::string_view rhs, size_t compared_size,
|
|
size_t size_to_compare) const {
|
|
auto advance = [](Cord::ChunkIterator* it, absl::string_view* chunk) {
|
|
if (!chunk->empty()) return true;
|
|
++*it;
|
|
if (it->bytes_remaining_ == 0) return false;
|
|
*chunk = **it;
|
|
return true;
|
|
};
|
|
|
|
Cord::ChunkIterator lhs_it = chunk_begin();
|
|
|
|
// compared_size is inside first chunk.
|
|
absl::string_view lhs_chunk =
|
|
(lhs_it.bytes_remaining_ != 0) ? *lhs_it : absl::string_view();
|
|
assert(compared_size <= lhs_chunk.size());
|
|
assert(compared_size <= rhs.size());
|
|
lhs_chunk.remove_prefix(compared_size);
|
|
rhs.remove_prefix(compared_size);
|
|
size_to_compare -= compared_size; // skip already compared size.
|
|
|
|
while (advance(&lhs_it, &lhs_chunk) && !rhs.empty()) {
|
|
int comparison_result = CompareChunks(&lhs_chunk, &rhs, &size_to_compare);
|
|
if (comparison_result != 0) return comparison_result;
|
|
if (size_to_compare == 0) return 0;
|
|
}
|
|
|
|
return static_cast<int>(rhs.empty()) - static_cast<int>(lhs_chunk.empty());
|
|
}
|
|
|
|
inline int Cord::CompareSlowPath(const Cord& rhs, size_t compared_size,
|
|
size_t size_to_compare) const {
|
|
auto advance = [](Cord::ChunkIterator* it, absl::string_view* chunk) {
|
|
if (!chunk->empty()) return true;
|
|
++*it;
|
|
if (it->bytes_remaining_ == 0) return false;
|
|
*chunk = **it;
|
|
return true;
|
|
};
|
|
|
|
Cord::ChunkIterator lhs_it = chunk_begin();
|
|
Cord::ChunkIterator rhs_it = rhs.chunk_begin();
|
|
|
|
// compared_size is inside both first chunks.
|
|
absl::string_view lhs_chunk =
|
|
(lhs_it.bytes_remaining_ != 0) ? *lhs_it : absl::string_view();
|
|
absl::string_view rhs_chunk =
|
|
(rhs_it.bytes_remaining_ != 0) ? *rhs_it : absl::string_view();
|
|
assert(compared_size <= lhs_chunk.size());
|
|
assert(compared_size <= rhs_chunk.size());
|
|
lhs_chunk.remove_prefix(compared_size);
|
|
rhs_chunk.remove_prefix(compared_size);
|
|
size_to_compare -= compared_size; // skip already compared size.
|
|
|
|
while (advance(&lhs_it, &lhs_chunk) && advance(&rhs_it, &rhs_chunk)) {
|
|
int memcmp_res = CompareChunks(&lhs_chunk, &rhs_chunk, &size_to_compare);
|
|
if (memcmp_res != 0) return memcmp_res;
|
|
if (size_to_compare == 0) return 0;
|
|
}
|
|
|
|
return static_cast<int>(rhs_chunk.empty()) -
|
|
static_cast<int>(lhs_chunk.empty());
|
|
}
|
|
|
|
inline absl::string_view Cord::GetFirstChunk(const Cord& c) {
|
|
return c.contents_.FindFlatStartPiece();
|
|
}
|
|
inline absl::string_view Cord::GetFirstChunk(absl::string_view sv) {
|
|
return sv;
|
|
}
|
|
|
|
// Compares up to 'size_to_compare' bytes of 'lhs' with 'rhs'. It is assumed
|
|
// that 'size_to_compare' is greater that size of smallest of first chunks.
