Reorganize files; start RSO support; config & split updates

This commit is contained in:
2023-01-27 23:15:52 -05:00
parent 827e0806be
commit 830f7b172f
171 changed files with 2926 additions and 1010 deletions

380
src/analysis/cfa.rs Normal file
View File

@@ -0,0 +1,380 @@
use std::collections::{BTreeMap, BTreeSet};
use anyhow::{anyhow, bail, Result};
use crate::{
analysis::{
executor::{ExecCbData, ExecCbResult, Executor},
skip_alignment,
slices::{FunctionSlices, TailCallResult},
vm::{BranchTarget, GprValue, StepResult, VM},
},
obj::{ObjInfo, ObjSymbol, ObjSymbolFlagSet, ObjSymbolFlags, ObjSymbolKind},
};
#[derive(Debug, Default)]
pub struct AnalyzerState {
pub sda_bases: Option<(u32, u32)>,
pub function_entries: BTreeSet<u32>,
pub function_bounds: BTreeMap<u32, u32>,
pub function_slices: BTreeMap<u32, FunctionSlices>,
pub jump_tables: BTreeMap<u32, u32>,
pub known_symbols: BTreeMap<u32, ObjSymbol>,
pub non_finalized_functions: BTreeMap<u32, FunctionSlices>,
}
impl AnalyzerState {
pub fn apply(&self, obj: &mut ObjInfo) -> Result<()> {
for (&start, &end) in &self.function_bounds {
if end == 0 {
continue;
}
if let Some(existing_symbol) = obj
.symbols
.iter_mut()
.find(|sym| sym.address == start as u64 && sym.kind == ObjSymbolKind::Function)
{
let new_size = (end - start) as u64;
if !existing_symbol.size_known || existing_symbol.size == 0 {
existing_symbol.size = new_size;
existing_symbol.size_known = true;
} else if existing_symbol.size != new_size {
log::warn!(
"Conflicting size for {}: was {:#X}, now {:#X}",
existing_symbol.name,
existing_symbol.size,
new_size
);
}
continue;
}
let section = obj
.sections
.iter()
.find(|section| {
(start as u64) >= section.address
&& (end as u64) <= section.address + section.size
})
.ok_or_else(|| {
anyhow!("Failed to locate section for function {:#010X}-{:#010X}", start, end)
})?;
obj.symbols.push(ObjSymbol {
name: format!("fn_{:08X}", start),
demangled_name: None,
address: start as u64,
section: Some(section.index),
size: (end - start) as u64,
size_known: true,
flags: Default::default(),
kind: ObjSymbolKind::Function,
});
}
for (&addr, &size) in &self.jump_tables {
let section = obj
.sections
.iter()
.find(|section| {
(addr as u64) >= section.address
&& ((addr + size) as u64) <= section.address + section.size
})
.ok_or_else(|| anyhow!("Failed to locate section for jump table"))?;
if let Some(existing_symbol) = obj
.symbols
.iter_mut()
.find(|sym| sym.address == addr as u64 && sym.kind == ObjSymbolKind::Object)
{
let new_size = size as u64;
if !existing_symbol.size_known || existing_symbol.size == 0 {
existing_symbol.size = new_size;
existing_symbol.size_known = true;
// existing_symbol.flags.0 &= ObjSymbolFlags::Global;
// existing_symbol.flags.0 |= ObjSymbolFlags::Local;
} else if existing_symbol.size != new_size {
log::warn!(
"Conflicting size for {}: was {:#X}, now {:#X}",
existing_symbol.name,
existing_symbol.size,
new_size
);
}
continue;
}
obj.symbols.push(ObjSymbol {
name: format!("jumptable_{:08X}", addr),
demangled_name: None,
address: addr as u64,
section: Some(section.index),
size: size as u64,
size_known: true,
flags: ObjSymbolFlagSet(ObjSymbolFlags::Local.into()),
kind: ObjSymbolKind::Object,
});
}
for (&_addr, symbol) in &self.known_symbols {
if let Some(existing_symbol) = obj
.symbols
.iter_mut()
.find(|e| symbol.address == e.address && symbol.kind == e.kind)
{
*existing_symbol = symbol.clone();
continue;
}
obj.symbols.push(symbol.clone());
}
Ok(())
}
pub fn detect_functions(&mut self, obj: &ObjInfo) -> Result<()> {
// Process known functions first
let known_functions = self.function_entries.clone();
for addr in known_functions {
self.process_function_at(obj, addr)?;
}
// Locate entry function bounds
self.process_function_at(obj, obj.entry as u32)?;
// Locate bounds for referenced functions until none are left
self.process_functions(obj)?;
// Final pass(es)
while self.finalize_functions(obj, true)? {
self.process_functions(obj)?;
}
Ok(())
}
fn finalize_functions(&mut self, obj: &ObjInfo, finalize: bool) -> Result<bool> {
let mut finalized = Vec::new();
for (&addr, slices) in &mut self.non_finalized_functions {
// log::info!("Trying to finalize {:#010X}", addr);
let function_start = slices.start();
let function_end = slices.end();
let mut current = 0;
while let Some(&block) = slices.possible_blocks.range(current + 4..).next() {
current = block;
match slices.check_tail_call(
obj,
block,
function_start,
function_end,
&self.function_entries,
) {
TailCallResult::Not => {
log::trace!("Finalized block @ {:#010X}", block);
slices.possible_blocks.remove(&block);
slices.analyze(
obj,
block,
function_start,
Some(function_end),
&self.function_entries,
)?;
}
TailCallResult::Is => {
log::trace!("Finalized tail call @ {:#010X}", block);
slices.possible_blocks.remove(&block);
slices.function_references.insert(block);
}
TailCallResult::Possible => {
if finalize {
log::trace!(
"Still couldn't determine {:#010X}, assuming non-tail-call",
block
);
slices.possible_blocks.remove(&block);
slices.analyze(
obj,
block,
function_start,
Some(function_end),
&self.function_entries,
)?;
}
}
}
}
if slices.can_finalize() {
log::trace!("Finalizing {:#010X}", addr);
slices.finalize(obj, &self.function_entries)?;
self.function_entries.append(&mut slices.function_references.clone());
self.jump_tables.append(&mut slices.jump_table_references.clone());
let end = slices.end();
self.function_bounds.insert(addr, end);
self.function_slices.insert(addr, slices.clone());
finalized.push(addr);
}
}
let finalized_new = !finalized.is_empty();
for addr in finalized {
self.non_finalized_functions.remove(&addr);
}
Ok(finalized_new)
}
fn first_unbounded_function(&self) -> Option<u32> {
let mut entries_iter = self.function_entries.iter().cloned();
let mut bounds_iter = self.function_bounds.keys().cloned();
let mut entry = entries_iter.next();
let mut bound = bounds_iter.next();
loop {
match (entry, bound) {
(Some(a), Some(b)) => {
if b < a {
bound = bounds_iter.next();
continue;
} else if a != b {
if self.non_finalized_functions.contains_key(&a) {
entry = entries_iter.next();
continue;
} else {
break Some(a);
}
}
}
(Some(a), None) => {
if self.non_finalized_functions.contains_key(&a) {
entry = entries_iter.next();
continue;
} else {
break Some(a);
}
}
_ => break None,
}
entry = entries_iter.next();
bound = bounds_iter.next();
}
}
fn process_functions(&mut self, obj: &ObjInfo) -> Result<()> {
loop {
match self.first_unbounded_function() {
Some(addr) => {
log::trace!("Processing {:#010X}", addr);
self.process_function_at(&obj, addr)?;
}
None => {
if !self.finalize_functions(obj, false)? {
if !self.detect_new_functions(obj)? {
break;
}
}
}
}
}
Ok(())
}
pub fn process_function_at(&mut self, obj: &ObjInfo, addr: u32) -> Result<bool> {
if addr == 0 || addr == 0xFFFFFFFF {
log::warn!("Tried to detect @ {:#010X}", addr);
self.function_bounds.insert(addr, 0);
return Ok(false);
}
Ok(if let Some(mut slices) = self.process_function(obj, addr)? {
self.function_entries.insert(addr);
self.function_entries.append(&mut slices.function_references.clone());
self.jump_tables.append(&mut slices.jump_table_references.clone());
if slices.can_finalize() {
slices.finalize(obj, &self.function_entries)?;
self.function_bounds.insert(addr, slices.end());
self.function_slices.insert(addr, slices);
} else {
self.non_finalized_functions.insert(addr, slices);
}
true
} else {
log::debug!("Not a function @ {:#010X}", addr);
self.function_bounds.insert(addr, 0);
false
})
}
fn process_function(&mut self, obj: &ObjInfo, start: u32) -> Result<Option<FunctionSlices>> {
let mut slices = FunctionSlices::default();
let function_end = self.function_bounds.get(&start).cloned();
if start == 0x801FC300 {
log::info!("Processing TRKExceptionHandler");
}
Ok(match slices.analyze(obj, start, start, function_end, &self.function_entries)? {
true => Some(slices),
false => None,
})
}
fn detect_new_functions(&mut self, obj: &ObjInfo) -> Result<bool> {
let mut found_new = false;
let mut iter = self.function_bounds.iter().peekable();
while let (Some((&first_begin, &first_end)), Some(&(&second_begin, &second_end))) =
(iter.next(), iter.peek())
{
if first_end == 0 || first_end > second_begin {
continue;
}
let addr = match skip_alignment(obj, first_end, second_begin) {
Some(addr) => addr,
None => continue,
};
if second_begin > addr && self.function_entries.insert(addr) {
log::trace!(
"Trying function @ {:#010X} (from {:#010X}-{:#010X} <-> {:#010X}-{:#010X})",
addr,
first_begin,
first_end,
second_begin,
second_end,
);
found_new = true;
}
}
Ok(found_new)
}
}
/// Execute VM from entry point following branches and function calls
/// until SDA bases are initialized (__init_registers)
pub fn locate_sda_bases(obj: &mut ObjInfo) -> Result<bool> {
let mut executor = Executor::new(obj);
executor.push(obj.entry as u32, VM::new(), false);
let result = executor.run(
obj,
|ExecCbData { executor, vm, result, section: _, ins, block_start: _ }| {
match result {
StepResult::Continue | StepResult::LoadStore { .. } => {
return Ok(ExecCbResult::Continue);
}
StepResult::Illegal => bail!("Illegal instruction @ {:#010X}", ins.addr),
StepResult::Jump(target) => match target {
BranchTarget::Address(addr) => {
return Ok(ExecCbResult::Jump(addr));
}
_ => {}
},
StepResult::Branch(branches) => {
for branch in branches {
match branch.target {
BranchTarget::Address(addr) => {
executor.push(addr, branch.vm, false);
}
_ => {}
}
}
}
}
if let (GprValue::Constant(sda2_base), GprValue::Constant(sda_base)) =
(vm.gpr_value(2), vm.gpr_value(13))
{
return Ok(ExecCbResult::End((sda2_base, sda_base)));
}
Ok(ExecCbResult::EndBlock)
},
)?;
match result {
Some((sda2_base, sda_base)) => {
obj.sda2_base = Some(sda2_base);
obj.sda_base = Some(sda_base);
Ok(true)
}
None => Ok(false),
}
}

