Implementation of basic data flow analysis for PowerPC (#212)

* WIP implementation

* * Move flow analysis to dedicated file
* Show string constants inline
* Handle calls to MWCC "sled" helpers which otherwise disrupt flow analysis

* Run cargo insta review

* Apply clippy feedback

* Update more tests.

* Remove std use from ppc flow analysis

* Try to make wasm build work again

* More test changes

* Probably last wasm fix

* Formatting

* Fix WASM

* One more clippy thing

* Fixed display of float constants in a LFS or LFD instruction in case where there is a branch to the subsequent instruction with a different register value.

* On lines with a reloc, only hide Symbol type data flow values rather than all data flow values.

* Formatting
This commit is contained in:
Mark Langen
2025-06-17 11:59:04 -07:00
committed by GitHub
parent f58616b6dd
commit e638d0b17a
25 changed files with 870 additions and 66 deletions

View File

@@ -0,0 +1,642 @@
use alloc::{
boxed::Box,
collections::{BTreeMap, BTreeSet},
format,
string::{String, ToString},
vec::Vec,
};
use core::{
ffi::CStr,
ops::{Index, IndexMut},
};
use itertools::Itertools;
use ppc750cl::Simm;
use crate::{
arch::DataType,
obj::{FlowAnalysisResult, FlowAnalysisValue, Object, Relocation, Symbol},
util::{RawDouble, RawFloat},
};
fn is_store_instruction(op: ppc750cl::Opcode) -> bool {
use ppc750cl::Opcode;
matches!(
op,
Opcode::Stbux
| Opcode::Stbx
| Opcode::Stfdux
| Opcode::Stfdx
| Opcode::Stfiwx
| Opcode::Stfsux
| Opcode::Stfsx
| Opcode::Sthbrx
| Opcode::Sthux
| Opcode::Sthx
| Opcode::Stswi
| Opcode::Stswx
| Opcode::Stwbrx
| Opcode::Stwcx_
| Opcode::Stwux
| Opcode::Stwx
| Opcode::Stwu
| Opcode::Stb
| Opcode::Stbu
| Opcode::Sth
| Opcode::Sthu
| Opcode::Stmw
| Opcode::Stfs
| Opcode::Stfsu
| Opcode::Stfd
| Opcode::Stfdu
)
}
pub fn guess_data_type_from_load_store_inst_op(inst_op: ppc750cl::Opcode) -> Option<DataType> {
use ppc750cl::Opcode;
match inst_op {
Opcode::Lbz | Opcode::Lbzu | Opcode::Lbzux | Opcode::Lbzx => Some(DataType::Int8),
Opcode::Lhz | Opcode::Lhzu | Opcode::Lhzux | Opcode::Lhzx => Some(DataType::Int16),
Opcode::Lha | Opcode::Lhau | Opcode::Lhaux | Opcode::Lhax => Some(DataType::Int16),
Opcode::Lwz | Opcode::Lwzu | Opcode::Lwzux | Opcode::Lwzx => Some(DataType::Int32),
Opcode::Lfs | Opcode::Lfsu | Opcode::Lfsux | Opcode::Lfsx => Some(DataType::Float),
Opcode::Lfd | Opcode::Lfdu | Opcode::Lfdux | Opcode::Lfdx => Some(DataType::Double),
Opcode::Stb | Opcode::Stbu | Opcode::Stbux | Opcode::Stbx => Some(DataType::Int8),
Opcode::Sth | Opcode::Sthu | Opcode::Sthux | Opcode::Sthx => Some(DataType::Int16),
Opcode::Stw | Opcode::Stwu | Opcode::Stwux | Opcode::Stwx => Some(DataType::Int32),
Opcode::Stfs | Opcode::Stfsu | Opcode::Stfsux | Opcode::Stfsx => Some(DataType::Float),
Opcode::Stfd | Opcode::Stfdu | Opcode::Stfdux | Opcode::Stfdx => Some(DataType::Double),
_ => None,
}
}
#[derive(Default, PartialEq, Eq, Copy, Clone, Debug, PartialOrd, Ord)]
enum RegisterContent {
#[default]
Unknown,
Variable, // Multiple potential values
FloatConstant(RawFloat),
DoubleConstant(RawDouble),
IntConstant(i32),
InputRegister(u8),
Symbol(usize),
}
impl core::fmt::Display for RegisterContent {
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
match self {
RegisterContent::Unknown => write!(f, "unknown"),
RegisterContent::Variable => write!(f, "variable"),
RegisterContent::IntConstant(i) =>
// -i is safe because it's at most a 16 bit constant in the i32
{
if *i >= 0 {
write!(f, "0x{:x}", i)
} else {
write!(f, "-0x{:x}", -i)
}
}
RegisterContent::FloatConstant(RawFloat(fp)) => write!(f, "{fp:?}f"),
RegisterContent::DoubleConstant(RawDouble(fp)) => write!(f, "{fp:?}d"),
RegisterContent::InputRegister(p) => write!(f, "input{p}"),
RegisterContent::Symbol(_u) => write!(f, "relocation"),
}
}
}
#[derive(Clone, PartialEq, Eq, Ord, PartialOrd)]
struct RegisterState {
gpr: [RegisterContent; 32],
fpr: [RegisterContent; 32],
}
impl RegisterState {
fn new() -> Self {
RegisterState { gpr: [RegisterContent::Unknown; 32], fpr: [RegisterContent::Unknown; 32] }
}
// During a function call, these registers must be assumed trashed.
fn clear_volatile(&mut self) {
self[ppc750cl::GPR(0)] = RegisterContent::Unknown;
for i in 0..=13 {
self[ppc750cl::GPR(i)] = RegisterContent::Unknown;
}
for i in 0..=13 {
self[ppc750cl::FPR(i)] = RegisterContent::Unknown;
}
}
// Mark potential input values.
// Subsequent flow analysis will "realize" that they are not actually inputs if
// they get overwritten with another value before getting read.
fn set_potential_inputs(&mut self) {
for g_reg in 3..=13 {
self[ppc750cl::GPR(g_reg)] = RegisterContent::InputRegister(g_reg);
}
for f_reg in 1..=13 {
self[ppc750cl::FPR(f_reg)] = RegisterContent::InputRegister(f_reg);
}
}
// If the there is no value, we can take the new known value.
// If there's a known value different than the new value, the content
// must is variable.
// Returns whether the current value was updated.
fn unify_values(current: &mut RegisterContent, new: &RegisterContent) -> bool {
if *current == *new {
false
} else if *current == RegisterContent::Unknown {
*current = *new;
true
} else if *current == RegisterContent::Variable {
// Already variable
false
} else {
*current = RegisterContent::Variable;
true
}
}
// Unify currently known register contents in a give situation with new
// information about the register contents in that situation.
// Currently unknown register contents can be filled, but if there are
// conflicting contents, we go back to unknown.
fn unify(&mut self, other: &RegisterState) -> bool {
let mut updated = false;
for i in 0..32 {
updated |= Self::unify_values(&mut self.gpr[i], &other.gpr[i]);
updated |= Self::unify_values(&mut self.fpr[i], &other.fpr[i]);
}
updated
}
}
impl Index<ppc750cl::GPR> for RegisterState {
type Output = RegisterContent;
fn index(&self, gpr: ppc750cl::GPR) -> &Self::Output { &self.gpr[gpr.0 as usize] }
}
impl IndexMut<ppc750cl::GPR> for RegisterState {
fn index_mut(&mut self, gpr: ppc750cl::GPR) -> &mut Self::Output {
&mut self.gpr[gpr.0 as usize]
}
}
impl Index<ppc750cl::FPR> for RegisterState {
type Output = RegisterContent;
fn index(&self, fpr: ppc750cl::FPR) -> &Self::Output { &self.fpr[fpr.0 as usize] }
}
impl IndexMut<ppc750cl::FPR> for RegisterState {
fn index_mut(&mut self, fpr: ppc750cl::FPR) -> &mut Self::Output {
&mut self.fpr[fpr.0 as usize]
}
}
fn execute_instruction(
registers: &mut RegisterState,
op: &ppc750cl::Opcode,
args: &ppc750cl::Arguments,
) {
use ppc750cl::{Argument, GPR, Opcode};
match (op, args[0], args[1], args[2]) {
(Opcode::Or, Argument::GPR(a), Argument::GPR(b), Argument::GPR(c)) => {
// Move is implemented as or with self for ints
if b == c {
registers[a] = registers[b];
} else {
registers[a] = RegisterContent::Unknown;
}
}
