mirror of
https://github.com/encounter/dawn-cmake.git
synced 2025-06-17 12:03:43 +00:00
It's possible for a heap in the residency LRU to outlive the ResidencyManager. When this happens, some heap in the LRU will be referencing the LRU head node. On destruction, the outstanding heap will attempt to access the LRU head node after the memory has been freed. This commit removes the LinkedList head node from the list within the LinkedList destructor to fix the bug. Bug: dawn:387 Change-Id: I13617d1b4e464e1541f989f31caecd4305037019 Reviewed-on: https://dawn-review.googlesource.com/c/dawn/+/19581 Reviewed-by: Rafael Cintron <rafael.cintron@microsoft.com> Reviewed-by: Austin Eng <enga@chromium.org> Commit-Queue: Brandon Jones <brandon1.jones@intel.com>
200 lines
5.7 KiB
C++
200 lines
5.7 KiB
C++
// Copyright (c) 2009 The Chromium Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style license that can be
|
|
// found in the LICENSE file.
|
|
|
|
// This file is a copy of Chromium's /src/base/containers/linked_list.h
|
|
|
|
#ifndef COMMON_LINKED_LIST_H
|
|
#define COMMON_LINKED_LIST_H
|
|
|
|
#include "common/Assert.h"
|
|
|
|
// Simple LinkedList type. (See the Q&A section to understand how this
|
|
// differs from std::list).
|
|
//
|
|
// To use, start by declaring the class which will be contained in the linked
|
|
// list, as extending LinkNode (this gives it next/previous pointers).
|
|
//
|
|
// class MyNodeType : public LinkNode<MyNodeType> {
|
|
// ...
|
|
// };
|
|
//
|
|
// Next, to keep track of the list's head/tail, use a LinkedList instance:
|
|
//
|
|
// LinkedList<MyNodeType> list;
|
|
//
|
|
// To add elements to the list, use any of LinkedList::Append,
|
|
// LinkNode::InsertBefore, or LinkNode::InsertAfter:
|
|
//
|
|
// LinkNode<MyNodeType>* n1 = ...;
|
|
// LinkNode<MyNodeType>* n2 = ...;
|
|
// LinkNode<MyNodeType>* n3 = ...;
|
|
//
|
|
// list.Append(n1);
|
|
// list.Append(n3);
|
|
// n3->InsertBefore(n3);
|
|
//
|
|
// Lastly, to iterate through the linked list forwards:
|
|
//
|
|
// for (LinkNode<MyNodeType>* node = list.head();
|
|
// node != list.end();
|
|
// node = node->next()) {
|
|
// MyNodeType* value = node->value();
|
|
// ...
|
|
// }
|
|
//
|
|
// Or to iterate the linked list backwards:
|
|
//
|
|
// for (LinkNode<MyNodeType>* node = list.tail();
|
|
// node != list.end();
|
|
// node = node->previous()) {
|
|
// MyNodeType* value = node->value();
|
|
// ...
|
|
// }
|
|
//
|
|
// Questions and Answers:
|
|
//
|
|
// Q. Should I use std::list or base::LinkedList?
|
|
//
|
|
// A. The main reason to use base::LinkedList over std::list is
|
|
// performance. If you don't care about the performance differences
|
|
// then use an STL container, as it makes for better code readability.
|
|
//
|
|
// Comparing the performance of base::LinkedList<T> to std::list<T*>:
|
|
//
|
|
// * Erasing an element of type T* from base::LinkedList<T> is
|
|
// an O(1) operation. Whereas for std::list<T*> it is O(n).
|
|
// That is because with std::list<T*> you must obtain an
|
|
// iterator to the T* element before you can call erase(iterator).
|
|
//
|
|
// * Insertion operations with base::LinkedList<T> never require
|
|
// heap allocations.
|
|
//
|
|
// Q. How does base::LinkedList implementation differ from std::list?
|
|
//
|
|
// A. Doubly-linked lists are made up of nodes that contain "next" and
|
|
// "previous" pointers that reference other nodes in the list.
|
|
//
|
|
// With base::LinkedList<T>, the type being inserted already reserves
|
|
// space for the "next" and "previous" pointers (base::LinkNode<T>*).