146
src/analysis/executor.rs Normal file
View File

@@ -0,0 +1,146 @@
use anyhow::Result;
use fixedbitset::FixedBitSet;
use ppc750cl::Ins;
use crate::{
analysis::{
disassemble,
vm::{StepResult, VM},
},
obj::{ObjInfo, ObjSection, ObjSectionKind},
};
/// Space-efficient implementation for tracking visited code addresses
struct VisitedAddresses {
inner: Vec<FixedBitSet>,
}
impl VisitedAddresses {
pub fn new(obj: &ObjInfo) -> Self {
let mut inner = Vec::with_capacity(obj.sections.len());
for section in &obj.sections {
if section.kind == ObjSectionKind::Code {
let size = (section.size / 4) as usize;
inner.push(FixedBitSet::with_capacity(size));
} else {
// Empty
inner.push(FixedBitSet::new())
}
}
Self { inner }
}
pub fn contains(&self, section: &ObjSection, address: u32) -> bool {
self.inner[section.index].contains(Self::bit_for(section, address))
}
pub fn insert(&mut self, section: &ObjSection, address: u32) {
self.inner[section.index].insert(Self::bit_for(section, address));
}
#[inline]
fn bit_for(section: &ObjSection, address: u32) -> usize {
((address as u64 - section.address) / 4) as usize
}
}
pub struct VMState {
pub vm: Box<VM>,
pub address: u32,
}
/// Helper for branched VM execution, only visiting addresses once.
pub struct Executor {
vm_stack: Vec<VMState>,
visited: VisitedAddresses,
}
pub struct ExecCbData<'a> {
pub executor: &'a mut Executor,
pub vm: &'a mut VM,
pub result: StepResult,
pub section: &'a ObjSection,
pub ins: &'a Ins,
pub block_start: u32,
}
pub enum ExecCbResult<T = ()> {
Continue,
Jump(u32),
EndBlock,
End(T),
}
impl Executor {
pub fn new(obj: &ObjInfo) -> Self {
Self { vm_stack: vec![], visited: VisitedAddresses::new(obj) }
}
pub fn run<Cb, R>(&mut self, obj: &ObjInfo, mut cb: Cb) -> Result<Option<R>>
where Cb: FnMut(ExecCbData) -> Result<ExecCbResult<R>> {
while let Some(mut state) = self.vm_stack.pop() {
let section = match obj.section_at(state.address) {
Ok(section) => section,
Err(e) => {
log::error!("{}", e);
// return Ok(None);
continue;
}
};
if section.kind != ObjSectionKind::Code {
log::warn!("Attempted to visit non-code address {:#010X}", state.address);
continue;
}
// Already visited block
if self.visited.contains(section, state.address) {
continue;
}
let mut block_start = state.address;
loop {
self.visited.insert(section, state.address);
let ins = match disassemble(section, state.address) {
Some(ins) => ins,
None => return Ok(None),
};
let result = state.vm.step(&ins);
match cb(ExecCbData {
executor: self,
vm: &mut state.vm,
result,
section,
ins: &ins,
block_start,
})? {
ExecCbResult::Continue => {
state.address += 4;
}
ExecCbResult::Jump(addr) => {
if self.visited.contains(section, addr) {
break;
}
block_start = addr;
state.address = addr;
}
ExecCbResult::EndBlock => break,
ExecCbResult::End(result) => return Ok(Some(result)),
}
}
}
Ok(None)
}
pub fn push(&mut self, address: u32, vm: Box<VM>, sort: bool) {
self.vm_stack.push(VMState { address, vm });
if sort {
// Sort lowest to highest, so we always go highest address first
self.vm_stack.sort_by_key(|state| state.address);
}
}
pub fn visited(&self, section: &ObjSection, address: u32) -> bool {
self.visited.contains(section, address)
}
}

107
src/analysis/mod.rs Normal file
View File

@@ -0,0 +1,107 @@
use std::{collections::BTreeSet, num::NonZeroU32};
use anyhow::{Context, Result};
use ppc750cl::Ins;
use crate::obj::{ObjInfo, ObjSection, ObjSectionKind};
pub mod cfa;
pub mod executor;
pub mod pass;
pub mod slices;
pub mod tracker;
pub mod vm;
pub fn disassemble(section: &ObjSection, address: u32) -> Option<Ins> {
read_u32(&section.data, address, section.address as u32).map(|code| Ins::new(code, address))
}
pub fn read_u32(data: &[u8], address: u32, section_address: u32) -> Option<u32> {
let offset = (address - section_address) as usize;
if data.len() < offset + 4 {
return None;
}
Some(u32::from_be_bytes(data[offset..offset + 4].try_into().unwrap()))
}
fn is_valid_jump_table_addr(obj: &ObjInfo, addr: u32) -> bool {
matches!(obj.section_at(addr), Ok(section) if section.kind != ObjSectionKind::Bss)
}
fn get_jump_table_entries(
obj: &ObjInfo,
addr: u32,
size: Option<NonZeroU32>,
from: u32,
function_start: u32,
function_end: u32,
) -> Result<(Vec<u32>, u32)> {
let section = obj.section_at(addr).with_context(|| {
format!("Failed to get jump table entries @ {:#010X} size {:?}", addr, size)
})?;
let offset = (addr as u64 - section.address) as usize;
if let Some(size) = size.map(|n| n.get()) {
log::trace!(
"Located jump table @ {:#010X} with entry count {} (from {:#010X})",
addr,
size / 4,
from
);
let jt_data = &section.data[offset..offset + size as usize];
let entries =
jt_data.chunks_exact(4).map(|c| u32::from_be_bytes(c.try_into().unwrap())).collect();
Ok((entries, size))
} else {
let mut entries = Vec::new();
let mut cur_addr = addr;
while let Some(value) = read_u32(&section.data, cur_addr, section.address as u32) {
if value < function_start || value >= function_end {
break;
}
entries.push(value);
cur_addr += 4;
}
let size = cur_addr - addr;
log::debug!(
"Guessed jump table @ {:#010X} with entry count {} (from {:#010X})",
addr,
size / 4,
from
);
Ok((entries, size))
}
}
pub fn uniq_jump_table_entries(
obj: &ObjInfo,
addr: u32,
size: Option<NonZeroU32>,
from: u32,
function_start: u32,
function_end: u32,
) -> Result<(BTreeSet<u32>, u32)> {
if !is_valid_jump_table_addr(obj, addr) {
return Ok((BTreeSet::new(), 0));
}
let (entries, size) =
get_jump_table_entries(obj, addr, size, from, function_start, function_end)?;
Ok((BTreeSet::from_iter(entries.iter().cloned().filter(|&addr| addr != 0)), size))
}
pub fn skip_alignment(obj: &ObjInfo, mut addr: u32, end: u32) -> Option<u32> {
let mut data = match obj.section_data(addr, end) {
Ok((_, data)) => data,
Err(_) => return None,
};
loop {
if data.is_empty() {
break None;
}
if data[0..4] == [0u8; 4] {
addr += 4;
data = &data[4..];
} else {
break Some(addr);
}
}
}

117
src/analysis/pass.rs Normal file
View File

@@ -0,0 +1,117 @@
use std::ops::Range;
use anyhow::Result;
use flagset::FlagSet;
use crate::{
analysis::cfa::AnalyzerState,
obj::{ObjInfo, ObjSymbol, ObjSymbolFlagSet, ObjSymbolFlags, ObjSymbolKind},
};
pub trait AnalysisPass {
fn execute(state: &mut AnalyzerState, obj: &ObjInfo) -> Result<()>;
}
pub struct FindTRKInterruptVectorTable {}
pub const TRK_TABLE_HEADER: &str = "Metrowerks Target Resident Kernel for PowerPC";
pub const TRK_TABLE_SIZE: u32 = 0x1F34; // always?
// TRK_MINNOW_DOLPHIN.a __exception.s
impl AnalysisPass for FindTRKInterruptVectorTable {
fn execute(state: &mut AnalyzerState, obj: &ObjInfo) -> Result<()> {
for (&start, _) in state.function_bounds.iter().filter(|&(_, &end)| end == 0) {
let (section, data) = match obj.section_data(start, 0) {
Ok((section, data)) => (section, data),
Err(_) => continue,
};
if data.starts_with(TRK_TABLE_HEADER.as_bytes())
&& data[TRK_TABLE_HEADER.as_bytes().len()] == 0
{
log::info!("Found gTRKInterruptVectorTable @ {:#010X}", start);
state.known_symbols.insert(start, ObjSymbol {
name: "gTRKInterruptVectorTable".to_string(),
demangled_name: None,
address: start as u64,
section: Some(section.index),
size: 0,
size_known: true,
flags: ObjSymbolFlagSet(FlagSet::from(ObjSymbolFlags::Global)),
kind: ObjSymbolKind::Unknown,
});
let end = start + TRK_TABLE_SIZE;
state.known_symbols.insert(end, ObjSymbol {
name: "gTRKInterruptVectorTableEnd".to_string(),
demangled_name: None,
address: end as u64,
section: Some(section.index),
size: 0,
size_known: true,
flags: ObjSymbolFlagSet(FlagSet::from(ObjSymbolFlags::Global)),
kind: ObjSymbolKind::Unknown,
});
return Ok(());
}
}
log::info!("gTRKInterruptVectorTable not found");
Ok(())
}
}
pub struct FindSaveRestSleds {}
const SLEDS: [([u8; 4], &'static str, &'static str); 4] = [
([0xd9, 0xcb, 0xff, 0x70], "__save_fpr", "_savefpr_"),
([0xc9, 0xcb, 0xff, 0x70], "__restore_fpr", "_restfpr_"),
([0x91, 0xcb, 0xff, 0xb8], "__save_gpr", "_savegpr_"),
([0x81, 0xcb, 0xff, 0xb8], "__restore_gpr", "_restgpr_"),
];
// Runtime.PPCEABI.H.a runtime.c
impl AnalysisPass for FindSaveRestSleds {
fn execute(state: &mut AnalyzerState, obj: &ObjInfo) -> Result<()> {
const SLED_SIZE: usize = 19 * 4; // registers 14-31 + blr
let mut clear_ranges: Vec<Range<u32>> = vec![];
for (&start, _) in state.function_bounds.iter().filter(|&(_, &end)| end != 0) {
let (section, data) = obj.section_data(start, 0)?;
for (needle, func, label) in &SLEDS {
if data.starts_with(needle) {
log::info!("Found {} @ {:#010X}", func, start);
clear_ranges.push(start + 4..start + SLED_SIZE as u32);
state.known_symbols.insert(start, ObjSymbol {
name: func.to_string(),
demangled_name: None,
address: start as u64,
section: Some(section.index),
size: SLED_SIZE as u64,
size_known: true,
flags: ObjSymbolFlagSet(ObjSymbolFlags::Global.into()),
kind: ObjSymbolKind::Function,
});
for i in 14..=31 {
let addr = start + (i - 14) * 4;
state.known_symbols.insert(addr, ObjSymbol {
name: format!("{}{}", label, i),
demangled_name: None,
address: addr as u64,
section: Some(section.index),
size: 0,
size_known: true,
flags: ObjSymbolFlagSet(ObjSymbolFlags::Global.into()),
kind: ObjSymbolKind::Unknown,
});
}
}
}
}
for range in clear_ranges {
for addr in range.step_by(4) {
state.function_entries.remove(&addr);
state.function_bounds.remove(&addr);
state.function_slices.remove(&addr);
}
}
Ok(())
}
}