(Opcode::Fmr, Argument::FPR(a), Argument::FPR(b), _) => {
registers[a] = registers[b];
}
(Opcode::Addi, Argument::GPR(a), Argument::GPR(GPR(0)), Argument::Simm(c)) => {
// Load immidiate implemented as addi with addend = r0
// Let Addi with other addends fall through to the case which
// overwrites the destination
registers[a] = RegisterContent::IntConstant(c.0 as i32);
}
(Opcode::Bcctr, _, _, _) => {
// Called a function pointer, may have erased volatile registers
registers.clear_volatile();
}
(Opcode::B, _, _, _) => {
if get_branch_offset(args) == 0 {
// Call to another function
registers.clear_volatile();
}
}
(
Opcode::Stbu | Opcode::Sthu | Opcode::Stwu | Opcode::Stfsu | Opcode::Stfdu,
_,
_,
Argument::GPR(rel),
) => {
// Storing with update, clear updated register (third arg)
registers[rel] = RegisterContent::Unknown;
}
(
Opcode::Stbux | Opcode::Sthux | Opcode::Stwux | Opcode::Stfsux | Opcode::Stfdux,
_,
Argument::GPR(rel),
_,
) => {
// Storing indexed with update, clear updated register (second arg)
registers[rel] = RegisterContent::Unknown;
}
(Opcode::Lmw, Argument::GPR(target), _, _) => {
// `lmw` overwrites all registers from rd to r31.
for reg in target.0..31 {
registers[GPR(reg)] = RegisterContent::Unknown;
}
}
(_, Argument::GPR(a), _, _) => {
// Store instructions don't modify the GPR
if !is_store_instruction(*op) {
// Other operations which write to GPR a
registers[a] = RegisterContent::Unknown;
}
}
(_, Argument::FPR(a), _, _) => {
// Store instructions don't modify the FPR
if !is_store_instruction(*op) {
// Other operations which write to FPR a
registers[a] = RegisterContent::Unknown;
}
}
(_, _, _, _) => {}
}
}
fn get_branch_offset(args: &ppc750cl::Arguments) -> i32 {
for arg in args.iter() {
match arg {
ppc750cl::Argument::BranchDest(dest) => return dest.0 / 4,
ppc750cl::Argument::None => break,
_ => {}
}
}
0
}
#[derive(Debug, Default)]
struct PPCFlowAnalysisResult {
argument_contents: BTreeMap<(u64, u8), FlowAnalysisValue>,
}
impl PPCFlowAnalysisResult {
fn set_argument_value_at_address(
&mut self,
address: u64,
argument: u8,
value: FlowAnalysisValue,
) {
self.argument_contents.insert((address, argument), value);
}
fn new() -> Self { PPCFlowAnalysisResult { argument_contents: Default::default() } }
}
impl FlowAnalysisResult for PPCFlowAnalysisResult {
fn get_argument_value_at_address(
&self,
address: u64,
argument: u8,
) -> Option<&FlowAnalysisValue> {
self.argument_contents.get(&(address, argument))
}
}
fn clamp_text_length(s: String, max: usize) -> String {
if s.len() <= max { s } else { format!("{}", s.chars().take(max - 3).collect::<String>()) }
}
fn get_register_content_from_reloc(
reloc: &Relocation,
obj: &Object,
op: ppc750cl::Opcode,
) -> RegisterContent {
if let Some(bytes) = obj.symbol_data(reloc.target_symbol) {
match guess_data_type_from_load_store_inst_op(op) {
Some(DataType::Float) => {
RegisterContent::FloatConstant(RawFloat(match obj.endianness {
object::Endianness::Little => {
f32::from_le_bytes(bytes.try_into().unwrap_or([0; 4]))
}
object::Endianness::Big => {
f32::from_be_bytes(bytes.try_into().unwrap_or([0; 4]))
}
}))
}
Some(DataType::Double) => {
RegisterContent::DoubleConstant(RawDouble(match obj.endianness {
object::Endianness::Little => {
f64::from_le_bytes(bytes.try_into().unwrap_or([0; 8]))
}
object::Endianness::Big => {
f64::from_be_bytes(bytes.try_into().unwrap_or([0; 8]))
}
}))
}
_ => RegisterContent::Symbol(reloc.target_symbol),
}
} else {
RegisterContent::Symbol(reloc.target_symbol)
}
}
// Executing op with args at cur_address, update current_state with symbols that
// come from relocations. That is, references to globals, floating point
// constants, string constants, etc.
fn fill_registers_from_relocation(
reloc: &Relocation,
current_state: &mut RegisterState,
obj: &Object,
op: ppc750cl::Opcode,
args: &ppc750cl::Arguments,
) {
// Only update the register state for loads. We may store to a reloc
// address but that doesn't update register contents.
if !is_store_instruction(op) {
match (op, args[0]) {
// Everything else is a load of some sort
(_, ppc750cl::Argument::GPR(gpr)) => {
current_state[gpr] = get_register_content_from_reloc(reloc, obj, op);
}
(_, ppc750cl::Argument::FPR(fpr)) => {
current_state[fpr] = get_register_content_from_reloc(reloc, obj, op);
}
_ => {}
}
}
}
// Special helper fragments generated by MWCC.
// See: https://github.com/encounter/decomp-toolkit/blob/main/src/analysis/pass.rs
const SLEDS: [&str; 6] = ["_savefpr_", "_restfpr_", "_savegpr_", "_restgpr_", "_savev", "_restv"];
fn is_sled_function(name: &str) -> bool { SLEDS.iter().any(|sled| name.starts_with(sled)) }
pub fn ppc_data_flow_analysis(
obj: &Object,
func_symbol: &Symbol,
code: &[u8],
relocations: &[Relocation],
) -> Box<dyn FlowAnalysisResult> {
use alloc::collections::VecDeque;
use ppc750cl::InsIter;
let instructions = InsIter::new(code, func_symbol.address as u32)
.map(|(_addr, ins)| (ins.op, ins.basic().args))
.collect_vec();
let func_address = func_symbol.address;
// Get initial register values from function parameters
let mut initial_register_state = RegisterState::new();
initial_register_state.set_potential_inputs();
let mut execution_queue = VecDeque::<(usize, RegisterState)>::new();
execution_queue.push_back((0, initial_register_state));
// Execute the instructions against abstract data
let mut failsafe_counter = 0;
let mut taken_branches = BTreeSet::<(usize, RegisterState)>::new();
let mut register_state_at = Vec::<RegisterState>::new();
let mut completed_first_pass = false;
register_state_at.resize_with(instructions.len(), RegisterState::new);
while let Some((mut index, mut current_state)) = execution_queue.pop_front() {
while let Some((op, args)) = instructions.get(index) {
// Record the state at this index
// If recording does not result in any changes to the known values
// we're done, because the subsequent values are a function of the
// current values so we'll get the same result as the last time
// we went down this path.
// Don't break out if we haven't even completed the first pass
// through the function though.
if !register_state_at[index].unify(&current_state) && completed_first_pass {
break;
}
// Get symbol used in this instruction
let cur_addr = (func_address as u32) + ((index * 4) as u32);
let reloc = relocations.iter().find(|r| (r.address as u32 & !3) == cur_addr);
// Is this a branch to a compiler generated helper? These helpers
// do not trash registers like normal function calls, so we don't
// want to treat this as normal execution.
let symbol = reloc.and_then(|r| obj.symbols.get(r.target_symbol));
let is_sled_invocation = symbol.is_some_and(|x| is_sled_function(&x.name));
// Execute the instruction to update the state
// Since sled invocations are only used to save / restore registers
