2024-12-03 19:13:58 -05:00

579 lines
25 KiB
Rust

use std::{
borrow::Cow,
collections::{BTreeMap, HashMap},
};
use anyhow::{bail, ensure, Result};
use byteorder::BigEndian;
use cwextab::{decode_extab, ExceptionTableData};
use object::{
elf, File, Object, ObjectSection, ObjectSymbol, Relocation, RelocationFlags, RelocationTarget,
Symbol, SymbolKind,
};
use ppc750cl::{Argument, InsIter, Opcode, ParsedIns, GPR};
use crate::{
arch::{DataType, ObjArch, ProcessCodeResult},
diff::DiffObjConfig,
obj::{ObjIns, ObjInsArg, ObjInsArgValue, ObjReloc, ObjSection, ObjSymbol},
};
// Relative relocation, can be Simm, Offset or BranchDest
fn is_relative_arg(arg: &Argument) -> bool {
matches!(arg, Argument::Simm(_) | Argument::Offset(_) | Argument::BranchDest(_))
}
// Relative or absolute relocation, can be Uimm, Simm or Offset
fn is_rel_abs_arg(arg: &Argument) -> bool {
matches!(arg, Argument::Uimm(_) | Argument::Simm(_) | Argument::Offset(_))
}
fn is_offset_arg(arg: &Argument) -> bool { matches!(arg, Argument::Offset(_)) }
pub struct ObjArchPpc {
/// Exception info
pub extab: Option<BTreeMap<usize, ExceptionInfo>>,
}
impl ObjArchPpc {
pub fn new(file: &File) -> Result<Self> { Ok(Self { extab: decode_exception_info(file)? }) }
}
impl ObjArch for ObjArchPpc {
fn process_code(
&self,
address: u64,
code: &[u8],
_section_index: usize,
relocations: &[ObjReloc],
line_info: &BTreeMap<u64, u32>,
config: &DiffObjConfig,
) -> Result<ProcessCodeResult> {
let ins_count = code.len() / 4;
let mut ops = Vec::<u16>::with_capacity(ins_count);
let mut insts = Vec::<ObjIns>::with_capacity(ins_count);
let fake_pool_reloc_for_addr =
generate_fake_pool_reloc_for_addr_mapping(address, code, relocations);
for (cur_addr, mut ins) in InsIter::new(code, address as u32) {
let reloc = relocations.iter().find(|r| (r.address as u32 & !3) == cur_addr);
if let Some(reloc) = reloc {
// Zero out relocations
ins.code = match reloc.flags {
RelocationFlags::Elf { r_type: elf::R_PPC_EMB_SDA21 } => ins.code & !0x1FFFFF,
RelocationFlags::Elf { r_type: elf::R_PPC_REL24 } => ins.code & !0x3FFFFFC,
RelocationFlags::Elf { r_type: elf::R_PPC_REL14 } => ins.code & !0xFFFC,
RelocationFlags::Elf {
r_type: elf::R_PPC_ADDR16_HI | elf::R_PPC_ADDR16_HA | elf::R_PPC_ADDR16_LO,
} => ins.code & !0xFFFF,
_ => ins.code,
};
}
let orig = ins.basic().to_string();
let simplified = ins.simplified();
let formatted = simplified.to_string();
let mut reloc_arg = None;
if let Some(reloc) = reloc {
match reloc.flags {
RelocationFlags::Elf { r_type: elf::R_PPC_EMB_SDA21 } => {
reloc_arg = Some(1);
}
RelocationFlags::Elf { r_type: elf::R_PPC_REL24 | elf::R_PPC_REL14 } => {
reloc_arg = simplified.args.iter().rposition(is_relative_arg);
}
RelocationFlags::Elf {
r_type: elf::R_PPC_ADDR16_HI | elf::R_PPC_ADDR16_HA | elf::R_PPC_ADDR16_LO,
} => {
reloc_arg = simplified.args.iter().rposition(is_rel_abs_arg);
}
_ => {}
}
}
let mut args = vec![];
let mut branch_dest = None;
let mut writing_offset = false;
for (idx, arg) in simplified.args_iter().enumerate() {
if idx > 0 && !writing_offset {