500
src/analysis/slices.rs Normal file
View File

@@ -0,0 +1,500 @@
use std::{
collections::{btree_map, BTreeMap, BTreeSet},
ops::Range,
};
use anyhow::{bail, ensure, Context, Result};
use ppc750cl::{Ins, Opcode};
use crate::{
analysis::{
disassemble,
executor::{ExecCbData, ExecCbResult, Executor},
uniq_jump_table_entries,
vm::{BranchTarget, StepResult, VM},
},
obj::{ObjInfo, ObjSection},
};
#[derive(Debug, Default, Clone)]
pub struct FunctionSlices {
pub blocks: BTreeMap<u32, u32>,
pub branches: BTreeMap<u32, Vec<u32>>,
pub function_references: BTreeSet<u32>,
pub jump_table_references: BTreeMap<u32, u32>,
pub prologue: Option<u32>,
pub epilogue: Option<u32>,
// Either a block or tail call
pub possible_blocks: BTreeSet<u32>,
pub has_conditional_blr: bool,
pub has_rfi: bool,
pub finalized: bool,
}
pub enum TailCallResult {
Not,
Is,
Possible,
}
type BlockRange = Range<u32>;
impl FunctionSlices {
pub fn end(&self) -> u32 { self.blocks.last_key_value().map(|(_, &end)| end).unwrap_or(0) }
pub fn start(&self) -> u32 {
self.blocks.first_key_value().map(|(&start, _)| start).unwrap_or(0)
}
pub fn add_block_start(&mut self, addr: u32) -> bool {
// Slice previous block.
if let Some((_, end)) = self.blocks.range_mut(..addr).last() {
let last_end = *end;
if last_end > addr {
*end = addr;
self.blocks.insert(addr, last_end);
return false;
}
}
// Otherwise, insert with no end.
match self.blocks.entry(addr) {
btree_map::Entry::Vacant(e) => {
e.insert(0);
true
}
btree_map::Entry::Occupied(_) => false,
}
}
fn check_prologue(&mut self, section: &ObjSection, ins: &Ins) -> Result<()> {
let next_ins = match disassemble(section, ins.addr + 4) {
Some(ins) => ins,
None => return Ok(()),
};
// stwu r1, d(r1)
// mfspr r0, LR
if ((ins.op == Opcode::Stwu && ins.field_rS() == 1 && ins.field_rA() == 1)
&& (next_ins.op == Opcode::Mfspr
&& next_ins.field_rD() == 0
&& next_ins.field_spr() == 8))
// mfspr r0, LR
// stw r0, d(r1)
|| ((ins.op == Opcode::Mfspr && ins.field_rD() == 0 && ins.field_spr() == 8)
&& (next_ins.op == Opcode::Stw
&& next_ins.field_rS() == 0
&& next_ins.field_rA() == 1))
{
match self.prologue {
Some(prologue) if prologue != ins.addr && prologue != ins.addr - 4 => {
bail!("Found duplicate prologue: {:#010X} and {:#010X}", prologue, ins.addr)
}
_ => self.prologue = Some(ins.addr),
}
}
Ok(())
}
fn check_epilogue(&mut self, section: &ObjSection, ins: &Ins) -> Result<()> {
let next_ins = match disassemble(section, ins.addr + 4) {
Some(ins) => ins,
None => return Ok(()),
};
// mtspr SPR, r0
// addi rD, rA, SIMM
if ((ins.op == Opcode::Mtspr && ins.field_rS() == 0 && ins.field_spr() == 8)
&& (next_ins.op == Opcode::Addi
&& next_ins.field_rD() == 1
&& next_ins.field_rA() == 1))
// or r1, rA, rB
// mtspr SPR, r0
|| ((ins.op == Opcode::Or && ins.field_rA() == 1)
&& (next_ins.op == Opcode::Mtspr
&& next_ins.field_rS() == 0
&& next_ins.field_spr() == 8))
{
match self.epilogue {
Some(epilogue) if epilogue != ins.addr => {
bail!("Found duplicate epilogue: {:#010X} and {:#010X}", epilogue, ins.addr)
}
_ => self.epilogue = Some(ins.addr),
}
}
Ok(())
}
fn instruction_callback(
&mut self,
data: ExecCbData,
obj: &ObjInfo,
function_start: u32,
function_end: Option<u32>,
known_functions: &BTreeSet<u32>,
) -> Result<ExecCbResult<bool>> {
let ExecCbData { executor, vm, result, section, ins, block_start } = data;
// Track discovered prologue(s) and epilogue(s)
self.check_prologue(section, ins)
.with_context(|| format!("While processing {:#010X}", function_start))?;
self.check_epilogue(section, ins)
.with_context(|| format!("While processing {:#010X}", function_start))?;
if !self.has_conditional_blr && is_conditional_blr(&ins) {
self.has_conditional_blr = true;
}
if !self.has_rfi && ins.op == Opcode::Rfi {
self.has_rfi = true;
}
// If control flow hits a block we thought may be a tail call,
// we know it isn't.
if self.possible_blocks.contains(&ins.addr) {
self.possible_blocks.remove(&ins.addr);
}
match result {
StepResult::Continue | StepResult::LoadStore { .. } => {
let next_address = ins.addr + 4;
// If we already visited the next address, connect the blocks and end
if executor.visited(section, next_address) {
self.blocks.insert(block_start, next_address);
self.branches.insert(ins.addr, vec![next_address]);
Ok(ExecCbResult::EndBlock)
} else {
Ok(ExecCbResult::Continue)
}
}
StepResult::Illegal => {
log::debug!("Illegal instruction @ {:#010X}", ins.addr);
Ok(ExecCbResult::End(false))
}
StepResult::Jump(target) => match target {
BranchTarget::Unknown => {
// Likely end of function
let next_addr = ins.addr + 4;
self.blocks.insert(block_start, next_addr);
// If this function has a prologue but no epilogue, and this
// instruction is a bctr, we can assume it's an unrecovered
// jump table and continue analysis.
if self.prologue.is_some() && self.epilogue.is_none() {
log::debug!("Assuming unrecovered jump table {:#010X}", next_addr);
self.branches.insert(ins.addr, vec![next_addr]);
if self.add_block_start(next_addr) {
executor.push(next_addr, vm.clone_for_return(), true);
}
}
Ok(ExecCbResult::EndBlock)
}
BranchTarget::Return => {
self.blocks.insert(block_start, ins.addr + 4);
Ok(ExecCbResult::EndBlock)
}
BranchTarget::Address(addr) => {
// End of block
self.blocks.insert(block_start, ins.addr + 4);
self.branches.insert(ins.addr, vec![addr]);
if addr == ins.addr {
// Infinite loop
} else if addr >= function_start
&& matches!(function_end, Some(known_end) if addr < known_end)
{
// If target is within known function bounds, jump
if self.add_block_start(addr) {
return Ok(ExecCbResult::Jump(addr));
}
} else if matches!(obj.section_data(ins.addr, ins.addr + 4), Ok((_, data)) if data == [0u8; 4])
{
// If this branch has zeroed padding after it, assume tail call.
self.function_references.insert(addr);
} else {
self.possible_blocks.insert(addr);
}
Ok(ExecCbResult::EndBlock)
}
BranchTarget::JumpTable { address, size } => {
// End of block
let next_address = ins.addr + 4;
self.blocks.insert(block_start, next_address);
let (mut entries, size) = uniq_jump_table_entries(
obj,
address,
size,
ins.addr,
function_start,
function_end.unwrap_or_else(|| self.end()),
)?;
if entries.contains(&next_address)
&& !entries.iter().any(|addr| known_functions.contains(addr))
{
self.jump_table_references.insert(address, size);
let mut branches = vec![];
for addr in entries {
branches.push(addr);
if self.add_block_start(addr) {
executor.push(addr, vm.clone_all(), true);
}
}
self.branches.insert(ins.addr, branches);
} else {
// If the table doesn't contain the next address,
// it could be a function jump table instead
self.possible_blocks.append(&mut entries);
}
Ok(ExecCbResult::EndBlock)
}
},
StepResult::Branch(branches) => {
// End of block
self.blocks.insert(block_start, ins.addr + 4);
let mut out_branches = vec![];