// as part of prelude / cleanup in a function call we don't have to
// do any execution for them.
if !is_sled_invocation {
execute_instruction(&mut current_state, op, args);
}
// Fill in register state coming from relocations at this line. This
// handles references to global variables, floating point constants,
// etc.
if let Some(reloc) = reloc {
fill_registers_from_relocation(reloc, &mut current_state, obj, *op, args);
}
// Add conditional branches to execution queue
// Only take a given (address, register state) combination once. If
// the known register state is different we have to take the branch
// again to stabilize the known values for backwards branches.
if op == &ppc750cl::Opcode::Bc {
let branch_state = (index, current_state.clone());
if !taken_branches.contains(&branch_state) {
let offset = get_branch_offset(args);
let target_index = ((index as i32) + offset) as usize;
execution_queue.push_back((target_index, current_state.clone()));
taken_branches.insert(branch_state);
// We should never hit this case, but avoid getting stuck in
// an infinite loop if we hit some kind of bad behavior.
failsafe_counter += 1;
if failsafe_counter > 256 {
//println!("Analysis of {} failed to stabilize", func_symbol.name);
return Box::new(PPCFlowAnalysisResult::new());
}
}
}
// Update index
if op == &ppc750cl::Opcode::B {
// Unconditional branch
let offset = get_branch_offset(args);
if offset > 0 {
// Jump table or branch to over else clause.
index += offset as usize;
} else if offset == 0 {
// Function call with relocation. We'll return to
// the next instruction.
index += 1;
} else {
// Unconditional branch (E.g.: loop { ... })
// Also some compilations of loops put the conditional at
// the end and B to it for the check of the first iteration.
let branch_state = (index, current_state.clone());
if taken_branches.contains(&branch_state) {
break;
}
taken_branches.insert(branch_state);
index = ((index as i32) + offset) as usize;
}
} else {
// Normal execution of next instruction
index += 1;
}
}
// Mark that we've completed at least one pass over the function, at
// this point we can break out if the code we're running doesn't change
// any register outcomes.
completed_first_pass = true;
}
// Store the relevant data flow values for simplified instructions
generate_flow_analysis_result(obj, func_address, code, register_state_at, relocations)
}
fn get_string_data(obj: &Object, symbol_index: usize, offset: Simm) -> Option<&str> {
if let Some(sym) = obj.symbols.get(symbol_index) {
if sym.name.starts_with("@stringBase") && offset.0 != 0 {
if let Some(data) = obj.symbol_data(symbol_index) {
let bytes = &data[offset.0 as usize..];
if let Ok(Ok(str)) = CStr::from_bytes_until_nul(bytes).map(|x| x.to_str()) {
return Some(str);
}
}
}
}
None
}
// Write the relevant part of the flow analysis out into the FlowAnalysisResult
// the rest of the application will use to query results of the flow analysis.
// Flow analysis will compute the known contents of every register at every
// line, but we only need to record the values of registers that are actually
// referenced at each line.
fn generate_flow_analysis_result(
obj: &Object,
base_address: u64,
code: &[u8],
register_state_at: Vec<RegisterState>,
relocations: &[Relocation],
) -> Box<PPCFlowAnalysisResult> {
use ppc750cl::{Argument, InsIter};
let mut analysis_result = PPCFlowAnalysisResult::new();
let default_register_state = RegisterState::new();
for (addr, ins) in InsIter::new(code, 0) {
let ins_address = base_address + (addr as u64);
let index = addr / 4;
let ppc750cl::ParsedIns { mnemonic: _, args } = ins.simplified();
// If we're already showing relocations on a line don't also show data flow
let reloc = relocations.iter().find(|r| (r.address & !3) == ins_address);
// Special case to show float and double constants on the line where
// they are being loaded.
// We need to do this before we break out on showing relocations in the
// subsequent if statement.
if let (ppc750cl::Opcode::Lfs | ppc750cl::Opcode::Lfd, Some(reloc)) = (ins.op, reloc) {
let content = get_register_content_from_reloc(reloc, obj, ins.op);
if matches!(
content,
RegisterContent::FloatConstant(_) | RegisterContent::DoubleConstant(_)
) {
analysis_result.set_argument_value_at_address(
ins_address,
1,
FlowAnalysisValue::Text(content.to_string()),
);
// Don't need to show any other data flow if we're showing that
continue;
}
}
// Special case to show string constants on the line where they are
// being indexed to. This will typically be "addi t, stringbase, offset"
let registers = register_state_at.get(index as usize).unwrap_or(&default_register_state);
if let (ppc750cl::Opcode::Addi, Argument::GPR(rel), Argument::Simm(offset)) =
(ins.op, args[1], args[2])
{
if let RegisterContent::Symbol(sym_index) = registers[rel] {
if let Some(str) = get_string_data(obj, sym_index, offset) {
// Show the string constant in the analysis result
let formatted = format!("\"{str}\"");
analysis_result.set_argument_value_at_address(
ins_address,
2,
FlowAnalysisValue::Text(clamp_text_length(formatted, 20)),
);
// Don't continue, we want to show the stringbase value as well
}
}
}
let is_store = is_store_instruction(ins.op);
for (arg_index, arg) in args.into_iter().enumerate() {
// Hacky shorthand for determining which arguments are sources,
// We only want to show data flow for source registers, not target
// registers. Technically there are some non-"st_" operations which
// read from their first argument but they're rare.
if (arg_index == 0) && !is_store {
continue;
}
let content = match arg {
Argument::GPR(gpr) => Some(registers[gpr]),
Argument::FPR(fpr) => Some(registers[fpr]),
_ => None,
};
let analysis_value = match content {
Some(RegisterContent::Symbol(s)) => {
if reloc.is_none() {
// Only symbols if there isn't already a relocation, because
// code other than the data flow analysis will be showing
// the symbol for a relocation on the line it is for. If we
// also showed it as data flow analysis value we would be
// showing redundant information.
obj.symbols.get(s).map(|sym| {
FlowAnalysisValue::Text(clamp_text_length(
sym.demangled_name.as_ref().unwrap_or(&sym.name).clone(),
20,
))
})
} else {
None
}
}
Some(RegisterContent::InputRegister(reg)) => {
let reg_name = match arg {
Argument::GPR(_) => format!("in_r{reg}"),
Argument::FPR(_) => format!("in_f{reg}"),
_ => panic!("Register content should only be in a register"),
};
Some(FlowAnalysisValue::Text(reg_name))
}
Some(RegisterContent::Unknown) | Some(RegisterContent::Variable) => None,
Some(value) => Some(FlowAnalysisValue::Text(format!("{value}"))),
None => None,
};
if let Some(analysis_value) = analysis_value {
analysis_result.set_argument_value_at_address(
ins_address,
arg_index as u8,
analysis_value,
);
}
}
}
Box::new(analysis_result)
}