|
|
// Whereas with std::list<T> the type can be anything, so the implementation
|
|
// needs to glue on the "next" and "previous" pointers using
|
|
// some internal node type.
|
|
|
|
template <typename T>
|
|
class LinkNode {
|
|
public:
|
|
LinkNode() : previous_(nullptr), next_(nullptr) {
|
|
}
|
|
LinkNode(LinkNode<T>* previous, LinkNode<T>* next) : previous_(previous), next_(next) {
|
|
}
|
|
|
|
LinkNode(LinkNode<T>&& rhs) {
|
|
next_ = rhs.next_;
|
|
rhs.next_ = nullptr;
|
|
previous_ = rhs.previous_;
|
|
rhs.previous_ = nullptr;
|
|
|
|
// If the node belongs to a list, next_ and previous_ are both non-null.
|
|
// Otherwise, they are both null.
|
|
if (next_) {
|
|
next_->previous_ = this;
|
|
previous_->next_ = this;
|
|
}
|
|
}
|
|
|
|
// Insert |this| into the linked list, before |e|.
|
|
void InsertBefore(LinkNode<T>* e) {
|
|
this->next_ = e;
|
|
this->previous_ = e->previous_;
|
|
e->previous_->next_ = this;
|
|
e->previous_ = this;
|
|
}
|
|
|
|
// Insert |this| into the linked list, after |e|.
|
|
void InsertAfter(LinkNode<T>* e) {
|
|
this->next_ = e->next_;
|
|
this->previous_ = e;
|
|
e->next_->previous_ = this;
|
|
e->next_ = this;
|
|
}
|
|
|
|
// Check if |this| is in a list.
|
|
bool IsInList() const {
|
|
ASSERT((this->previous_ == nullptr) == (this->next_ == nullptr));
|
|
return this->next_ != nullptr;
|
|
}
|
|
|
|
// Remove |this| from the linked list.
|
|
void RemoveFromList() {
|
|
this->previous_->next_ = this->next_;
|
|
this->next_->previous_ = this->previous_;
|
|
// next() and previous() return non-null if and only this node is not in any
|
|
// list.
|
|
this->next_ = nullptr;
|
|
this->previous_ = nullptr;
|
|
}
|
|
|
|
LinkNode<T>* previous() const {
|
|
return previous_;
|
|
}
|
|
|
|
LinkNode<T>* next() const {
|
|
return next_;
|
|
}
|
|
|
|
// Cast from the node-type to the value type.
|
|
const T* value() const {
|
|
return static_cast<const T*>(this);
|
|
}
|
|
|
|
T* value() {
|
|
return static_cast<T*>(this);
|
|
}
|
|
|
|
private:
|
|
LinkNode<T>* previous_;
|
|
LinkNode<T>* next_;
|
|
};
|
|
|
|
template <typename T>
|
|
class LinkedList {
|
|
public:
|
|
// The "root" node is self-referential, and forms the basis of a circular
|
|
// list (root_.next() will point back to the start of the list,
|
|
// and root_->previous() wraps around to the end of the list).
|
|
LinkedList() : root_(&root_, &root_) {
|
|
}
|
|
|
|
~LinkedList() {
|
|
// If any LinkNodes still exist in the LinkedList, there will be outstanding references to
|
|
// root_ even after it has been freed. We should remove root_ from the list to prevent any
|
|
// future access.
|
|
root_.RemoveFromList();
|
|
}
|
|
|
|
// Appends |e| to the end of the linked list.
|
|
void Append(LinkNode<T>* e) {
|
|
e->InsertBefore(&root_);
|
|
}
|
|
|
|
LinkNode<T>* head() const {
|
|
return root_.next();
|
|
}
|
|
|
|
LinkNode<T>* tail() const {
|
|
return root_.previous();
|
|
}
|
|
|
|
const LinkNode<T>* end() const {
|
|
return &root_;
|
|
}
|
|
|
|
bool empty() const {
|
|
return head() == end();
|
|
}
|
|
|
|
private:
|
|
LinkNode<T> root_;
|
|
};
|
|
#endif // COMMON_LINKED_LIST_H
|