for branch in branches {
match branch.target {
BranchTarget::Unknown | BranchTarget::Return => {
continue;
}
BranchTarget::Address(addr) => {
if branch.link || known_functions.contains(&addr) {
self.function_references.insert(addr);
} else {
out_branches.push(addr);
if self.add_block_start(addr) {
executor.push(addr, branch.vm, true);
}
}
}
BranchTarget::JumpTable { .. } => {
bail!("Conditional jump table unsupported @ {:#010X}", ins.addr);
}
}
}
if !out_branches.is_empty() {
self.branches.insert(ins.addr, out_branches);
}
Ok(ExecCbResult::EndBlock)
}
}
}
pub fn analyze(
&mut self,
obj: &ObjInfo,
start: u32,
function_start: u32,
function_end: Option<u32>,
known_functions: &BTreeSet<u32>,
) -> Result<bool> {
if !self.add_block_start(start) {
return Ok(true);
}
let mut executor = Executor::new(obj);
executor.push(start, VM::new_from_obj(obj), false);
let result = executor.run(obj, |data| {
self.instruction_callback(data, obj, function_start, function_end, known_functions)
})?;
if matches!(result, Some(b) if !b) {
return Ok(false);
}
// Visit unreachable blocks
while let Some((first, _)) = self.first_disconnected_block() {
executor.push(first.end, VM::new_from_obj(obj), true);
let result = executor.run(obj, |data| {
self.instruction_callback(data, obj, function_start, function_end, known_functions)
})?;
if matches!(result, Some(b) if !b) {
return Ok(false);
}
}
// Visit trailing blocks
if let Some(known_end) = function_end {
while self.end() < known_end {
executor.push(self.end(), VM::new_from_obj(obj), true);
let result = executor.run(obj, |data| {
self.instruction_callback(
data,
obj,
function_start,
function_end,
known_functions,
)
})?;
if matches!(result, Some(b) if !b) {
return Ok(false);
}
}
}
// Sanity check
for (&start, &end) in &self.blocks {
ensure!(end != 0, "Failed to finalize block @ {start:#010X}");
}
Ok(true)
}
pub fn can_finalize(&self) -> bool { self.possible_blocks.is_empty() }
pub fn finalize(&mut self, obj: &ObjInfo, known_functions: &BTreeSet<u32>) -> Result<()> {
ensure!(!self.finalized, "Already finalized");
ensure!(self.can_finalize(), "Can't finalize");
match (self.prologue, self.epilogue) {
(Some(_), Some(_)) | (None, None) => {}
(Some(_), None) => {
// Likely __noreturn
}
(None, Some(e)) => {
log::info!("{:#010X?}", self);
bail!("Unpaired epilogue {:#010X}", e);
}
}
let end = self.end();
if let Ok(section) = obj.section_at(end) {
// FIXME this is real bad
if !self.has_conditional_blr {
if let Some(ins) = disassemble(&section, end - 4) {
if ins.op == Opcode::B {
if self.function_references.contains(&ins.branch_dest().unwrap()) {
for (_, branches) in &self.branches {
if branches.len() > 1
&& branches.contains(self.blocks.last_key_value().unwrap().0)
{
self.has_conditional_blr = true;
}
}
}
}
}
}
// MWCC optimization sometimes leaves an unreachable blr
// after generating a conditional blr in the function.
if self.has_conditional_blr {
if matches!(disassemble(&section, end - 4), Some(ins) if !ins.is_blr())
&& matches!(disassemble(&section, end), Some(ins) if ins.is_blr())
&& !known_functions.contains(&end)
{
log::trace!("Found trailing blr @ {:#010X}, merging with function", end);
self.blocks.insert(end, end + 4);
}
}
// Some functions with rfi also include a trailing nop
if self.has_rfi {
if matches!(disassemble(&section, end), Some(ins) if is_nop(&ins))
&& !known_functions.contains(&end)
{
log::trace!("Found trailing nop @ {:#010X}, merging with function", end);
self.blocks.insert(end, end + 4);
}
}
}
self.finalized = true;
Ok(())
}
pub fn check_tail_call(
&mut self,
obj: &ObjInfo,
addr: u32,
function_start: u32,
function_end: u32,
known_functions: &BTreeSet<u32>,
) -> TailCallResult {
// If jump target is already a known block or within known function bounds, not a tail call.
if self.blocks.contains_key(&addr) || (addr >= function_start && addr < function_end) {
return TailCallResult::Not;
}
// If there's a prologue in the current function, not a tail call.
if self.prologue.is_some() {
return TailCallResult::Not;
}
// If jump target is before the start of the function, known tail call.
if addr < function_start {
return TailCallResult::Is;
}
// If the jump target has 0'd padding before it, known tail call.
if matches!(obj.section_data(addr - 4, addr), Ok((_, data)) if data == [0u8; 4]) {
return TailCallResult::Is;
}
// If we're not sure where the function ends yet, mark as possible tail call.
// let end = self.end();
if function_end == 0 {
return TailCallResult::Possible;
}
// If jump target is known to be a function, or there's a function in between
// this and the jump target, known tail call.
log::trace!("Checking {:#010X}..={:#010X}", function_start + 4, addr);
if self.function_references.range(function_start + 4..=addr).next().is_some()
|| known_functions.range(function_start + 4..=addr).next().is_some()
{
return TailCallResult::Is;
}
// Perform CFA on jump target to determine more
let mut slices = FunctionSlices::default();
slices.function_references = self.function_references.clone();
if let Ok(result) =
slices.analyze(obj, addr, function_start, Some(function_end), known_functions)
{
// If analysis failed, assume tail call.
if !result {
log::warn!("Tail call analysis failed for {:#010X}", addr);
return TailCallResult::Is;
}
// If control flow jumps below the entry point, not a tail call.
let start = slices.start();
if start < addr {
log::trace!("Tail call possibility eliminated: {:#010X} < {:#010X}", start, addr);
return TailCallResult::Not;
}
// If control flow includes another possible tail call, we know both are not tail calls.
let end = slices.end();
let other_blocks =
self.possible_blocks.range(start + 4..end).cloned().collect::<Vec<u32>>();
if !other_blocks.is_empty() {
for other_addr in other_blocks {
log::trace!("Logically eliminating {:#010X}", other_addr);
self.possible_blocks.remove(&other_addr);
// self.add_block_start(oth);
}
log::trace!("While analyzing {:#010X}", addr);
return TailCallResult::Not;
}
// If we discovered a function prologue, known tail call.
if slices.prologue.is_some() {
log::trace!("Prologue discovered; known tail call: {:#010X}", addr);
return TailCallResult::Is;
}
}
TailCallResult::Possible
}
pub fn first_disconnected_block(&self) -> Option<(BlockRange, BlockRange)> {
let mut iter = self.blocks.iter().peekable();
loop {
let ((first_begin, first_end), (second_begin, second_end)) =
match (iter.next(), iter.peek()) {
(Some((&b1s, &b1e)), Some(&(&b2s, &b2e))) => ((b1s, b1e), (b2s, b2e)),
_ => break None,
};
if second_begin > first_end {
break Some((first_begin..first_end, second_begin..second_end));
}
}
}
}
#[inline]
fn is_conditional_blr(ins: &Ins) -> bool {
ins.op == Opcode::Bclr && ins.field_BO() & 0b10100 != 0b10100
}
#[inline]
fn is_nop(ins: &Ins) -> bool {
// ori r0, r0, 0
ins.code == 0x60000000
}