View File

@@ -0,0 +1,850 @@
use alloc::{
boxed::Box,
collections::{BTreeMap, BTreeSet},
string::{String, ToString},
vec,
vec::Vec,
};
use anyhow::{Result, bail, ensure};
use cwextab::{ExceptionTableData, decode_extab};
use flagset::Flags;
use object::{Object as _, ObjectSection as _, ObjectSymbol as _, elf};
use crate::{
arch::{Arch, DataType},
diff::{
DiffObjConfig,
data::resolve_relocation,
display::{ContextItem, HoverItem, HoverItemColor, InstructionPart, SymbolNavigationKind},
},
obj::{
FlowAnalysisResult, InstructionRef, Object, Relocation, RelocationFlags,
ResolvedInstructionRef, ResolvedRelocation, Symbol, SymbolFlag, SymbolFlagSet,
},
};
mod flow_analysis;
// Relative relocation, can be Simm, Offset or BranchDest
fn is_relative_arg(arg: &ppc750cl::Argument) -> bool {
matches!(
arg,
ppc750cl::Argument::Simm(_)
| ppc750cl::Argument::Offset(_)
| ppc750cl::Argument::BranchDest(_)
)
}
// Relative or absolute relocation, can be Uimm, Simm or Offset
fn is_rel_abs_arg(arg: &ppc750cl::Argument) -> bool {
matches!(
arg,
ppc750cl::Argument::Uimm(_) | ppc750cl::Argument::Simm(_) | ppc750cl::Argument::Offset(_)
)
}
fn is_offset_arg(arg: &ppc750cl::Argument) -> bool { matches!(arg, ppc750cl::Argument::Offset(_)) }
#[derive(Debug)]
pub struct ArchPpc {
/// Exception info
pub extab: Option<BTreeMap<usize, ExceptionInfo>>,
}
impl ArchPpc {
pub fn new(file: &object::File) -> Result<Self> {
Ok(Self { extab: decode_exception_info(file)? })
}
fn parse_ins_ref(&self, resolved: ResolvedInstructionRef) -> Result<ppc750cl::Ins> {
let mut code = u32::from_be_bytes(resolved.code.try_into()?);
if let Some(reloc) = resolved.relocation {
code = zero_reloc(code, reloc.relocation);
}
let op = ppc750cl::Opcode::from(resolved.ins_ref.opcode as u8);
Ok(ppc750cl::Ins { code, op })
}
fn find_reloc_arg(
&self,
ins: &ppc750cl::ParsedIns,
resolved: Option<ResolvedRelocation>,
) -> Option<usize> {
match resolved?.relocation.flags {
RelocationFlags::Elf(elf::R_PPC_EMB_SDA21) => Some(1),
RelocationFlags::Elf(elf::R_PPC_REL24 | elf::R_PPC_REL14) => {
ins.args.iter().rposition(is_relative_arg)
}
RelocationFlags::Elf(
elf::R_PPC_ADDR16_HI | elf::R_PPC_ADDR16_HA | elf::R_PPC_ADDR16_LO,
) => ins.args.iter().rposition(is_rel_abs_arg),
_ => None,
}
}
}
impl Arch for ArchPpc {
fn scan_instructions_internal(
&self,
address: u64,
code: &[u8],
_section_index: usize,
_relocations: &[Relocation],
_diff_config: &DiffObjConfig,
) -> Result<Vec<InstructionRef>> {
ensure!(code.len() & 3 == 0, "Code length must be a multiple of 4");
let ins_count = code.len() / 4;
let mut insts = Vec::<InstructionRef>::with_capacity(ins_count);
for (cur_addr, ins) in ppc750cl::InsIter::new(code, address as u32) {
insts.push(InstructionRef {
address: cur_addr as u64,
size: 4,
opcode: u8::from(ins.op) as u16,
branch_dest: ins.branch_dest(cur_addr).map(u64::from),
});
}
Ok(insts)
}
fn display_instruction(
&self,
resolved: ResolvedInstructionRef,
_diff_config: &DiffObjConfig,
cb: &mut dyn FnMut(InstructionPart) -> Result<()>,
) -> Result<()> {
let ins = self.parse_ins_ref(resolved)?.simplified();
cb(InstructionPart::opcode(ins.mnemonic, resolved.ins_ref.opcode))?;
let reloc_arg = self.find_reloc_arg(&ins, resolved.relocation);
let mut writing_offset = false;
for (idx, arg) in ins.args_iter().enumerate() {
if idx > 0 && !writing_offset {
cb(InstructionPart::separator())?;
}
if reloc_arg == Some(idx) {
let reloc = resolved.relocation.unwrap();
display_reloc(reloc, cb)?;
// For @sda21, we can omit the register argument
if matches!(reloc.relocation.flags, RelocationFlags::Elf(elf::R_PPC_EMB_SDA21))
// Sanity check: the next argument should be r0
&& matches!(ins.args.get(idx + 1), Some(ppc750cl::Argument::GPR(ppc750cl::GPR(0))))
{
break;
}
} else {
match arg {
ppc750cl::Argument::Simm(simm) => cb(InstructionPart::signed(simm.0)),
ppc750cl::Argument::Uimm(uimm) => cb(InstructionPart::unsigned(uimm.0)),
ppc750cl::Argument::Offset(offset) => cb(InstructionPart::signed(offset.0)),
ppc750cl::Argument::BranchDest(dest) => cb(InstructionPart::branch_dest(
(resolved.ins_ref.address as u32).wrapping_add_signed(dest.0),
)),
_ => cb(InstructionPart::opaque(arg.to_string())),
}?;
}
if writing_offset {
cb(InstructionPart::basic(")"))?;
writing_offset = false;
}
if is_offset_arg(arg) {
cb(InstructionPart::basic("("))?;
writing_offset = true;
}
}
Ok(())
}
// Could be replaced by data_flow_analysis once that feature stabilizes
fn generate_pooled_relocations(
&self,
address: u64,
code: &[u8],
relocations: &[Relocation],
symbols: &[Symbol],
) -> Vec<Relocation> {
generate_fake_pool_relocations_for_function(address, code, relocations, symbols)
}
fn data_flow_analysis(
&self,
obj: &Object,
symbol: &Symbol,
code: &[u8],
relocations: &[Relocation],
) -> Option<Box<dyn FlowAnalysisResult>> {
Some(flow_analysis::ppc_data_flow_analysis(obj, symbol, code, relocations))
}
fn implcit_addend(
&self,
_file: &object::File<'_>,
_section: &object::Section,
address: u64,
_relocation: &object::Relocation,
flags: RelocationFlags,
) -> Result<i64> {
bail!("Unsupported PPC implicit relocation {:#x}:{:?}", address, flags)
}
fn demangle(&self, name: &str) -> Option<String> {
cwdemangle::demangle(name, &cwdemangle::DemangleOptions::default())
}
fn reloc_name(&self, flags: RelocationFlags) -> Option<&'static str> {
match flags {
RelocationFlags::Elf(r_type) => match r_type {