args.push(ObjInsArg::PlainText(config.separator().into()));
}
if reloc_arg == Some(idx) {
let reloc = reloc.unwrap();
push_reloc(&mut args, reloc)?;
// For @sda21, we can omit the register argument
if matches!(reloc.flags, RelocationFlags::Elf { r_type: elf::R_PPC_EMB_SDA21 })
// Sanity check: the next argument should be r0
&& matches!(simplified.args.get(idx + 1), Some(Argument::GPR(GPR(0))))
{
break;
}
} else {
match arg {
Argument::Simm(simm) => {
args.push(ObjInsArg::Arg(ObjInsArgValue::Signed(simm.0 as i64)));
}
Argument::Uimm(uimm) => {
args.push(ObjInsArg::Arg(ObjInsArgValue::Unsigned(uimm.0 as u64)));
}
Argument::Offset(offset) => {
args.push(ObjInsArg::Arg(ObjInsArgValue::Signed(offset.0 as i64)));
}
Argument::BranchDest(dest) => {
let dest = cur_addr.wrapping_add_signed(dest.0) as u64;
args.push(ObjInsArg::BranchDest(dest));
branch_dest = Some(dest);
}
_ => {
args.push(ObjInsArg::Arg(ObjInsArgValue::Opaque(
arg.to_string().into(),
)));
}
};
}
if writing_offset {
args.push(ObjInsArg::PlainText(")".into()));
writing_offset = false;
}
if is_offset_arg(arg) {
args.push(ObjInsArg::PlainText("(".into()));
writing_offset = true;
}
}
ops.push(ins.op as u16);
let line = line_info.range(..=cur_addr as u64).last().map(|(_, &b)| b);
insts.push(ObjIns {
address: cur_addr as u64,
size: 4,
mnemonic: Cow::Borrowed(simplified.mnemonic),
args,
reloc: reloc.or(fake_pool_reloc_for_addr.get(&cur_addr)).cloned(),
op: ins.op as u16,
branch_dest,
line,
formatted,
orig: Some(orig),
});
}
Ok(ProcessCodeResult { ops, insts })
}
fn implcit_addend(
&self,
_file: &File<'_>,
_section: &ObjSection,
address: u64,
reloc: &Relocation,
) -> Result<i64> {
bail!("Unsupported PPC implicit relocation {:#x}:{:?}", address, reloc.flags())
}
fn demangle(&self, name: &str) -> Option<String> {
cwdemangle::demangle(name, &cwdemangle::DemangleOptions::default())
}
fn display_reloc(&self, flags: RelocationFlags) -> Cow<'static, str> {
match flags {
RelocationFlags::Elf { r_type } => match r_type {
elf::R_PPC_NONE => Cow::Borrowed("R_PPC_NONE"), // We use this for fake pool relocs
elf::R_PPC_ADDR16_LO => Cow::Borrowed("R_PPC_ADDR16_LO"),
elf::R_PPC_ADDR16_HI => Cow::Borrowed("R_PPC_ADDR16_HI"),
elf::R_PPC_ADDR16_HA => Cow::Borrowed("R_PPC_ADDR16_HA"),
elf::R_PPC_EMB_SDA21 => Cow::Borrowed("R_PPC_EMB_SDA21"),
elf::R_PPC_ADDR32 => Cow::Borrowed("R_PPC_ADDR32"),
elf::R_PPC_UADDR32 => Cow::Borrowed("R_PPC_UADDR32"),
elf::R_PPC_REL24 => Cow::Borrowed("R_PPC_REL24"),
elf::R_PPC_REL14 => Cow::Borrowed("R_PPC_REL14"),
_ => Cow::Owned(format!("<{flags:?}>")),
},
_ => Cow::Owned(format!("<{flags:?}>")),
}
}
fn guess_data_type(&self, instruction: &ObjIns) -> Option<super::DataType> {
if instruction.reloc.as_ref().is_some_and(|r| r.target.name.starts_with("@stringBase")) {
return Some(DataType::String);
}
let op = Opcode::from(instruction.op as u8);
if let Some(ty) = guess_data_type_from_load_store_inst_op(op) {
Some(ty)
} else if op == Opcode::Addi {
// Assume that any addi instruction that references a local symbol is loading a string.