732
src/analysis/tracker.rs Normal file
View File

@@ -0,0 +1,732 @@
use std::{
collections::{BTreeMap, BTreeSet},
mem::take,
};
use anyhow::{bail, Result};
use ppc750cl::Opcode;
use crate::{
analysis::{
executor::{ExecCbData, ExecCbResult, Executor},
uniq_jump_table_entries,
vm::{is_store_op, BranchTarget, GprValue, StepResult, VM},
},
obj::{ObjInfo, ObjReloc, ObjRelocKind, ObjSection, ObjSectionKind, ObjSymbol, ObjSymbolKind},
util::nested::NestedVec,
};
#[derive(Debug, Copy, Clone)]
pub enum Relocation {
Ha(u32),
Hi(u32),
Lo(u32),
Sda21(u32),
Rel14(u32),
Rel24(u32),
Absolute(u32),
}
#[derive(Debug)]
pub enum DataKind {
Unknown = -1,
Word,
Half,
Byte,
Float,
Double,
// String,
// String16,
}
pub struct Tracker {
processed_functions: BTreeSet<u32>,
sda2_base: u32, // r2
sda_base: u32, // r13
pub relocations: BTreeMap<u32, Relocation>,
data_types: BTreeMap<u32, DataKind>,
stack_address: Option<u32>,
stack_end: Option<u32>,
db_stack_addr: Option<u32>,
arena_lo: Option<u32>,
arena_hi: Option<u32>,
pub ignore_addresses: BTreeSet<u32>,
pub known_relocations: BTreeSet<u32>,
stores_to: BTreeSet<u32>, // for determining data vs rodata, sdata(2)/sbss(2)
sda_to: BTreeSet<u32>, // for determining data vs sdata
hal_to: BTreeSet<u32>, // for determining data vs sdata
}
impl Tracker {
pub fn new(obj: &ObjInfo) -> Tracker {
Self {
processed_functions: Default::default(),
sda2_base: obj.sda2_base.unwrap(),
sda_base: obj.sda_base.unwrap(),
relocations: Default::default(),
data_types: Default::default(),
stack_address: obj.stack_address,
stack_end: obj.stack_end.or_else(|| {
// Stack ends after all BSS sections
obj.sections
.iter()
.rfind(|s| s.kind == ObjSectionKind::Bss)
.map(|s| (s.address + s.size) as u32)
}),
db_stack_addr: obj.db_stack_addr,
arena_lo: obj
.arena_lo
.or_else(|| obj.db_stack_addr.map(|db_stack_addr| (db_stack_addr + 0x1F) & !0x1F)),
arena_hi: Some(obj.arena_hi.unwrap_or(0x81700000)),
ignore_addresses: Default::default(),
known_relocations: Default::default(),
stores_to: Default::default(),
sda_to: Default::default(),
hal_to: Default::default(),
}
}
pub fn process(&mut self, obj: &ObjInfo) -> Result<()> {
log::debug!("Processing code sections");
self.process_code(obj)?;
for section in &obj.sections {
if matches!(section.kind, ObjSectionKind::Data | ObjSectionKind::ReadOnlyData) {
log::debug!("Processing section {}, address {:#X}", section.index, section.address);
self.process_data(obj, section)?;
}
}
Ok(())
}
// fn update_stack_address(&mut self, addr: u32) {
// if let Some(db_stack_addr) = self.db_stack_addr {
// if db_stack_addr == addr {
// return;
// }
// }
// if let Some(stack_addr) = self.stack_address {
// if stack_addr != addr {
// log::error!("Stack address overridden from {:#010X} to {:#010X}", stack_addr, addr);
// return;
// }
// }
// log::debug!("Located stack address: {:08X}", addr);
// self.stack_address = Some(addr);
// let db_stack_addr = addr + 0x2000;
// self.db_stack_addr = Some(db_stack_addr);
// self.arena_lo = Some((db_stack_addr + 0x1F) & !0x1F);
// // __ArenaHi is fixed (until it isn't?)
// self.arena_hi = Some(0x81700000);
// log::debug!("_stack_addr: {:#010X}", addr);
// log::debug!("_stack_end: {:#010X}", self.stack_end.unwrap());
// log::debug!("_db_stack_addr: {:#010X}", db_stack_addr);
// log::debug!("__ArenaLo: {:#010X}", self.arena_lo.unwrap());
// log::debug!("__ArenaHi: {:#010X}", self.arena_hi.unwrap());
// }
fn process_code(&mut self, obj: &ObjInfo) -> Result<()> {
let mut symbol_map = BTreeMap::new();
for section in obj.sections.iter().filter(|s| s.kind == ObjSectionKind::Code) {
symbol_map.append(&mut obj.build_symbol_map(section.index)?);
}
self.process_function_by_address(obj, &symbol_map, obj.entry as u32)?;
'outer: for (&addr, symbols) in &symbol_map {
if self.processed_functions.contains(&addr) {
continue;
}
self.processed_functions.insert(addr);
for &symbol_idx in symbols {
let symbol = &obj.symbols[symbol_idx];
if symbol.kind == ObjSymbolKind::Function && symbol.size_known {
self.process_function(obj, symbol)?;
continue 'outer;
}
}
}
// Special handling for gTRKInterruptVectorTable
// TODO
// if let (Some(trk_interrupt_table), Some(trk_interrupt_vector_table_end)) = (
// obj.symbols.iter().find(|sym| sym.name == "gTRKInterruptVectorTable"),
// obj.symbols.iter().find(|sym| sym.name == "gTRKInterruptVectorTableEnd"),
// ) {}
Ok(())
}
fn process_function_by_address(
&mut self,
obj: &ObjInfo,
symbol_map: &BTreeMap<u32, Vec<usize>>,
addr: u32,
) -> Result<()> {
if self.processed_functions.contains(&addr) {
return Ok(());
}
self.processed_functions.insert(addr);
if let Some(symbols) = symbol_map.get(&addr) {
for &symbol_idx in symbols {
let symbol = &obj.symbols[symbol_idx];
if symbol.kind == ObjSymbolKind::Function && symbol.size_known {
self.process_function(obj, symbol)?;
return Ok(());
}
}
}
log::warn!("Failed to locate function symbol @ {:#010X}", addr);
Ok(())
}
fn instruction_callback(
&mut self,
data: ExecCbData,
obj: &ObjInfo,
function_start: u32,
function_end: u32,
possible_missed_branches: &mut BTreeMap<u32, Box<VM>>,
) -> Result<ExecCbResult<()>> {
let ExecCbData { executor, vm, result, section: _, ins, block_start: _ } = data;
let is_function_addr = |addr: u32| addr >= function_start && addr < function_end;
match result {
StepResult::Continue => {
// if ins.addr == 0x8000ed0c || ins.addr == 0x8000ed08 || ins.addr == 0x8000ca50 {
// println!("ok");
// }
match ins.op {
Opcode::Addi | Opcode::Addic | Opcode::Addic_ => {
// addi rD, rA, SIMM
let source = ins.field_rA();
let target = ins.field_rD();
if let GprValue::Constant(value) = vm.gpr[target].value {
if self.is_valid_address(obj, ins.addr, value) {
if (source == 2
&& vm.gpr[2].value == GprValue::Constant(self.sda2_base))
|| (source == 13
&& vm.gpr[13].value == GprValue::Constant(self.sda_base))
{
self.relocations.insert(ins.addr, Relocation::Sda21(value));
self.sda_to.insert(value);
} else if let (Some(hi_addr), Some(lo_addr)) =
(vm.gpr[target].hi_addr, vm.gpr[target].lo_addr)
{
let hi_reloc = self.relocations.get(&hi_addr.get()).cloned();
if hi_reloc.is_none() {
self.relocations
.insert(hi_addr.get(), Relocation::Ha(value));
}
let lo_reloc = self.relocations.get(&lo_addr.get()).cloned();
if lo_reloc.is_none() {
self.relocations
.insert(lo_addr.get(), Relocation::Lo(value));
}
self.hal_to.insert(value);
}
}
}
}
Opcode::Ori => {
// ori rA, rS, UIMM
let target = ins.field_rA();
if let GprValue::Constant(value) = vm.gpr[target].value {
if self.is_valid_address(obj, ins.addr, value) {
if let (Some(hi_addr), Some(lo_addr)) =
(vm.gpr[target].hi_addr, vm.gpr[target].lo_addr)
{
let hi_reloc = self.relocations.get(&hi_addr.get()).cloned();
if hi_reloc.is_none() {
self.relocations
.insert(hi_addr.get(), Relocation::Hi(value));
}
let lo_reloc = self.relocations.get(&lo_addr.get()).cloned();
if lo_reloc.is_none() {
self.relocations
.insert(lo_addr.get(), Relocation::Lo(value));
}
self.hal_to.insert(value);
}
}
}
}
_ => {}
}
Ok(ExecCbResult::Continue)
}
StepResult::LoadStore { address, source, source_reg } => {
if self.is_valid_address(obj, ins.addr, address) {
if (source_reg == 2 && source.value == GprValue::Constant(self.sda2_base))
|| (source_reg == 13 && source.value == GprValue::Constant(self.sda_base))
{
self.relocations.insert(ins.addr, Relocation::Sda21(address));
self.sda_to.insert(address);
} else {
match (source.hi_addr, source.lo_addr) {
(Some(hi_addr), None) => {
let hi_reloc = self.relocations.get(&hi_addr.get()).cloned();
if hi_reloc.is_none() {
self.relocations.insert(hi_addr.get(), Relocation::Ha(address));
}
if hi_reloc.is_none()
|| matches!(hi_reloc, Some(Relocation::Ha(v)) if v == address)
{
self.relocations.insert(ins.addr, Relocation::Lo(address));
}
self.hal_to.insert(address);
}
(Some(hi_addr), Some(lo_addr)) => {
let hi_reloc = self.relocations.get(&hi_addr.get()).cloned();
if hi_reloc.is_none() {
self.relocations.insert(hi_addr.get(), Relocation::Ha(address));
}
let lo_reloc = self.relocations.get(&lo_addr.get()).cloned();
if lo_reloc.is_none() {
self.relocations.insert(lo_addr.get(), Relocation::Lo(address));
}
self.hal_to.insert(address);
}
_ => {}
}
}
self.data_types.insert(address, data_kind_from_op(ins.op));
if is_store_op(ins.op) {
self.stores_to.insert(address);
}
}
Ok(ExecCbResult::Continue)
}
StepResult::Illegal => bail!(
"Illegal instruction hit @ {:#010X} (function {:#010X}-{:#010X})",
ins.addr,
function_start,
function_end
),
StepResult::Jump(target) => match target {
BranchTarget::Unknown | BranchTarget::Return => Ok(ExecCbResult::EndBlock),
BranchTarget::Address(addr) => {
let next_addr = ins.addr + 4;
if next_addr < function_end {
possible_missed_branches.insert(ins.addr + 4, vm.clone_all());
}
if is_function_addr(addr) {
Ok(ExecCbResult::Jump(addr))
} else {
self.relocations.insert(ins.addr, Relocation::Rel24(addr));
Ok(ExecCbResult::EndBlock)
}
}
BranchTarget::JumpTable { address, size } => {
let (entries, _) = uniq_jump_table_entries(
obj,
address,
size,
ins.addr,
function_start,
function_end,
)?;
for target in entries {
if is_function_addr(target) {
executor.push(target, vm.clone_all(), true);
}
}
Ok(ExecCbResult::EndBlock)
}
},
StepResult::Branch(branches) => {
for branch in branches {
match branch.target {
BranchTarget::Unknown | BranchTarget::Return => {}
BranchTarget::Address(addr) => {
if branch.link || !is_function_addr(addr) {
self.relocations.insert(ins.addr, match ins.op {
Opcode::B => Relocation::Rel24(addr),
_ => Relocation::Rel14(addr),
});
} else if is_function_addr(addr) {
executor.push(addr, branch.vm, true);
}
}
BranchTarget::JumpTable { .. } => {
bail!("Conditional jump table unsupported @ {:#010X}", ins.addr)
}
}
}
Ok(ExecCbResult::EndBlock)
}
}
}
pub fn process_function(&mut self, obj: &ObjInfo, symbol: &ObjSymbol) -> Result<()> {
let function_start = symbol.address as u32;
let function_end = (symbol.address + symbol.size) as u32;