elf::R_PPC_NONE => Some("R_PPC_NONE"), // We use this for fake pool relocs
elf::R_PPC_ADDR16_LO => Some("R_PPC_ADDR16_LO"),
elf::R_PPC_ADDR16_HI => Some("R_PPC_ADDR16_HI"),
elf::R_PPC_ADDR16_HA => Some("R_PPC_ADDR16_HA"),
elf::R_PPC_EMB_SDA21 => Some("R_PPC_EMB_SDA21"),
elf::R_PPC_ADDR32 => Some("R_PPC_ADDR32"),
elf::R_PPC_UADDR32 => Some("R_PPC_UADDR32"),
elf::R_PPC_REL24 => Some("R_PPC_REL24"),
elf::R_PPC_REL14 => Some("R_PPC_REL14"),
_ => None,
},
_ => None,
}
}
fn data_reloc_size(&self, flags: RelocationFlags) -> usize {
match flags {
RelocationFlags::Elf(r_type) => match r_type {
elf::R_PPC_ADDR32 => 4,
elf::R_PPC_UADDR32 => 4,
_ => 1,
},
_ => 1,
}
}
fn extra_symbol_flags(&self, symbol: &object::Symbol) -> SymbolFlagSet {
if self.extab.as_ref().is_some_and(|extab| extab.contains_key(&(symbol.index().0 - 1))) {
SymbolFlag::HasExtra.into()
} else {
SymbolFlag::none()
}
}
fn guess_data_type(&self, resolved: ResolvedInstructionRef, bytes: &[u8]) -> Option<DataType> {
if resolved.relocation.is_some_and(|r| r.symbol.name.starts_with("@stringBase")) {
// Pooled string.
return Some(DataType::String);
}
let opcode = ppc750cl::Opcode::from(resolved.ins_ref.opcode as u8);
if let Some(ty) = flow_analysis::guess_data_type_from_load_store_inst_op(opcode) {
// Numeric type.
return Some(ty);
}
if bytes.len() >= 2 && bytes.iter().position(|&c| c == b'\0') == Some(bytes.len() - 1) {
// It may be an unpooled string if the symbol contains exactly one null byte at the end of the symbol.
return Some(DataType::String);
}
None
}
fn symbol_hover(&self, _obj: &Object, symbol_index: usize) -> Vec<HoverItem> {
let mut out = Vec::new();
if let Some(extab) = self.extab_for_symbol(symbol_index) {
out.push(HoverItem::Text {
label: "extab symbol".into(),
value: extab.etb_symbol.name.clone(),
color: HoverItemColor::Special,
});
out.push(HoverItem::Text {
label: "extabindex symbol".into(),
value: extab.eti_symbol.name.clone(),
color: HoverItemColor::Special,
});
}
out
}
fn symbol_context(&self, _obj: &Object, symbol_index: usize) -> Vec<ContextItem> {
let mut out = Vec::new();
if let Some(_extab) = self.extab_for_symbol(symbol_index) {
out.push(ContextItem::Navigate {
label: "Decode exception table".to_string(),
symbol_index,
kind: SymbolNavigationKind::Extab,
});
}
out
}
fn instruction_hover(&self, _obj: &Object, resolved: ResolvedInstructionRef) -> Vec<HoverItem> {
let Ok(ins) = self.parse_ins_ref(resolved) else {
return Vec::new();
};
let orig = ins.basic().to_string();
let simplified = ins.simplified().to_string();
let show_orig = orig != simplified;
let rlwinm_decoded = rlwinmdec::decode(&orig);
let mut out = Vec::with_capacity(2);
if show_orig {
out.push(HoverItem::Text {
label: "Original".into(),
value: orig,
color: HoverItemColor::Normal,
});
}
if let Some(decoded) = rlwinm_decoded {
for line in decoded.lines() {
out.push(HoverItem::Text {
label: Default::default(),
value: line.to_string(),
color: HoverItemColor::Special,
});
}
}
out
}
fn instruction_context(
&self,
_obj: &Object,
resolved: ResolvedInstructionRef,
) -> Vec<ContextItem> {
let Ok(ins) = self.parse_ins_ref(resolved) else {
return Vec::new();
};
let orig = ins.basic().to_string();
let simplified = ins.simplified().to_string();
let show_orig = orig != simplified;
let mut out = Vec::with_capacity(2);
out.push(ContextItem::Copy { value: simplified, label: None });
if show_orig {
out.push(ContextItem::Copy { value: orig, label: Some("original".to_string()) });
}
out
}
}
impl ArchPpc {
pub fn extab_for_symbol(&self, symbol_index: usize) -> Option<&ExceptionInfo> {
self.extab.as_ref()?.get(&symbol_index)
}
}
fn zero_reloc(code: u32, reloc: &Relocation) -> u32 {
match reloc.flags {
RelocationFlags::Elf(elf::R_PPC_EMB_SDA21) => code & !0x1FFFFF,
RelocationFlags::Elf(elf::R_PPC_REL24) => code & !0x3FFFFFC,
RelocationFlags::Elf(elf::R_PPC_REL14) => code & !0xFFFC,
RelocationFlags::Elf(
elf::R_PPC_ADDR16_HI | elf::R_PPC_ADDR16_HA | elf::R_PPC_ADDR16_LO,
) => code & !0xFFFF,
_ => code,
}
}
fn display_reloc(
resolved: ResolvedRelocation,
cb: &mut dyn FnMut(InstructionPart) -> Result<()>,
) -> Result<()> {
match resolved.relocation.flags {
RelocationFlags::Elf(r_type) => match r_type {
elf::R_PPC_ADDR16_LO => {
cb(InstructionPart::reloc())?;
cb(InstructionPart::basic("@l"))?;
}
elf::R_PPC_ADDR16_HI => {
cb(InstructionPart::reloc())?;
cb(InstructionPart::basic("@h"))?;
}
elf::R_PPC_ADDR16_HA => {
cb(InstructionPart::reloc())?;
cb(InstructionPart::basic("@ha"))?;
}
elf::R_PPC_EMB_SDA21 => {
cb(InstructionPart::reloc())?;
cb(InstructionPart::basic("@sda21"))?;
}
elf::R_PPC_ADDR32 | elf::R_PPC_UADDR32 | elf::R_PPC_REL24 | elf::R_PPC_REL14 => {
cb(InstructionPart::reloc())?;
}
elf::R_PPC_NONE => {
// Fake pool relocation.
cb(InstructionPart::basic("<"))?;
cb(InstructionPart::reloc())?;
cb(InstructionPart::basic(">"))?;
}
_ => cb(InstructionPart::reloc())?,
},
_ => cb(InstructionPart::reloc())?,
};
Ok(())
}
#[derive(Debug, Clone)]
pub struct ExtabSymbolRef {
pub original_index: usize,
pub name: String,
pub demangled_name: Option<String>,
}
#[derive(Debug, Clone)]
pub struct ExceptionInfo {
pub eti_symbol: ExtabSymbolRef,
pub etb_symbol: ExtabSymbolRef,
pub data: ExceptionTableData,
pub dtors: Vec<ExtabSymbolRef>,
}
fn decode_exception_info(
file: &object::File<'_>,
) -> Result<Option<BTreeMap<usize, ExceptionInfo>>> {
let Some(extab_section) = file.section_by_name("extab") else {
return Ok(None);