|
|
template <typename ResultType, typename RHS>
|
|
ResultType GenericCompare(const Cord& lhs, const RHS& rhs,
|
|
size_t size_to_compare) {
|
|
absl::string_view lhs_chunk = Cord::GetFirstChunk(lhs);
|
|
absl::string_view rhs_chunk = Cord::GetFirstChunk(rhs);
|
|
|
|
size_t compared_size = std::min(lhs_chunk.size(), rhs_chunk.size());
|
|
assert(size_to_compare >= compared_size);
|
|
int memcmp_res = ::memcmp(lhs_chunk.data(), rhs_chunk.data(), compared_size);
|
|
if (compared_size == size_to_compare || memcmp_res != 0) {
|
|
return ComputeCompareResult<ResultType>(memcmp_res);
|
|
}
|
|
|
|
return ComputeCompareResult<ResultType>(
|
|
lhs.CompareSlowPath(rhs, compared_size, size_to_compare));
|
|
}
|
|
|
|
bool Cord::EqualsImpl(absl::string_view rhs, size_t size_to_compare) const {
|
|
return GenericCompare<bool>(*this, rhs, size_to_compare);
|
|
}
|
|
|
|
bool Cord::EqualsImpl(const Cord& rhs, size_t size_to_compare) const {
|
|
return GenericCompare<bool>(*this, rhs, size_to_compare);
|
|
}
|
|
|
|
template <typename RHS>
|
|
inline int SharedCompareImpl(const Cord& lhs, const RHS& rhs) {
|
|
size_t lhs_size = lhs.size();
|
|
size_t rhs_size = rhs.size();
|
|
if (lhs_size == rhs_size) {
|
|
return GenericCompare<int>(lhs, rhs, lhs_size);
|
|
}
|
|
if (lhs_size < rhs_size) {
|
|
auto data_comp_res = GenericCompare<int>(lhs, rhs, lhs_size);
|
|
return data_comp_res == 0 ? -1 : data_comp_res;
|
|
}
|
|
|
|
auto data_comp_res = GenericCompare<int>(lhs, rhs, rhs_size);
|
|
return data_comp_res == 0 ? +1 : data_comp_res;
|
|
}
|
|
|
|
int Cord::Compare(absl::string_view rhs) const {
|
|
return SharedCompareImpl(*this, rhs);
|
|
}
|
|
|
|
int Cord::CompareImpl(const Cord& rhs) const {
|
|
return SharedCompareImpl(*this, rhs);
|
|
}
|
|
|
|
bool Cord::EndsWith(absl::string_view rhs) const {
|
|
size_t my_size = size();
|
|
size_t rhs_size = rhs.size();
|
|
|
|
if (my_size < rhs_size) return false;
|
|
|
|
Cord tmp(*this);
|
|
tmp.RemovePrefix(my_size - rhs_size);
|
|
return tmp.EqualsImpl(rhs, rhs_size);
|
|
}
|
|
|
|
bool Cord::EndsWith(const Cord& rhs) const {
|
|
size_t my_size = size();
|
|
size_t rhs_size = rhs.size();
|
|
|
|
if (my_size < rhs_size) return false;
|
|
|
|
Cord tmp(*this);
|
|
tmp.RemovePrefix(my_size - rhs_size);
|
|
return tmp.EqualsImpl(rhs, rhs_size);
|
|
}
|
|
|
|
// --------------------------------------------------------------------
|
|
// Misc.
|
|
|
|
Cord::operator std::string() const {
|
|
std::string s;
|
|
absl::CopyCordToString(*this, &s);
|
|
return s;
|
|
}
|
|
|
|
void CopyCordToString(const Cord& src, std::string* dst) {
|
|
if (!src.contents_.is_tree()) {
|
|
src.contents_.CopyTo(dst);
|
|
} else {
|
|
absl::strings_internal::STLStringResizeUninitialized(dst, src.size());
|
|
src.CopyToArraySlowPath(&(*dst)[0]);
|
|
}
|
|
}
|
|
|
|
void Cord::CopyToArraySlowPath(char* dst) const {
|
|
assert(contents_.is_tree());
|
|
absl::string_view fragment;
|
|
if (GetFlatAux(contents_.tree(), &fragment)) {
|
|
memcpy(dst, fragment.data(), fragment.size());
|
|
return;
|
|
}
|
|
for (absl::string_view chunk : Chunks()) {
|
|
memcpy(dst, chunk.data(), chunk.size());
|
|
dst += chunk.size();
|
|
}
|
|
}
|
|
|
|
Cord Cord::ChunkIterator::AdvanceAndReadBytes(size_t n) {
|
|
ABSL_HARDENING_ASSERT(bytes_remaining_ >= n &&
|
|
"Attempted to iterate past `end()`");
|
|
Cord subcord;
|
|
auto constexpr method = CordzUpdateTracker::kCordReader;
|
|
|
|
if (n <= InlineRep::kMaxInline) {
|
|
// Range to read fits in inline data. Flatten it.