// This hack is not ideal and results in tons of false positives where it will show
// garbage strings (e.g. misinterpreting arrays, float literals, etc).
// But not all strings are in the @stringBase pool, so the condition above that checks
// the target symbol name would miss some.
Some(DataType::String)
} else {
None
}
}
fn display_data_type(&self, ty: DataType, bytes: &[u8]) -> Option<String> {
ty.display_bytes::<BigEndian>(bytes)
}
fn ppc(&self) -> Option<&ObjArchPpc> { Some(self) }
}
impl ObjArchPpc {
pub fn extab_for_symbol(&self, symbol: &ObjSymbol) -> Option<&ExceptionInfo> {
symbol.original_index.and_then(|i| self.extab.as_ref()?.get(&i))
}
}
fn push_reloc(args: &mut Vec<ObjInsArg>, reloc: &ObjReloc) -> Result<()> {
match reloc.flags {
RelocationFlags::Elf { r_type } => match r_type {
elf::R_PPC_ADDR16_LO => {
args.push(ObjInsArg::Reloc);
args.push(ObjInsArg::PlainText("@l".into()));
}
elf::R_PPC_ADDR16_HI => {
args.push(ObjInsArg::Reloc);
args.push(ObjInsArg::PlainText("@h".into()));
}
elf::R_PPC_ADDR16_HA => {
args.push(ObjInsArg::Reloc);
args.push(ObjInsArg::PlainText("@ha".into()));
}
elf::R_PPC_EMB_SDA21 => {
args.push(ObjInsArg::Reloc);
args.push(ObjInsArg::PlainText("@sda21".into()));
}
elf::R_PPC_ADDR32 | elf::R_PPC_UADDR32 | elf::R_PPC_REL24 | elf::R_PPC_REL14 => {
args.push(ObjInsArg::Reloc);
}
_ => bail!("Unsupported ELF PPC relocation type {r_type}"),
},
flags => bail!("Unsupported PPC relocation kind: {flags:?}"),
};
Ok(())
}
#[derive(Debug, Clone)]
pub struct ExtabSymbolRef {
pub original_index: usize,
pub name: String,
pub demangled_name: Option<String>,
}
#[derive(Debug, Clone)]
pub struct ExceptionInfo {
pub eti_symbol: ExtabSymbolRef,
pub etb_symbol: ExtabSymbolRef,
pub data: ExceptionTableData,
pub dtors: Vec<ExtabSymbolRef>,
}
fn decode_exception_info(file: &File<'_>) -> Result<Option<BTreeMap<usize, ExceptionInfo>>> {
let Some(extab_section) = file.section_by_name("extab") else {
return Ok(None);
};
let Some(extabindex_section) = file.section_by_name("extabindex") else {
return Ok(None);
};
let mut result = BTreeMap::new();
let extab_relocations = extab_section.relocations().collect::<BTreeMap<u64, Relocation>>();
let extabindex_relocations =
extabindex_section.relocations().collect::<BTreeMap<u64, Relocation>>();
for extabindex in file.symbols().filter(|symbol| {
symbol.section_index() == Some(extabindex_section.index())
&& symbol.kind() == SymbolKind::Data
}) {
if extabindex.size() != 12 {
log::warn!("Invalid extabindex entry size {}", extabindex.size());
continue;
}
// Each extabindex entry has two relocations:
// - 0x0: The function that the exception table is for
// - 0x8: The relevant entry in extab section
let Some(extab_func_reloc) = extabindex_relocations.get(&extabindex.address()) else {
log::warn!("Failed to find function relocation for extabindex entry");
continue;
};
let Some(extab_reloc) = extabindex_relocations.get(&(extabindex.address() + 8)) else {
log::warn!("Failed to find extab relocation for extabindex entry");
continue;
};
// Resolve the function and extab symbols
let Some(extab_func) = relocation_symbol(file, extab_func_reloc)? else {
log::warn!("Failed to find function symbol for extabindex entry");
continue;
};
let extab_func_name = extab_func.name()?;