// The compiler can sometimes create impossible-to-reach branches,
// but we still want to track them.
let mut possible_missed_branches = BTreeMap::new();
let mut executor = Executor::new(obj);
executor.push(
symbol.address as u32,
VM::new_with_base(self.sda2_base, self.sda_base),
false,
);
loop {
executor.run(obj, |data| -> Result<ExecCbResult<()>> {
self.instruction_callback(
data,
obj,
function_start,
function_end,
&mut possible_missed_branches,
)
})?;
if possible_missed_branches.is_empty() {
break;
}
let mut added = false;
for (addr, vm) in take(&mut possible_missed_branches) {
let section = match obj.section_at(addr) {
Ok(section) => section,
Err(_) => continue,
};
if !executor.visited(section, addr) {
executor.push(addr, vm, true);
added = true;
}
}
if !added {
break;
}
}
Ok(())
}
fn process_data(&mut self, obj: &ObjInfo, section: &ObjSection) -> Result<()> {
let mut addr = section.address as u32;
for chunk in section.data.chunks_exact(4) {
let value = u32::from_be_bytes(chunk.try_into()?);
if self.is_valid_address(obj, addr, value) {
self.relocations.insert(addr, Relocation::Absolute(value));
}
addr += 4;
}
Ok(())
}
fn is_valid_address(&self, obj: &ObjInfo, from: u32, addr: u32) -> bool {
if self.ignore_addresses.contains(&addr) {
return false;
}
if self.known_relocations.contains(&from) {
return true;
}
if self.stack_address == Some(addr)
|| self.stack_end == Some(addr)
|| self.db_stack_addr == Some(addr)
|| self.arena_lo == Some(addr)
|| self.arena_hi == Some(addr)
|| self.sda2_base == addr
|| self.sda_base == addr
{
return true;
}
// if addr > 0x80000000 && addr < 0x80003100 {
// return true;
// }
for section in &obj.sections {
if addr >= section.address as u32 && addr <= (section.address + section.size) as u32 {
// References to code sections will never be unaligned
return section.kind != ObjSectionKind::Code || addr & 3 == 0;
}
}
false
}
fn special_symbol(
&self,
obj: &mut ObjInfo,
addr: u32,
reloc_kind: ObjRelocKind,
) -> Option<usize> {
if !matches!(reloc_kind, ObjRelocKind::PpcAddr16Ha | ObjRelocKind::PpcAddr16Lo) {
return None;
}
// HACK for RSOStaticLocateObject
for section in &obj.sections {
if addr == section.address as u32 {
let name = format!("_f_{}", section.name.trim_start_matches('.'));
return Some(generate_special_symbol(obj, addr, &name));
}
}
let mut check_symbol = |opt: Option<u32>, name: &str| -> Option<usize> {
if let Some(value) = opt {
if addr == value {
return Some(generate_special_symbol(obj, value, name));
}
}
None
};
check_symbol(self.stack_address, "_stack_addr")
.or_else(|| check_symbol(self.stack_end, "_stack_end"))
.or_else(|| check_symbol(self.arena_lo, "__ArenaLo"))
.or_else(|| check_symbol(self.arena_hi, "__ArenaHi"))
.or_else(|| check_symbol(self.db_stack_addr, "_db_stack_addr"))
.or_else(|| check_symbol(Some(self.sda2_base), "_SDA2_BASE_"))
.or_else(|| check_symbol(Some(self.sda_base), "_SDA_BASE_"))
}
pub fn apply(&self, obj: &mut ObjInfo, replace: bool) -> Result<()> {
for section in &mut obj.sections {
if !section.section_known {
if section.kind == ObjSectionKind::Code {
log::info!("Renaming {} to .text", section.name);
section.name = ".text".to_string();
continue;
}
let start = section.address as u32;
let end = (section.address + section.size) as u32;
if self.sda_to.range(start..end).next().is_some() {
if self.stores_to.range(start..end).next().is_some() {
if section.kind == ObjSectionKind::Bss {
log::info!("Renaming {} to .sbss", section.name);
section.name = ".sbss".to_string();
} else {
log::info!("Renaming {} to .sdata", section.name);
section.name = ".sdata".to_string();
}
} else if section.kind == ObjSectionKind::Bss {
log::info!("Renaming {} to .sbss2", section.name);
section.name = ".sbss2".to_string();
} else {
log::info!("Renaming {} to .sdata2", section.name);
section.name = ".sdata2".to_string();
section.kind = ObjSectionKind::ReadOnlyData;
}
} else if self.hal_to.range(start..end).next().is_some() {
if section.kind == ObjSectionKind::Bss {
log::info!("Renaming {} to .bss", section.name);
section.name = ".bss".to_string();
} else if self.stores_to.range(start..end).next().is_some() {
log::info!("Renaming {} to .data", section.name);
section.name = ".data".to_string();
} else {
log::info!("Renaming {} to .rodata", section.name);
section.name = ".rodata".to_string();
section.kind = ObjSectionKind::ReadOnlyData;
}
}
}
}
let mut symbol_maps = Vec::new();
for section in &obj.sections {
symbol_maps.push(obj.build_symbol_map(section.index)?);
}
for (addr, reloc) in &self.relocations {
let addr = *addr;
let (reloc_kind, target) = match *reloc {
Relocation::Ha(v) => (ObjRelocKind::PpcAddr16Ha, v),
Relocation::Hi(v) => (ObjRelocKind::PpcAddr16Hi, v),
Relocation::Lo(v) => (ObjRelocKind::PpcAddr16Lo, v),
Relocation::Sda21(v) => (ObjRelocKind::PpcEmbSda21, v),
Relocation::Rel14(v) => (ObjRelocKind::PpcRel14, v),
Relocation::Rel24(v) => (ObjRelocKind::PpcRel24, v),
Relocation::Absolute(v) => (ObjRelocKind::Absolute, v),
};
let (target_symbol, addend) =
if let Some(symbol) = self.special_symbol(obj, target, reloc_kind) {
(symbol, 0)
} else {
let target_section = match obj.sections.iter().find(|s| {
target >= s.address as u32 && target < (s.address + s.size) as u32
}) {
Some(v) => v,
None => continue,
};
// Try to find a previous sized symbol that encompasses the target
let sym_map = &mut symbol_maps[target_section.index];
let target_symbol = {
let mut result = None;
for (_addr, symbol_idxs) in sym_map.range(..=target).rev() {
let symbol_idx = if symbol_idxs.len() == 1 {
symbol_idxs.first().cloned().unwrap()
} else {
let mut symbol_idxs = symbol_idxs.clone();
symbol_idxs.sort_by_key(|&symbol_idx| {
let symbol = &obj.symbols[symbol_idx];
let mut rank = match symbol.kind {
ObjSymbolKind::Function | ObjSymbolKind::Object => {
match reloc_kind {
ObjRelocKind::PpcAddr16Hi
| ObjRelocKind::PpcAddr16Ha
| ObjRelocKind::PpcAddr16Lo => 1,
ObjRelocKind::Absolute
| ObjRelocKind::PpcRel24
| ObjRelocKind::PpcRel14
| ObjRelocKind::PpcEmbSda21 => 2,
}
}
// Label
ObjSymbolKind::Unknown => match reloc_kind {
ObjRelocKind::PpcAddr16Hi
| ObjRelocKind::PpcAddr16Ha
| ObjRelocKind::PpcAddr16Lo
if !symbol.name.starts_with("..") =>
{
3
}
_ => 1,
},
ObjSymbolKind::Section => -1,
};
if symbol.size > 0 {
rank += 1;
}
-rank
});
match symbol_idxs.first().cloned() {
Some(v) => v,
None => continue,
}
};
let symbol = &obj.symbols[symbol_idx];
if symbol.address == target as u64 {
result = Some(symbol_idx);
break;
}
if symbol.size > 0 {
if symbol.address + symbol.size > target as u64 {
result = Some(symbol_idx);
}
break;
}
}
result
};
if let Some(symbol_idx) = target_symbol {
let symbol = &obj.symbols[symbol_idx];
(symbol_idx, target as i64 - symbol.address as i64)
} else {
// Create a new label
let symbol_idx = obj.symbols.len();
obj.symbols.push(ObjSymbol {
name: format!("lbl_{:08X}", target),
demangled_name: None,
address: target as u64,
section: Some(target_section.index),
size: 0,
size_known: false,
flags: Default::default(),
kind: Default::default(),
});
sym_map.nested_push(target, symbol_idx);
(symbol_idx, 0)
}
};
let reloc = ObjReloc { kind: reloc_kind, address: addr as u64, target_symbol, addend };
let section = match obj
.sections
.iter_mut()
.find(|s| addr >= s.address as u32 && addr < (s.address + s.size) as u32)
{
Some(v) => v,
None => bail!(
"Failed to locate source section for relocation @ {:#010X} {:#010X?}",
addr,
reloc
),
};
match section.relocations.iter_mut().find(|r| r.address as u32 == addr) {
Some(v) => {
let iter_symbol = &obj.symbols[v.target_symbol];
let reloc_symbol = &obj.symbols[reloc.target_symbol];
if iter_symbol.address as i64 + v.addend
!= reloc_symbol.address as i64 + reloc.addend
{
bail!(
"Conflicting relocations (target {:#010X}): {:#010X?} != {:#010X?}",
target,
v,
reloc
);
}
if replace {
*v = reloc;
}
}
None => section.relocations.push(reloc),
}
}
Ok(())
}
}
fn data_kind_from_op(op: Opcode) -> DataKind {
match op {
Opcode::Lbz => DataKind::Byte,
Opcode::Lbzu => DataKind::Byte,
Opcode::Lbzux => DataKind::Byte,
Opcode::Lbzx => DataKind::Byte,
Opcode::Lfd => DataKind::Double,
Opcode::Lfdu => DataKind::Double,
Opcode::Lfdux => DataKind::Double,
Opcode::Lfdx => DataKind::Double,
Opcode::Lfs => DataKind::Float,
Opcode::Lfsu => DataKind::Float,
Opcode::Lfsux => DataKind::Float,
Opcode::Lfsx => DataKind::Float,
Opcode::Lha => DataKind::Half,
Opcode::Lhau => DataKind::Half,
Opcode::Lhaux => DataKind::Half,
Opcode::Lhax => DataKind::Half,
Opcode::Lhbrx => DataKind::Half,
Opcode::Lhz => DataKind::Half,
Opcode::Lhzu => DataKind::Half,
Opcode::Lhzux => DataKind::Half,
Opcode::Lhzx => DataKind::Half,
Opcode::Lwz => DataKind::Word,
Opcode::Lwzu => DataKind::Word,
Opcode::Lwzux => DataKind::Word,
Opcode::Lwzx => DataKind::Word,
Opcode::Stb => DataKind::Byte,
Opcode::Stbu => DataKind::Byte,
Opcode::Stbux => DataKind::Byte,
Opcode::Stbx => DataKind::Byte,
Opcode::Stfd => DataKind::Double,
Opcode::Stfdu => DataKind::Double,
Opcode::Stfdux => DataKind::Double,
Opcode::Stfdx => DataKind::Double,
Opcode::Stfiwx => DataKind::Float,
Opcode::Stfs => DataKind::Float,
Opcode::Stfsu => DataKind::Float,
Opcode::Stfsux => DataKind::Float,
Opcode::Stfsx => DataKind::Float,
Opcode::Sth => DataKind::Half,
Opcode::Sthbrx => DataKind::Half,
Opcode::Sthu => DataKind::Half,
Opcode::Sthux => DataKind::Half,
Opcode::Sthx => DataKind::Half,
Opcode::Stw => DataKind::Word,
Opcode::Stwbrx => DataKind::Word,
Opcode::Stwcx_ => DataKind::Word,
Opcode::Stwu => DataKind::Word,
Opcode::Stwux => DataKind::Word,
Opcode::Stwx => DataKind::Word,
_ => DataKind::Unknown,
}
}
fn generate_special_symbol(obj: &mut ObjInfo, addr: u32, name: &str) -> usize {
if let Some((symbol_idx, _)) =
obj.symbols.iter().enumerate().find(|&(_, symbol)| symbol.name == name)
{
return symbol_idx;
}
let symbol_idx = obj.symbols.len();
obj.symbols.push(ObjSymbol {
name: name.to_string(),
address: addr as u64,
..Default::default()
});
symbol_idx
}