|
|
char* data = subcord.contents_.set_data(n);
|
|
while (n > current_chunk_.size()) {
|
|
memcpy(data, current_chunk_.data(), current_chunk_.size());
|
|
data += current_chunk_.size();
|
|
n -= current_chunk_.size();
|
|
++*this;
|
|
}
|
|
memcpy(data, current_chunk_.data(), n);
|
|
if (n < current_chunk_.size()) {
|
|
RemoveChunkPrefix(n);
|
|
} else if (n > 0) {
|
|
++*this;
|
|
}
|
|
return subcord;
|
|
}
|
|
|
|
if (btree_reader_) {
|
|
size_t chunk_size = current_chunk_.size();
|
|
if (n <= chunk_size && n <= kMaxBytesToCopy) {
|
|
subcord = Cord(current_chunk_.substr(0, n), method);
|
|
if (n < chunk_size) {
|
|
current_chunk_.remove_prefix(n);
|
|
} else {
|
|
current_chunk_ = btree_reader_.Next();
|
|
}
|
|
} else {
|
|
CordRep* rep;
|
|
current_chunk_ = btree_reader_.Read(n, chunk_size, rep);
|
|
subcord.contents_.EmplaceTree(rep, method);
|
|
}
|
|
bytes_remaining_ -= n;
|
|
return subcord;
|
|
}
|
|
|
|
// Short circuit if reading the entire data edge.
|
|
assert(current_leaf_ != nullptr);
|
|
if (n == current_leaf_->length) {
|
|
bytes_remaining_ = 0;
|
|
current_chunk_ = {};
|
|
CordRep* tree = CordRep::Ref(current_leaf_);
|
|
subcord.contents_.EmplaceTree(VerifyTree(tree), method);
|
|
return subcord;
|
|
}
|
|
|
|
// From this point on, we need a partial substring node.
|
|
// Get pointer to the underlying flat or external data payload and
|
|
// compute data pointer and offset into current flat or external.
|
|
CordRep* payload = current_leaf_->IsSubstring()
|
|
? current_leaf_->substring()->child
|
|
: current_leaf_;
|
|
const char* data = payload->IsExternal() ? payload->external()->base
|
|
: payload->flat()->Data();
|
|
const size_t offset = current_chunk_.data() - data;
|
|
|
|
auto* tree = CordRepSubstring::Substring(payload, offset, n);
|
|
subcord.contents_.EmplaceTree(VerifyTree(tree), method);
|
|
bytes_remaining_ -= n;
|
|
current_chunk_.remove_prefix(n);
|
|
return subcord;
|
|
}
|
|
|
|
char Cord::operator[](size_t i) const {
|
|
ABSL_HARDENING_ASSERT(i < size());
|
|
size_t offset = i;
|
|
const CordRep* rep = contents_.tree();
|
|
if (rep == nullptr) {
|
|
return contents_.data()[i];
|
|
}
|
|
rep = cord_internal::SkipCrcNode(rep);
|
|
while (true) {
|
|
assert(rep != nullptr);
|
|
assert(offset < rep->length);
|
|
if (rep->IsFlat()) {
|
|
// Get the "i"th character directly from the flat array.
|
|
return rep->flat()->Data()[offset];
|
|
} else if (rep->IsBtree()) {
|
|
return rep->btree()->GetCharacter(offset);
|
|
} else if (rep->IsExternal()) {
|
|
// Get the "i"th character from the external array.
|
|
return rep->external()->base[offset];
|
|
} else {
|
|
// This must be a substring a node, so bypass it to get to the child.
|
|
assert(rep->IsSubstring());
|
|
offset += rep->substring()->start;
|
|
rep = rep->substring()->child;
|
|
}
|
|
}
|
|
}
|
|
|
|
absl::string_view Cord::FlattenSlowPath() {
|
|
assert(contents_.is_tree());
|
|
size_t total_size = size();
|
|
CordRep* new_rep;
|
|
char* new_buffer;
|
|
|
|
// Try to put the contents into a new flat rep. If they won't fit in the
|
|
// biggest possible flat node, use an external rep instead.