};
let Some(extabindex_section) = file.section_by_name("extabindex") else {
return Ok(None);
};
let mut result = BTreeMap::new();
let extab_relocations =
extab_section.relocations().collect::<BTreeMap<u64, object::Relocation>>();
let extabindex_relocations =
extabindex_section.relocations().collect::<BTreeMap<u64, object::Relocation>>();
for extabindex in file.symbols().filter(|symbol| {
symbol.section_index() == Some(extabindex_section.index())
&& symbol.kind() == object::SymbolKind::Data
}) {
if extabindex.size() != 12 {
log::warn!("Invalid extabindex entry size {}", extabindex.size());
continue;
}
// Each extabindex entry has two relocations:
// - 0x0: The function that the exception table is for
// - 0x8: The relevant entry in extab section
let Some(extab_func_reloc) = extabindex_relocations.get(&extabindex.address()) else {
log::warn!("Failed to find function relocation for extabindex entry");
continue;
};
let Some(extab_reloc) = extabindex_relocations.get(&(extabindex.address() + 8)) else {
log::warn!("Failed to find extab relocation for extabindex entry");
continue;
};
// Resolve the function and extab symbols
let Some(extab_func) = relocation_symbol(file, extab_func_reloc)? else {
log::warn!("Failed to find function symbol for extabindex entry");
continue;
};
let extab_func_name = extab_func.name()?;
let Some(extab) = relocation_symbol(file, extab_reloc)? else {
log::warn!("Failed to find extab symbol for extabindex entry");
continue;
};
let extab_start_addr = extab.address() - extab_section.address();
let extab_end_addr = extab_start_addr + extab.size();
// All relocations in the extab section are dtors
let mut dtors: Vec<ExtabSymbolRef> = vec![];
for (_, reloc) in extab_relocations.range(extab_start_addr..extab_end_addr) {
let Some(symbol) = relocation_symbol(file, reloc)? else {
log::warn!("Failed to find symbol for extab relocation");
continue;
};
dtors.push(make_symbol_ref(&symbol)?);
}
// Decode the extab data
let Some(extab_data) = extab_section.data_range(extab_start_addr, extab.size())? else {
log::warn!("Failed to get extab data for function {}", extab_func_name);
continue;
};
let data = match decode_extab(extab_data) {
Ok(decoded_data) => decoded_data,
Err(e) => {
log::warn!(
"Exception table decoding failed for function {}, reason: {}",
extab_func_name,
e
);
return Ok(None);
}
};
//Add the new entry to the list
result.insert(extab_func.index().0 - 1, ExceptionInfo {
eti_symbol: make_symbol_ref(&extabindex)?,
etb_symbol: make_symbol_ref(&extab)?,
data,
dtors,
});
}
Ok(Some(result))
}
fn relocation_symbol<'data, 'file>(
file: &'file object::File<'data>,
relocation: &object::Relocation,
) -> Result<Option<object::Symbol<'data, 'file>>> {
let addend = relocation.addend();
match relocation.target() {
object::RelocationTarget::Symbol(idx) => {
ensure!(addend == 0, "Symbol relocations must have zero addend");
Ok(Some(file.symbol_by_index(idx)?))
}
object::RelocationTarget::Section(idx) => {
ensure!(addend >= 0, "Section relocations must have non-negative addend");
let addend = addend as u64;
Ok(file
.symbols()
.find(|symbol| symbol.section_index() == Some(idx) && symbol.address() == addend))
}
target => bail!("Unsupported relocation target: {target:?}"),
}
}
fn make_symbol_ref(symbol: &object::Symbol) -> Result<ExtabSymbolRef> {
let name = symbol.name()?.to_string();
let demangled_name = cwdemangle::demangle(&name, &cwdemangle::DemangleOptions::default());
Ok(ExtabSymbolRef { original_index: symbol.index().0 - 1, name, demangled_name })
}
#[derive(Debug)]
struct PoolReference {
addr_src_gpr: ppc750cl::GPR,
addr_offset: i16,
addr_dst_gpr: Option<ppc750cl::GPR>,
}
// Given an instruction, check if it could be accessing pooled data at the address in a register.
// If so, return information pertaining to where the instruction is getting that address from and
// what it's doing with the address (e.g. copying it into another register, adding an offset, etc).
fn get_pool_reference_for_inst(
opcode: ppc750cl::Opcode,
simplified: &ppc750cl::ParsedIns,
) -> Option<PoolReference> {
use ppc750cl::{Argument, Opcode};
let args = &simplified.args;
if flow_analysis::guess_data_type_from_load_store_inst_op(opcode).is_some() {
match (args[1], args[2]) {
(Argument::Offset(offset), Argument::GPR(addr_src_gpr)) => {
// e.g. lwz. Immediate offset.
Some(PoolReference { addr_src_gpr, addr_offset: offset.0, addr_dst_gpr: None })
}
(Argument::GPR(addr_src_gpr), Argument::GPR(_offset_gpr)) => {
// e.g. lwzx. The offset is in a register and was likely calculated from an index.
// Treat the offset as being 0 in this case to show the first element of the array.
// It may be possible to show all elements by figuring out the stride of the array
// from the calculations performed on the index before it's put into offset_gpr, but
// this would be much more complicated, so it's not currently done.
Some(PoolReference { addr_src_gpr, addr_offset: 0, addr_dst_gpr: None })
}
_ => None,
}
} else {
// If it's not a load/store instruction, there's two more possibilities we need to handle.
// 1. It could be loading a pointer to a string.
// 2. It could be moving the relocation address plus an offset into a different register to
// load from later.
// If either of these match, we also want to return the destination register that the
// address is being copied into so that we can detect any future references to that new