740
src/analysis/vm.rs Normal file
View File

@@ -0,0 +1,740 @@
use std::num::NonZeroU32;
use ppc750cl::{Argument, Ins, Opcode, GPR};
use crate::obj::ObjInfo;
#[derive(Default, Debug, Copy, Clone, Eq, PartialEq)]
pub enum GprValue {
#[default]
/// GPR value is unknown
Unknown,
/// GPR value is a constant
Constant(u32),
/// Comparison result (CR field)
ComparisonResult(u8),
/// GPR value is within a range
Range { min: u32, max: u32, step: u32 },
/// GPR value is loaded from an address with a max offset (jump table)
LoadIndexed { address: u32, max_offset: Option<NonZeroU32> },
}
#[derive(Default, Debug, Copy, Clone, Eq, PartialEq)]
pub struct Gpr {
/// The current calculated value
pub value: GprValue,
/// Address that loads the hi part of this GPR
pub hi_addr: Option<NonZeroU32>,
/// Address that loads the lo part of this GPR
pub lo_addr: Option<NonZeroU32>,
}
impl Gpr {
fn set_direct(&mut self, value: GprValue) {
self.value = value;
self.hi_addr = None;
self.lo_addr = None;
}
fn set_hi(&mut self, value: GprValue, addr: u32) {
self.value = value;
self.hi_addr = NonZeroU32::new(addr);
self.lo_addr = None;
}
fn set_lo(&mut self, value: GprValue, addr: u32, hi_gpr: Gpr) {
self.value = value;
self.hi_addr = hi_gpr.hi_addr;
self.lo_addr = hi_gpr.lo_addr.or_else(|| NonZeroU32::new(addr));
}
}
#[derive(Default, Debug, Clone, Eq, PartialEq)]
struct Cr {
/// The left-hand value of this comparison
left: GprValue,
/// The right-hand value of this comparison
right: GprValue,
/// Whether this comparison is signed
signed: bool,
}
#[derive(Default, Debug, Clone, Eq, PartialEq)]
pub struct VM {
/// General purpose registers
pub gpr: [Gpr; 32],
/// Condition registers
cr: [Cr; 8],
/// Count register
ctr: GprValue,
}
impl VM {
pub fn gpr_value(&self, reg: u8) -> GprValue { self.gpr[reg as usize].value }
}
#[derive(Debug, Clone, Eq, PartialEq)]
pub enum BranchTarget {
/// Unknown branch target (CTR without known value)
Unknown,
/// Branch to LR
Return,
/// Branch to address
Address(u32),
/// Branch to jump table
JumpTable { address: u32, size: Option<NonZeroU32> },
}
#[derive(Debug, Clone, Eq, PartialEq)]
pub struct Branch {
/// Branch target
pub target: BranchTarget,
/// Branch with link
pub link: bool,
/// VM state for this branch
pub vm: Box<VM>,
}
#[derive(Debug, Clone, Eq, PartialEq)]
pub enum StepResult {
/// Continue normally
Continue,
/// Load from / store to
LoadStore { address: u32, source: Gpr, source_reg: u8 },
/// Hit illegal instruction
Illegal,
/// Jump without affecting VM state
Jump(BranchTarget),
/// Branch with split VM states
Branch(Vec<Branch>),
}
impl VM {
#[inline]
pub fn new() -> Box<Self> { Box::default() }
#[inline]
pub fn new_from_obj(obj: &ObjInfo) -> Box<Self> {
match (obj.sda2_base, obj.sda_base) {
(Some(sda2_base), Some(sda_base)) => Self::new_with_base(sda2_base, sda_base),
_ => Self::new(),
}
}
#[inline]
pub fn new_with_base(sda2_base: u32, sda_base: u32) -> Box<Self> {
let mut vm = Self::new();
vm.gpr[2].value = GprValue::Constant(sda2_base);
vm.gpr[13].value = GprValue::Constant(sda_base);
vm
}
/// When calling a function, only preserve SDA bases
#[inline]
pub fn clone_for_link(&self) -> Box<Self> {
let mut vm = Self::new();
vm.gpr[2].value = self.gpr[2].value;
vm.gpr[13].value = self.gpr[13].value;
vm
}
/// When returning from a function call, only dedicated
/// and nonvolatile registers are preserved
#[inline]
pub fn clone_for_return(&self) -> Box<Self> {
let mut vm = Self::new();
// Dedicated registers
vm.gpr[1].value = self.gpr[1].value;
vm.gpr[2].value = self.gpr[2].value;
vm.gpr[13].value = self.gpr[13].value;
// Non-volatile registers
for i in 14..32 {
vm.gpr[i] = self.gpr[i];
}
vm
}
#[inline]
pub fn clone_all(&self) -> Box<Self> { Box::new(self.clone()) }
pub fn step(&mut self, ins: &Ins) -> StepResult {
match ins.op {
Opcode::Illegal => {
return StepResult::Illegal;
}
Opcode::Add => {
// add rD, rA, rB
let left = self.gpr[ins.field_rA()].value;
let right = self.gpr[ins.field_rB()].value;
let value = match (left, right) {
(GprValue::Constant(left), GprValue::Constant(right)) => {
GprValue::Constant(left.wrapping_add(right))
}
_ => GprValue::Unknown,
};
self.gpr[ins.field_rD()].set_direct(value);
}
Opcode::Addis => {
// addis rD, rA, SIMM
let left = if ins.field_rA() == 0 {
GprValue::Constant(0)
} else {
self.gpr[ins.field_rA()].value
};
let value = match left {
GprValue::Constant(value) => {
GprValue::Constant(value.wrapping_add((ins.field_simm() as u32) << 16))
}
_ => GprValue::Unknown,
};
if ins.field_rA() == 0 {
// lis rD, SIMM
self.gpr[ins.field_rD()].set_hi(value, ins.addr);
} else {
self.gpr[ins.field_rD()].set_direct(value);
}
}
Opcode::Addi | Opcode::Addic | Opcode::Addic_ => {
// addi rD, rA, SIMM
// addic rD, rA, SIMM
// addic. rD, rA, SIMM
let left = if ins.field_rA() == 0 && ins.op == Opcode::Addi {
GprValue::Constant(0)
} else {
self.gpr[ins.field_rA()].value
};
let value = match left {
GprValue::Constant(value) => {
GprValue::Constant(value.wrapping_add(ins.field_simm() as u32))
}
_ => GprValue::Unknown,
};
if ins.field_rA() == 0 {
// li rD, SIMM
self.gpr[ins.field_rD()].set_direct(value);
} else {
self.gpr[ins.field_rD()].set_lo(value, ins.addr, self.gpr[ins.field_rA()]);
}
}
Opcode::Ori => {
// ori rA, rS, UIMM
let value = match self.gpr[ins.field_rS()].value {
GprValue::Constant(value) => {
GprValue::Constant(value | ins.field_uimm() as u32)
}
_ => GprValue::Unknown,
};
self.gpr[ins.field_rA()].set_lo(value, ins.addr, self.gpr[ins.field_rS()]);
}
Opcode::Or => {
// or rA, rS, rB
if ins.field_rS() == ins.field_rB() {
// Register copy
self.gpr[ins.field_rA()] = self.gpr[ins.field_rS()];
} else {
let left = self.gpr[ins.field_rS()].value;
let right = self.gpr[ins.field_rB()].value;
let value = match (left, right) {
(GprValue::Constant(left), GprValue::Constant(right)) => {
GprValue::Constant(left | right)
}
_ => GprValue::Unknown,
};
self.gpr[ins.field_rA()].set_direct(value);
}
}
// cmp [crfD], [L], rA, rB
// cmpi [crfD], [L], rA, SIMM
// cmpl [crfD], [L], rA, rB
// cmpli [crfD], [L], rA, UIMM
Opcode::Cmp | Opcode::Cmpi | Opcode::Cmpl | Opcode::Cmpli => {
if ins.field_L() == 0 {
let left_reg = ins.field_rA();
let left = self.gpr[left_reg].value;
let (right, signed) = match ins.op {
Opcode::Cmp => (self.gpr[ins.field_rB()].value, true),
Opcode::Cmpl => (self.gpr[ins.field_rB()].value, false),
Opcode::Cmpi => (GprValue::Constant(ins.field_simm() as u32), true),
Opcode::Cmpli => (GprValue::Constant(ins.field_uimm() as u32), false),
_ => unreachable!(),
};
let crf = ins.field_crfD();
self.cr[crf] = Cr { signed, left, right };
self.gpr[left_reg].value = GprValue::ComparisonResult(crf as u8);
}
}
// rlwinm rA, rS, SH, MB, ME
// rlwnm rA, rS, rB, MB, ME
Opcode::Rlwinm | Opcode::Rlwnm => {
let value = if let Some(shift) = match ins.op {
Opcode::Rlwinm => Some(ins.field_SH() as u32),
Opcode::Rlwnm => match self.gpr[ins.field_rB()].value {
GprValue::Constant(value) => Some(value),
_ => None,
},
_ => unreachable!(),
} {
let mask = mask_value(ins.field_MB() as u32, ins.field_ME() as u32);
match self.gpr[ins.field_rS()].value {
GprValue::Constant(value) => {
GprValue::Constant(value.rotate_left(shift) & mask)
}
GprValue::Range { min, max, step } => GprValue::Range {
min: min.rotate_left(shift) & mask,
max: max.rotate_left(shift) & mask,
step: step.rotate_left(shift),
},
_ => GprValue::Range { min: 0, max: mask, step: 1u32.rotate_left(shift) },
}
} else {
GprValue::Unknown
};
self.gpr[ins.field_rA()].set_direct(value);
}
// b[l][a] target_addr
// b[c][l][a] BO, BI, target_addr
// b[c]ctr[l] BO, BI
// b[c]lr[l] BO, BI
Opcode::B | Opcode::Bc | Opcode::Bcctr | Opcode::Bclr => {
// HACK for `bla 0x60` in __OSDBJump
if ins.op == Opcode::B && ins.field_LK() && ins.field_AA() {
return StepResult::Jump(BranchTarget::Unknown);
}
let branch_target = match ins.op {
Opcode::Bcctr => {
match self.ctr {
GprValue::Constant(value) => BranchTarget::Address(value),
GprValue::LoadIndexed { address, max_offset }
// FIXME: avoids treating bctrl indirect calls as jump tables
if !ins.field_LK() => {
BranchTarget::JumpTable { address, size: max_offset.and_then(|n| n.checked_add(4)) }
}
_ => BranchTarget::Unknown,
}
}
Opcode::Bclr => BranchTarget::Return,
_ => BranchTarget::Address(ins.branch_dest().unwrap()),
};
// If branching with link, use function call semantics
if ins.field_LK() {
return StepResult::Branch(vec![
Branch {
target: BranchTarget::Address(ins.addr + 4),
link: false,
vm: self.clone_for_return(),
},
Branch { target: branch_target, link: true, vm: self.clone_for_link() },
]);
}
// Branch always
if ins.op == Opcode::B || ins.field_BO() & 0b10100 == 0b10100 {
return StepResult::Jump(branch_target);
}
// Branch conditionally
let mut branches = vec![
// Branch not taken
Branch {
target: BranchTarget::Address(ins.addr + 4),
link: false,
vm: self.clone_all(),
},
// Branch taken
Branch { target: branch_target, link: ins.field_LK(), vm: self.clone_all() },
];
// Use tracked CR to calculate new register values for branches
let crf = ins.field_BI() >> 2;
let crb = (ins.field_BI() & 3) as u8;
let (f_val, t_val) =
split_values_by_crb(crb, self.cr[crf].left, self.cr[crf].right);
if ins.field_BO() & 0b11110 == 0b00100 {
// Branch if false
branches[0].vm.set_comparison_result(t_val, crf);
branches[1].vm.set_comparison_result(f_val, crf);
} else if ins.field_BO() & 0b11110 == 0b01100 {
// Branch if true