|
|
if (total_size <= kMaxFlatLength) {
|
|
new_rep = CordRepFlat::New(total_size);
|
|
new_rep->length = total_size;
|
|
new_buffer = new_rep->flat()->Data();
|
|
CopyToArraySlowPath(new_buffer);
|
|
} else {
|
|
new_buffer = std::allocator<char>().allocate(total_size);
|
|
CopyToArraySlowPath(new_buffer);
|
|
new_rep = absl::cord_internal::NewExternalRep(
|
|
absl::string_view(new_buffer, total_size), [](absl::string_view s) {
|
|
std::allocator<char>().deallocate(const_cast<char*>(s.data()),
|
|
s.size());
|
|
});
|
|
}
|
|
CordzUpdateScope scope(contents_.cordz_info(), CordzUpdateTracker::kFlatten);
|
|
CordRep::Unref(contents_.as_tree());
|
|
contents_.SetTree(new_rep, scope);
|
|
return absl::string_view(new_buffer, total_size);
|
|
}
|
|
|
|
/* static */ bool Cord::GetFlatAux(CordRep* rep, absl::string_view* fragment) {
|
|
assert(rep != nullptr);
|
|
rep = cord_internal::SkipCrcNode(rep);
|
|
if (rep->IsFlat()) {
|
|
*fragment = absl::string_view(rep->flat()->Data(), rep->length);
|
|
return true;
|
|
} else if (rep->IsExternal()) {
|
|
*fragment = absl::string_view(rep->external()->base, rep->length);
|
|
return true;
|
|
} else if (rep->IsBtree()) {
|
|
return rep->btree()->IsFlat(fragment);
|
|
} else if (rep->IsSubstring()) {
|
|
CordRep* child = rep->substring()->child;
|
|
if (child->IsFlat()) {
|
|
*fragment = absl::string_view(
|
|
child->flat()->Data() + rep->substring()->start, rep->length);
|
|
return true;
|
|
} else if (child->IsExternal()) {
|
|
*fragment = absl::string_view(
|
|
child->external()->base + rep->substring()->start, rep->length);
|
|
return true;
|
|
} else if (child->IsBtree()) {
|
|
return child->btree()->IsFlat(rep->substring()->start, rep->length,
|
|
fragment);
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/* static */ void Cord::ForEachChunkAux(
|
|
absl::cord_internal::CordRep* rep,
|
|
absl::FunctionRef<void(absl::string_view)> callback) {
|
|
assert(rep != nullptr);
|
|
rep = cord_internal::SkipCrcNode(rep);
|
|
|
|
if (rep->IsBtree()) {
|
|
ChunkIterator it(rep), end;
|
|
while (it != end) {
|
|
callback(*it);
|
|
++it;
|
|
}
|
|
return;
|
|
}
|
|
|
|
// This is a leaf node, so invoke our callback.
|
|
absl::cord_internal::CordRep* current_node = cord_internal::SkipCrcNode(rep);
|
|
absl::string_view chunk;
|
|
bool success = GetFlatAux(current_node, &chunk);
|
|
assert(success);
|
|
if (success) {
|
|
callback(chunk);
|
|
}
|
|
}
|
|
|
|
static void DumpNode(CordRep* rep, bool include_data, std::ostream* os,
|
|
int indent) {
|
|
const int kIndentStep = 1;
|
|
absl::InlinedVector<CordRep*, kInlinedVectorSize> stack;
|
|
absl::InlinedVector<int, kInlinedVectorSize> indents;
|
|
for (;;) {
|
|
*os << std::setw(3) << rep->refcount.Get();
|
|
*os << " " << std::setw(7) << rep->length;
|
|
*os << " [";
|
|
if (include_data) *os << static_cast<void*>(rep);
|
|
*os << "]";
|
|
*os << " " << std::setw(indent) << "";
|
|
if (rep->IsCrc()) {
|
|
*os << "CRC crc=" << rep->crc()->crc << "\n";
|
|
indent += kIndentStep;
|
|
rep = rep->crc()->child;
|
|
} else if (rep->IsSubstring()) {
|
|
*os << "SUBSTRING @ " << rep->substring()->start << "\n";
|
|
indent += kIndentStep;
|
|
rep = rep->substring()->child;
|
|
} else { // Leaf or ring