let Some(extab) = relocation_symbol(file, extab_reloc)? else {
log::warn!("Failed to find extab symbol for extabindex entry");
continue;
};
let extab_start_addr = extab.address() - extab_section.address();
let extab_end_addr = extab_start_addr + extab.size();
// All relocations in the extab section are dtors
let mut dtors: Vec<ExtabSymbolRef> = vec![];
for (_, reloc) in extab_relocations.range(extab_start_addr..extab_end_addr) {
let Some(symbol) = relocation_symbol(file, reloc)? else {
log::warn!("Failed to find symbol for extab relocation");
continue;
};
dtors.push(make_symbol_ref(&symbol)?);
}
// Decode the extab data
let Some(extab_data) = extab_section.data_range(extab_start_addr, extab.size())? else {
log::warn!("Failed to get extab data for function {}", extab_func_name);
continue;
};
let data = match decode_extab(extab_data) {
Ok(decoded_data) => decoded_data,
Err(e) => {
log::warn!(
"Exception table decoding failed for function {}, reason: {}",
extab_func_name,
e.to_string()
);
return Ok(None);
}
};
//Add the new entry to the list
result.insert(extab_func.index().0, ExceptionInfo {
eti_symbol: make_symbol_ref(&extabindex)?,
etb_symbol: make_symbol_ref(&extab)?,
data,
dtors,
});
}
Ok(Some(result))
}
fn relocation_symbol<'data, 'file>(
file: &'file File<'data>,
relocation: &Relocation,
) -> Result<Option<Symbol<'data, 'file>>> {
let addend = relocation.addend();
match relocation.target() {
RelocationTarget::Symbol(idx) => {
ensure!(addend == 0, "Symbol relocations must have zero addend");
Ok(Some(file.symbol_by_index(idx)?))
}
RelocationTarget::Section(idx) => {
ensure!(addend >= 0, "Section relocations must have non-negative addend");
let addend = addend as u64;
Ok(file
.symbols()
.find(|symbol| symbol.section_index() == Some(idx) && symbol.address() == addend))
}
target => bail!("Unsupported relocation target: {target:?}"),
}
}
fn make_symbol_ref(symbol: &Symbol) -> Result<ExtabSymbolRef> {
let name = symbol.name()?.to_string();
let demangled_name = cwdemangle::demangle(&name, &cwdemangle::DemangleOptions::default());
Ok(ExtabSymbolRef { original_index: symbol.index().0, name, demangled_name })
}
fn guess_data_type_from_load_store_inst_op(inst_op: Opcode) -> Option<DataType> {
match inst_op {
Opcode::Lbz | Opcode::Lbzu | Opcode::Lbzux | Opcode::Lbzx => Some(DataType::Int8),
Opcode::Lhz | Opcode::Lhzu | Opcode::Lhzux | Opcode::Lhzx => Some(DataType::Int16),
Opcode::Lha | Opcode::Lhau | Opcode::Lhaux | Opcode::Lhax => Some(DataType::Int16),
Opcode::Lwz | Opcode::Lwzu | Opcode::Lwzux | Opcode::Lwzx => Some(DataType::Int32),
Opcode::Lfs | Opcode::Lfsu | Opcode::Lfsux | Opcode::Lfsx => Some(DataType::Float),
Opcode::Lfd | Opcode::Lfdu | Opcode::Lfdux | Opcode::Lfdx => Some(DataType::Double),
Opcode::Stb | Opcode::Stbu | Opcode::Stbux | Opcode::Stbx => Some(DataType::Int8),
Opcode::Sth | Opcode::Sthu | Opcode::Sthux | Opcode::Sthx => Some(DataType::Int16),
Opcode::Stw | Opcode::Stwu | Opcode::Stwux | Opcode::Stwx => Some(DataType::Int32),
Opcode::Stfs | Opcode::Stfsu | Opcode::Stfsux | Opcode::Stfsx => Some(DataType::Float),
Opcode::Stfd | Opcode::Stfdu | Opcode::Stfdux | Opcode::Stfdx => Some(DataType::Double),
_ => None,
}
}
// Given an instruction, determine if it could accessing data at the address in a register.