// register as well.
match (opcode, args[0], args[1], args[2]) {
(
Opcode::Addi,
Argument::GPR(addr_dst_gpr),
Argument::GPR(addr_src_gpr),
Argument::Simm(simm),
) => Some(PoolReference {
addr_src_gpr,
addr_offset: simm.0,
addr_dst_gpr: Some(addr_dst_gpr),
}),
(
// `mr` or `mr.`
Opcode::Or,
Argument::GPR(addr_dst_gpr),
Argument::GPR(addr_src_gpr),
Argument::None,
) => Some(PoolReference {
addr_src_gpr,
addr_offset: 0,
addr_dst_gpr: Some(addr_dst_gpr),
}),
(
Opcode::Add,
Argument::GPR(addr_dst_gpr),
Argument::GPR(addr_src_gpr),
Argument::GPR(_offset_gpr),
) => Some(PoolReference {
addr_src_gpr,
addr_offset: 0,
addr_dst_gpr: Some(addr_dst_gpr),
}),
_ => None,
}
}
}
// Remove the relocation we're keeping track of in a particular register when an instruction reuses
// that register to hold some other value, unrelated to pool relocation addresses.
fn clear_overwritten_gprs(ins: ppc750cl::Ins, gpr_pool_relocs: &mut BTreeMap<u8, Relocation>) {
use ppc750cl::{Argument, Arguments, Opcode};
let mut def_args = Arguments::default();
ins.parse_defs(&mut def_args);
for arg in def_args {
if let Argument::GPR(gpr) = arg {
if ins.op == Opcode::Lmw {
// `lmw` overwrites all registers from rd to r31.
// ppc750cl only returns rd itself, so we manually clear the rest of them.
for reg in gpr.0..31 {
gpr_pool_relocs.remove(&reg);
}
break;
}
gpr_pool_relocs.remove(&gpr.0);
}
}
}
// We create a fake relocation for an instruction, vaguely simulating what the actual relocation
// might have looked like if it wasn't pooled. This is so minimal changes are needed to display
// pooled accesses vs non-pooled accesses. We set the relocation type to R_PPC_NONE to indicate that
// there isn't really a relocation here, as copying the pool relocation's type wouldn't make sense.
// Also, if this instruction is accessing the middle of a symbol instead of the start, we add an
// addend to indicate that.
fn make_fake_pool_reloc(
offset: i16,
cur_addr: u32,
pool_reloc: &Relocation,
symbols: &[Symbol],
) -> Option<Relocation> {
let pool_reloc = resolve_relocation(symbols, pool_reloc);
let offset_from_pool = pool_reloc.relocation.addend + offset as i64;
let target_address = pool_reloc.symbol.address.checked_add_signed(offset_from_pool)?;
let target_symbol;
let addend;
if let Some(section_index) = pool_reloc.symbol.section {
// Find the exact data symbol within the pool being accessed here based on the address.
target_symbol = symbols.iter().position(|s| {
s.section == Some(section_index)
&& s.size > 0
&& (s.address..s.address + s.size).contains(&target_address)
})?;
addend = target_address.checked_sub(symbols[target_symbol].address)? as i64;
} else {
// If the target symbol is in a different object (extern), we simply copy the pool
// relocation's target. This is because it's not possible to locate the actual symbol if
// it's extern. And doing that for external symbols would also be unnecessary, because when
// the compiler generates an instruction that accesses an external "pool" plus some offset,
// that won't be a normal pool that contains other symbols within it that we want to
// display. It will be something like a vtable for a class with multiple inheritance (for
// example, dCcD_Cyl in The Wind Waker). So just showing that vtable symbol plus an addend
// to represent the offset into it works fine in this case.
target_symbol = pool_reloc.relocation.target_symbol;
addend = offset_from_pool;
}
Some(Relocation {
flags: RelocationFlags::Elf(elf::R_PPC_NONE),
address: cur_addr as u64,
target_symbol,
addend,
})
}
// Searches through all instructions in a function, determining which registers have the addresses
// of pooled data relocations in them, finding which instructions load data from those addresses,
// and returns a Vec of "fake pool relocations" that simulate what a relocation for that instruction
// would look like if data hadn't been pooled.
// This method tries to follow the function's proper control flow. It keeps track of a queue of
// states it hasn't traversed yet, where each state holds an instruction address and a map of
// which registers hold which pool relocations at that point.
// When a conditional or unconditional branch is encountered, the destination of the branch is added
// to the queue. Conditional branches will traverse both the path where the branch is taken and the
// one where it's not. Unconditional branches only follow the branch, ignoring any code immediately
// after the branch instruction.
// Limitations: This method does not currently read switch statement jump tables.
// Instead, we guess that any parts of a function we missed were switch cases, and traverse them as
// if the last `bctr` before that address had branched there. This should be fairly accurate in
// practice - in testing the only instructions it seems to miss are double branches that the
// compiler generates in error which can never be reached during normal execution anyway.
// It should be possible to implement jump tables properly by reading them out of .data. But this
// will require keeping track of what value is loaded into each register so we can retrieve the jump
// table symbol when we encounter a `bctr`.
fn generate_fake_pool_relocations_for_function(
func_address: u64,
code: &[u8],
relocations: &[Relocation],
symbols: &[Symbol],
) -> Vec<Relocation> {
use ppc750cl::{Argument, InsIter, Opcode};