branches[0].vm.set_comparison_result(f_val, crf);
branches[1].vm.set_comparison_result(t_val, crf);
}
return StepResult::Branch(branches);
}
// lwzx rD, rA, rB
Opcode::Lwzx => {
let left = self.gpr[ins.field_rA()].value;
let right = self.gpr[ins.field_rB()].value;
let value = match (left, right) {
(GprValue::Constant(address), GprValue::Range { min: _, max, .. })
if /*min == 0 &&*/ max < u32::MAX - 4 && max & 3 == 0 =>
{
GprValue::LoadIndexed { address, max_offset: NonZeroU32::new(max) }
}
(GprValue::Constant(address), _) => {
GprValue::LoadIndexed { address, max_offset: None }
}
_ => GprValue::Unknown,
};
self.gpr[ins.field_rD()].set_direct(value);
}
// mtspr SPR, rS
Opcode::Mtspr => {
if ins.field_spr() == 9 {
// CTR
self.ctr = self.gpr[ins.field_rS()].value;
}
}
// mfspr rD, SPR
Opcode::Mfspr => {
let value = if ins.field_spr() == 9 {
// CTR
self.ctr
} else {
GprValue::Unknown
};
self.gpr[ins.field_rD()].set_direct(value);
}
// rfi
Opcode::Rfi => {
return StepResult::Jump(BranchTarget::Unknown);
}
op if is_load_store_op(op) => {
let source = ins.field_rA();
let mut result = StepResult::Continue;
if let GprValue::Constant(base) = self.gpr[source].value {
let address = base.wrapping_add(ins.field_simm() as u32);
if is_update_op(op) {
self.gpr[source].set_lo(
GprValue::Constant(address),
ins.addr,
self.gpr[source],
);
}
result = StepResult::LoadStore {
address,
source: self.gpr[source],
source_reg: source as u8,
};
} else if is_update_op(op) {
self.gpr[source].set_direct(GprValue::Unknown);
}
if is_load_op(op) {
self.gpr[ins.field_rD()].set_direct(GprValue::Unknown);
}
return result;
}
_ => {
for field in ins.defs() {
match field.argument() {
Some(Argument::GPR(GPR(reg))) => {
self.gpr[reg as usize].set_direct(GprValue::Unknown);
}
_ => {}
}
}
}
}
StepResult::Continue
}
#[inline]
fn set_comparison_result(&mut self, value: GprValue, crf: usize) {
for gpr in &mut self.gpr {
if gpr.value == GprValue::ComparisonResult(crf as u8) {
gpr.value = value;
}
}
}
}
/// Given a condition register bit, calculate new register
/// values for each branch. (false / true)
fn split_values_by_crb(crb: u8, left: GprValue, right: GprValue) -> (GprValue, GprValue) {
match crb {
// lt
0 => match (left, right) {
(GprValue::Range { min, max, step }, GprValue::Constant(value)) => (
// left >= right
GprValue::Range {
min: std::cmp::max(min, value),
max: std::cmp::max(max, value),
step,
},
// left < right
GprValue::Range {
min: std::cmp::min(min, value.wrapping_sub(1)),
max: std::cmp::min(max, value.wrapping_sub(1)),
step,
},
),
(_, GprValue::Constant(value)) => (
// left >= right
GprValue::Range { min: value, max: u32::MAX, step: 1 },
// left < right
GprValue::Range { min: 0, max: value.wrapping_sub(1), step: 1 },
),
_ => (left, left),
},
// gt
1 => match (left, right) {
(GprValue::Range { min, max, step }, GprValue::Constant(value)) => (
// left <= right
GprValue::Range {
min: std::cmp::min(min, value),
max: std::cmp::min(max, value),
step,
},
// left > right
GprValue::Range {
min: std::cmp::max(min, value.wrapping_add(1)),
max: std::cmp::max(max, value.wrapping_add(1)),
step,
},
),
(_, GprValue::Constant(value)) => (
// left <= right
GprValue::Range { min: 0, max: value, step: 1 },
// left > right
GprValue::Range { min: value.wrapping_add(1), max: u32::MAX, step: 1 },
),
_ => (left, left),
},
// eq
2 => match (left, right) {
(GprValue::Constant(l), GprValue::Constant(r)) => (
// left != right
if l == r { GprValue::Unknown } else { left },
// left == right
GprValue::Constant(r),
),
(_, GprValue::Constant(value)) => (
// left != right
left,
// left == right
GprValue::Constant(value),
),
_ => (left, left),
},
// so
3 => (left, left),
_ => unreachable!(),
}
}
#[inline]
fn mask_value(begin: u32, end: u32) -> u32 {
let mut mask = 0u32;
for bit in begin..=end {
mask |= 1 << (31 - bit);
}
mask
}
#[inline]
pub fn is_load_op(op: Opcode) -> bool {
matches!(
op,
Opcode::Lbz
| Opcode::Lbzu
| Opcode::Lha
| Opcode::Lhau
| Opcode::Lhz
| Opcode::Lhzu
| Opcode::Lmw
| Opcode::Lwz
| Opcode::Lwzu
)
}
#[inline]
pub fn is_loadf_op(op: Opcode) -> bool {
matches!(op, Opcode::Lfd | Opcode::Lfdu | Opcode::Lfs | Opcode::Lfsu)
}
#[inline]
pub fn is_store_op(op: Opcode) -> bool {
matches!(
op,
Opcode::Stb
| Opcode::Stbu
| Opcode::Sth
| Opcode::Sthu
| Opcode::Stmw
| Opcode::Stw
| Opcode::Stwu
)
}
#[inline]
pub fn is_storef_op(op: Opcode) -> bool {
matches!(op, Opcode::Stfd | Opcode::Stfdu | Opcode::Stfs | Opcode::Stfsu)
}
#[inline]
pub fn is_load_store_op(op: Opcode) -> bool {
is_load_op(op) || is_loadf_op(op) || is_store_op(op) || is_storef_op(op)
}
#[inline]
pub fn is_update_op(op: Opcode) -> bool {
matches!(
op,
Opcode::Lbzu
| Opcode::Lbzux
| Opcode::Lfdu
| Opcode::Lfdux
| Opcode::Lfsu
| Opcode::Lfsux
| Opcode::Lhau
| Opcode::Lhaux
| Opcode::Lhzu
| Opcode::Lhzux
| Opcode::Lwzu
| Opcode::Lwzux
| Opcode::Stbu
| Opcode::Stbux
| Opcode::Stfdu
| Opcode::Stfdux
| Opcode::Stfsu
| Opcode::Stfsux
| Opcode::Sthu
| Opcode::Sthux
| Opcode::Stwu
| Opcode::Stwux
)
}
// #[inline]
// fn is_indexed_load_op(op: Opcode) -> bool {
// matches!(
// op,
// Opcode::Lbzux
// | Opcode::Lbzx
// | Opcode::Lhax
// | Opcode::Lhaux
// | Opcode::Lhzx
// | Opcode::Lhzux
// | Opcode::Lwzx
// | Opcode::Lwzux
// )
// }
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_load_indexed_1() {
let mut vm = VM::new();
assert_eq!(vm.step(&Ins::new(0x3cc08052, 0x803dfe28)), StepResult::Continue); // lis r6, -0x7fae
assert_eq!(vm.step(&Ins::new(0x38c60e18, 0x803dfe30)), StepResult::Continue); // addi r6, r6, 0xe18
assert_eq!(vm.gpr[6].value, GprValue::Constant(0x80520e18));
assert_eq!(vm.step(&Ins::new(0x550066fa, 0x803dfe34)), StepResult::Continue); // rlwinm r0, r8, 12, 27, 29
assert_eq!(vm.gpr[0].value, GprValue::Range { min: 0, max: 28, step: 1 << 12 });
assert_eq!(vm.step(&Ins::new(0x7d86002e, 0x803dfe3c)), StepResult::Continue); // lwzx r12, r6, r0
assert_eq!(vm.gpr[12].value, GprValue::LoadIndexed {
address: 0x80520e18,
max_offset: NonZeroU32::new(28)
});
assert_eq!(vm.step(&Ins::new(0x7d8903a6, 0x803dfe4c)), StepResult::Continue); // mtspr CTR, r12
assert_eq!(vm.ctr, GprValue::LoadIndexed {
address: 0x80520e18,
max_offset: NonZeroU32::new(28)
});
assert_eq!(
vm.step(&Ins::new(0x4e800420, 0x803dfe50)), // bctr
StepResult::Jump(BranchTarget::JumpTable {
address: 0x80520e18,
size: NonZeroU32::new(32)
})
);
}
#[test]
fn test_load_indexed_2() {
let mut vm = VM::new();
assert_eq!(vm.step(&Ins::new(0x3c808057, 0x80465320)), StepResult::Continue); // lis r4, -0x7fa9
assert_eq!(vm.step(&Ins::new(0x54600e7a, 0x80465324)), StepResult::Continue); // rlwinm r0, r3, 1, 25, 29
assert_eq!(vm.gpr[0].value, GprValue::Range { min: 0, max: 124, step: 2 });
assert_eq!(vm.step(&Ins::new(0x38840f70, 0x80465328)), StepResult::Continue); // addi r4, r4, 0xf70
assert_eq!(vm.gpr[4].value, GprValue::Constant(0x80570f70));
assert_eq!(vm.step(&Ins::new(0x7d84002e, 0x80465330)), StepResult::Continue); // lwzx r12, r4, r0
assert_eq!(vm.gpr[12].value, GprValue::LoadIndexed {
address: 0x80570f70,
max_offset: NonZeroU32::new(124)
});
assert_eq!(vm.step(&Ins::new(0x7d8903a6, 0x80465340)), StepResult::Continue); // mtspr CTR, r12
assert_eq!(vm.ctr, GprValue::LoadIndexed {
address: 0x80570f70,
max_offset: NonZeroU32::new(124)
});
assert_eq!(
vm.step(&Ins::new(0x4e800420, 0x80465344)), // bctr
StepResult::Jump(BranchTarget::JumpTable {
address: 0x80570f70,
size: NonZeroU32::new(128)
})
);
}
#[test]
fn test_load_indexed_3() {
let mut vm = VM::new();
assert_eq!(vm.step(&Ins::new(0x28000127, 0x800ed458)), StepResult::Continue); // cmplwi r0, 0x127
assert_eq!(vm.cr[0], Cr {
signed: false,
left: GprValue::Unknown,
right: GprValue::Constant(295),
});
// When branch isn't taken, we know r0 is <= 295
let mut false_vm = vm.clone();
false_vm.gpr[0] =
Gpr { value: GprValue::Range { min: 0, max: 295, step: 1 }, ..Default::default() };
// When branch is taken, we know r0 is > 295
let mut true_vm = vm.clone();
true_vm.gpr[0] = Gpr {
value: GprValue::Range { min: 296, max: u32::MAX, step: 1 },
..Default::default()
};
assert_eq!(
vm.step(&Ins::new(0x418160bc, 0x800ed45c)), // bgt 0x60bc
StepResult::Branch(vec![
Branch {
target: BranchTarget::Address(0x800ed460),
link: false,
vm: false_vm.clone()
},
Branch { target: BranchTarget::Address(0x800f3518), link: false, vm: true_vm }
])
);
// Take the false branch
let mut vm = false_vm;
assert_eq!(vm.step(&Ins::new(0x3c608053, 0x800ed460)), StepResult::Continue); // lis r3, -0x7fad
assert_eq!(vm.step(&Ins::new(0x5400103a, 0x800ed464)), StepResult::Continue); // rlwinm r0, r0, 0x2, 0x0, 0x1d
assert_eq!(vm.gpr[0].value, GprValue::Range { min: 0, max: 1180, step: 4 });
assert_eq!(vm.step(&Ins::new(0x3863ef6c, 0x800ed468)), StepResult::Continue); // subi r3, r3, 0x1094
assert_eq!(vm.gpr[3].value, GprValue::Constant(0x8052ef6c));
assert_eq!(vm.step(&Ins::new(0x7c63002e, 0x800ed46c)), StepResult::Continue); // lwzx r3, r3, r0
assert_eq!(vm.gpr[3].value, GprValue::LoadIndexed {
address: 0x8052ef6c,
max_offset: NonZeroU32::new(1180)
});
assert_eq!(vm.step(&Ins::new(0x7c6903a6, 0x800ed470)), StepResult::Continue); // mtspr CTR, r3
assert_eq!(vm.ctr, GprValue::LoadIndexed {
address: 0x8052ef6c,
max_offset: NonZeroU32::new(1180)
});
assert_eq!(
vm.step(&Ins::new(0x4e800420, 0x800ed474)), // bctr
StepResult::Jump(BranchTarget::JumpTable {
address: 0x8052ef6c,
size: NonZeroU32::new(1184)
})
);
}
}