// If so, return the offset added to the register's address, the register containing that address,
// and (optionally) which destination register the address is being copied into.
fn get_offset_and_addr_gpr_for_possible_pool_reference(
opcode: Opcode,
simplified: &ParsedIns,
) -> Option<(i16, GPR, Option<GPR>)> {
let args = &simplified.args;
if guess_data_type_from_load_store_inst_op(opcode).is_some() {
match (args[1], args[2]) {
(Argument::Offset(offset), Argument::GPR(addr_src_gpr)) => {
// e.g. lwz. Immediate offset.
Some((offset.0, addr_src_gpr, None))
}
(Argument::GPR(addr_src_gpr), Argument::GPR(_offset_gpr)) => {
// e.g. lwzx. The offset is in a register and was likely calculated from an index.
// Treat the offset as being 0 in this case to show the first element of the array.
// It may be possible to show all elements by figuring out the stride of the array
// from the calculations performed on the index before it's put into offset_gpr, but
// this would be much more complicated, so it's not currently done.
Some((0, addr_src_gpr, None))
}
_ => None,
}
} else {
// If it's not a load/store instruction, there's two more possibilities we need to handle.
// 1. It could be loading a pointer to a string.
// 2. It could be moving the relocation address plus an offset into a different register to
// load from later.
// If either of these match, we also want to return the destination register that the
// address is being copied into so that we can detect any future references to that new
// register as well.
match (opcode, args[0], args[1], args[2]) {
(
Opcode::Addi,
Argument::GPR(addr_dst_gpr),
Argument::GPR(addr_src_gpr),
Argument::Simm(simm),
) => Some((simm.0, addr_src_gpr, Some(addr_dst_gpr))),
(
Opcode::Or,
Argument::GPR(addr_dst_gpr),
Argument::GPR(addr_src_gpr),
Argument::None,
) => Some((0, addr_src_gpr, Some(addr_dst_gpr))), // `mr` or `mr.`
_ => None,
}
}
}
// We create a fake relocation for an instruction, vaguely simulating what the actual relocation
// might have looked like if it wasn't pooled. This is so minimal changes are needed to display
// pooled accesses vs non-pooled accesses. We set the relocation type to R_PPC_NONE to indicate that
// there isn't really a relocation here, as copying the pool relocation's type wouldn't make sense.
// Also, if this instruction is accessing the middle of a symbol instead of the start, we add an
// addend to indicate that.
fn make_fake_pool_reloc(offset: i16, cur_addr: u32, pool_reloc: &ObjReloc) -> Option<ObjReloc> {
let offset_from_pool = pool_reloc.addend + offset as i64;
let target_address = pool_reloc.target.address.checked_add_signed(offset_from_pool)?;
let orig_section_index = pool_reloc.target.orig_section_index?;
// We also need to create a fake target symbol to go inside our fake relocation.