let mut visited_ins_addrs = BTreeSet::new();
let mut pool_reloc_for_addr = BTreeMap::new();
let mut ins_iters_with_gpr_state =
vec![(InsIter::new(code, func_address as u32), BTreeMap::new())];
let mut gpr_state_at_bctr = BTreeMap::new();
while let Some((ins_iter, mut gpr_pool_relocs)) = ins_iters_with_gpr_state.pop() {
for (cur_addr, ins) in ins_iter {
if visited_ins_addrs.contains(&cur_addr) {
// Avoid getting stuck in an infinite loop when following looping branches.
break;
}
visited_ins_addrs.insert(cur_addr);
let simplified = ins.simplified();
// First handle traversing the function's control flow.
let mut branch_dest = None;
for arg in simplified.args_iter() {
if let Argument::BranchDest(dest) = arg {
let dest = cur_addr.wrapping_add_signed(dest.0);
branch_dest = Some(dest);
break;
}
}
if let Some(branch_dest) = branch_dest {
if branch_dest >= func_address as u32
&& (branch_dest - func_address as u32) < code.len() as u32
{
let dest_offset_into_func = branch_dest - func_address as u32;
let dest_code_slice = &code[dest_offset_into_func as usize..];
match ins.op {
Opcode::Bc => {
// Conditional branch.
// Add the branch destination to the queue to do later.
ins_iters_with_gpr_state.push((
InsIter::new(dest_code_slice, branch_dest),
gpr_pool_relocs.clone(),
));
// Then continue on with the current iterator.
}
Opcode::B => {
if simplified.mnemonic != "bl" {
// Unconditional branch.
// Add the branch destination to the queue.
ins_iters_with_gpr_state.push((
InsIter::new(dest_code_slice, branch_dest),
gpr_pool_relocs.clone(),
));
// Break out of the current iterator so we can do the newly added one.
break;
}
}
_ => unreachable!(),
}
}
}
if let Opcode::Bcctr = ins.op {
if simplified.mnemonic == "bctr" {
// Unconditional branch to count register.
// Likely a jump table.
gpr_state_at_bctr.insert(cur_addr, gpr_pool_relocs.clone());
}
}
// Then handle keeping track of which GPR contains which pool relocation.
let reloc = relocations.iter().find(|r| (r.address as u32 & !3) == cur_addr);
if let Some(reloc) = reloc {
// This instruction has a real relocation, so it may be a pool load we want to keep
// track of.
let args = &simplified.args;
match (ins.op, args[0], args[1], args[2]) {
(
// `lis` + `addi`
Opcode::Addi,
Argument::GPR(addr_dst_gpr),
Argument::GPR(_addr_src_gpr),
Argument::Simm(_simm),
) => {
gpr_pool_relocs.insert(addr_dst_gpr.0, reloc.clone());
}
(
// `lis` + `ori`
Opcode::Ori,
Argument::GPR(addr_dst_gpr),
Argument::GPR(_addr_src_gpr),
Argument::Uimm(_uimm),
) => {
gpr_pool_relocs.insert(addr_dst_gpr.0, reloc.clone());
}
(Opcode::B, _, _, _) => {
if simplified.mnemonic == "bl" {
// When encountering a function call, clear any active pool relocations from
// the volatile registers (r0, r3-r12), but not the nonvolatile registers.
gpr_pool_relocs.remove(&0);
for gpr in 3..12 {
gpr_pool_relocs.remove(&gpr);
}
}
}
_ => {
clear_overwritten_gprs(ins, &mut gpr_pool_relocs);
}
}
} else if let Some(pool_ref) = get_pool_reference_for_inst(ins.op, &simplified) {
// This instruction doesn't have a real relocation, so it may be a reference to one of
// the already-loaded pools.
if let Some(pool_reloc) = gpr_pool_relocs.get(&pool_ref.addr_src_gpr.0) {
if let Some(fake_pool_reloc) =
make_fake_pool_reloc(pool_ref.addr_offset, cur_addr, pool_reloc, symbols)
{
pool_reloc_for_addr.insert(cur_addr, fake_pool_reloc);
}
if let Some(addr_dst_gpr) = pool_ref.addr_dst_gpr {
// If the address of the pool relocation got copied into another register, we
// need to keep track of it in that register too as future instructions may
// reference the symbol indirectly via this new register, instead of the
// register the symbol's address was originally loaded into.
// For example, the start of the function might `lis` + `addi` the start of the
// ...data pool into r25, and then later the start of a loop will `addi` r25
// with the offset within the .data section of an array variable into r21.
// Then the body of the loop will `lwzx` one of the array elements from r21.
let mut new_reloc = pool_reloc.clone();
new_reloc.addend += pool_ref.addr_offset as i64;
gpr_pool_relocs.insert(addr_dst_gpr.0, new_reloc);
} else {
clear_overwritten_gprs(ins, &mut gpr_pool_relocs);
}
} else {
clear_overwritten_gprs(ins, &mut gpr_pool_relocs);
}
} else {
clear_overwritten_gprs(ins, &mut gpr_pool_relocs);
}
}
// Finally, if we're about to finish the outer loop and don't have any more control flow to
// follow, we check if there are any instruction addresses in this function that we missed.
// If so, and if there were any `bctr` instructions before those points in this function,
// then we try to traverse those missing spots as switch cases.
if ins_iters_with_gpr_state.is_empty() {
let unseen_addrs = (func_address as u32..func_address as u32 + code.len() as u32)
.step_by(4)
.filter(|addr| !visited_ins_addrs.contains(addr));
for unseen_addr in unseen_addrs {
let prev_bctr_gpr_state = gpr_state_at_bctr
.iter()
.filter(|&(&addr, _)| addr < unseen_addr)
.min_by_key(|&(&addr, _)| addr)
.map(|(_, gpr_state)| gpr_state);
if let Some(gpr_pool_relocs) = prev_bctr_gpr_state {
let dest_offset_into_func = unseen_addr - func_address as u32;
let dest_code_slice = &code[dest_offset_into_func as usize..];
ins_iters_with_gpr_state.push((
InsIter::new(dest_code_slice, unseen_addr),
gpr_pool_relocs.clone(),
));
break;
}
}
}
}
pool_reloc_for_addr.values().cloned().collect()
}