|
|
if (rep->IsExternal()) {
|
|
*os << "EXTERNAL [";
|
|
if (include_data)
|
|
*os << absl::CEscape(std::string(rep->external()->base, rep->length));
|
|
*os << "]\n";
|
|
} else if (rep->IsFlat()) {
|
|
*os << "FLAT cap=" << rep->flat()->Capacity() << " [";
|
|
if (include_data)
|
|
*os << absl::CEscape(std::string(rep->flat()->Data(), rep->length));
|
|
*os << "]\n";
|
|
} else {
|
|
CordRepBtree::Dump(rep, /*label=*/ "", include_data, *os);
|
|
}
|
|
if (stack.empty()) break;
|
|
rep = stack.back();
|
|
stack.pop_back();
|
|
indent = indents.back();
|
|
indents.pop_back();
|
|
}
|
|
}
|
|
ABSL_INTERNAL_CHECK(indents.empty(), "");
|
|
}
|
|
|
|
static std::string ReportError(CordRep* root, CordRep* node) {
|
|
std::ostringstream buf;
|
|
buf << "Error at node " << node << " in:";
|
|
DumpNode(root, true, &buf);
|
|
return buf.str();
|
|
}
|
|
|
|
static bool VerifyNode(CordRep* root, CordRep* start_node,
|
|
bool /* full_validation */) {
|
|
absl::InlinedVector<CordRep*, 2> worklist;
|
|
worklist.push_back(start_node);
|
|
do {
|
|
CordRep* node = worklist.back();
|
|
worklist.pop_back();
|
|
|
|
ABSL_INTERNAL_CHECK(node != nullptr, ReportError(root, node));
|
|
if (node != root) {
|
|
ABSL_INTERNAL_CHECK(node->length != 0, ReportError(root, node));
|
|
ABSL_INTERNAL_CHECK(!node->IsCrc(), ReportError(root, node));
|
|
}
|
|
|
|
if (node->IsFlat()) {
|
|
ABSL_INTERNAL_CHECK(node->length <= node->flat()->Capacity(),
|
|
ReportError(root, node));
|
|
} else if (node->IsExternal()) {
|
|
ABSL_INTERNAL_CHECK(node->external()->base != nullptr,
|
|
ReportError(root, node));
|
|
} else if (node->IsSubstring()) {
|
|
ABSL_INTERNAL_CHECK(
|
|
node->substring()->start < node->substring()->child->length,
|
|
ReportError(root, node));
|
|
ABSL_INTERNAL_CHECK(node->substring()->start + node->length <=
|
|
node->substring()->child->length,
|
|
ReportError(root, node));
|
|
} else if (node->IsCrc()) {
|
|
ABSL_INTERNAL_CHECK(node->crc()->child != nullptr,
|
|
ReportError(root, node));
|
|
ABSL_INTERNAL_CHECK(node->crc()->length == node->crc()->child->length,
|
|
ReportError(root, node));
|
|
worklist.push_back(node->crc()->child);
|
|
}
|
|
} while (!worklist.empty());
|
|
return true;
|
|
}
|
|
|
|
std::ostream& operator<<(std::ostream& out, const Cord& cord) {
|
|
for (absl::string_view chunk : cord.Chunks()) {
|
|
out.write(chunk.data(), chunk.size());
|
|
}
|
|
return out;
|
|
}
|
|
|
|
namespace strings_internal {
|
|
size_t CordTestAccess::FlatOverhead() { return cord_internal::kFlatOverhead; }
|
|
size_t CordTestAccess::MaxFlatLength() { return cord_internal::kMaxFlatLength; }
|
|
size_t CordTestAccess::FlatTagToLength(uint8_t tag) {
|
|
return cord_internal::TagToLength(tag);
|
|
}
|
|
uint8_t CordTestAccess::LengthToTag(size_t s) {
|
|
ABSL_INTERNAL_CHECK(s <= kMaxFlatLength, absl::StrCat("Invalid length ", s));
|
|
return cord_internal::AllocatedSizeToTag(s + cord_internal::kFlatOverhead);
|
|
}
|
|
size_t CordTestAccess::SizeofCordRepExternal() {
|
|
return sizeof(CordRepExternal);
|
|
}
|
|
size_t CordTestAccess::SizeofCordRepSubstring() {
|
|
return sizeof(CordRepSubstring);
|
|
}
|
|
} // namespace strings_internal
|
|
ABSL_NAMESPACE_END
|
|
} // namespace absl
|