// This is because we don't have access to list of all symbols in this section, so we can't find
// the real symbol yet. Instead we make a placeholder that has the correct `orig_section_index`
// and `address` fields, and then later on when this information is displayed to the user, we
// can find the real symbol by searching through the object's section's symbols for one that
// contains this address.
let fake_target_symbol = ObjSymbol {
name: "".to_string(),
demangled_name: None,
address: target_address,
section_address: 0,
size: 0,
size_known: false,
kind: Default::default(),
flags: Default::default(),
orig_section_index: Some(orig_section_index),
virtual_address: None,
original_index: None,
bytes: vec![],
};
// The addend is also fake because we don't know yet if the `target_address` here is the exact
// start of the symbol or if it's in the middle of it.
let fake_addend = 0;
Some(ObjReloc {
flags: RelocationFlags::Elf { r_type: elf::R_PPC_NONE },
address: cur_addr as u64,
target: fake_target_symbol,
addend: fake_addend,
})
}
// Searches through all instructions in a function, determining which registers have the addresses
// of pooled data relocations in them, finding which instructions load data from those addresses,
// and constructing a mapping of the address of that instruction to a "fake pool relocation" that
// simulates what that instruction's relocation would look like if data hadn't been pooled.
// Limitations: This method currently only goes through the instructions in a function in linear
// order, from start to finish. It does *not* follow any branches. This means that it could have
// false positives or false negatives in determining which relocation is currently loaded in which
// register at any given point in the function, as control flow is not respected.
// There are currently no known examples of this method producing inaccurate results in reality, but
// if examples are found, it may be possible to update this method to also follow all branches so
// that it produces more accurate results.
fn generate_fake_pool_reloc_for_addr_mapping(
address: u64,
code: &[u8],
relocations: &[ObjReloc],
) -> HashMap<u32, ObjReloc> {
let mut active_pool_relocs = HashMap::new();
let mut pool_reloc_for_addr = HashMap::new();
for (cur_addr, ins) in InsIter::new(code, address as u32) {
let simplified = ins.simplified();
let reloc = relocations.iter().find(|r| (r.address as u32 & !3) == cur_addr);
if let Some(reloc) = reloc {
// This instruction has a real relocation, so it may be a pool load we want to keep
// track of.
let args = &simplified.args;
match (ins.op, args[0], args[1], args[2]) {
(
Opcode::Addi,
Argument::GPR(addr_dst_gpr),
Argument::GPR(_addr_src_gpr),
Argument::Simm(_simm),
) => {
active_pool_relocs.insert(addr_dst_gpr.0, reloc.clone()); // `lis` + `addi`
}
(
Opcode::Ori,
Argument::GPR(addr_dst_gpr),
Argument::GPR(_addr_src_gpr),
Argument::Uimm(_uimm),
) => {
active_pool_relocs.insert(addr_dst_gpr.0, reloc.clone()); // `lis` + `ori`
}
(Opcode::B, _, _, _) => {
if simplified.mnemonic == "bl" {
// When encountering a function call, clear any active pool relocations from
// the volatile registers (r0, r3-r12), but not the nonvolatile registers.
active_pool_relocs.remove(&0);
for gpr in 3..12 {
active_pool_relocs.remove(&gpr);
}
}
}
_ => {}
}
} else if let Some((offset, addr_src_gpr, addr_dst_gpr)) =
get_offset_and_addr_gpr_for_possible_pool_reference(ins.op, &simplified)
{
// This instruction doesn't have a real relocation, so it may be a reference to one of
// the already-loaded pools.
if let Some(pool_reloc) = active_pool_relocs.get(&addr_src_gpr.0) {
if let Some(fake_pool_reloc) = make_fake_pool_reloc(offset, cur_addr, pool_reloc) {
pool_reloc_for_addr.insert(cur_addr, fake_pool_reloc);
}
if let Some(addr_dst_gpr) = addr_dst_gpr {
// If the address of the pool relocation got copied into another register, we
// need to keep track of it in that register too as future instructions may
// reference the symbol indirectly via this new register, instead of the
// register the symbol's address was originally loaded into.
// For example, the start of the function might `lis` + `addi` the start of the
// ...data pool into r25, and then later the start of a loop will `addi` r25
// with the offset within the .data section of an array variable into r21.
// Then the body of the loop will `lwzx` one of the array elements from r21.
let mut new_reloc = pool_reloc.clone();
new_reloc.addend += offset as i64;
active_pool_relocs.insert(addr_dst_gpr.0, new_reloc);
}
}
}
}
pool_reloc_for_addr
}