Merge branch 'master' of ssh://git.axiodl.com:6431/libAthena/athena

This commit is contained in:
Jack Andersen 2019-09-30 21:16:11 -10:00
commit 42581c922a
18 changed files with 391 additions and 306 deletions

View File

@ -19,19 +19,6 @@ set(ATHENA_VERSION
add_subdirectory(extern) add_subdirectory(extern)
if(WIN32)
list(APPEND CORE_EXTRA src/win32_largefilewrapper.c include/win32_largefilewrapper.h
src/athena/FileWriterWin32.cpp src/athena/FileReaderWin32.cpp)
else()
list(APPEND CORE_EXTRA src/athena/FileWriterNix.cpp src/athena/FileReader.cpp)
if(APPLE OR GEKKO OR NX OR ${CMAKE_SYSTEM_NAME} MATCHES "FreeBSD")
list(APPEND CORE_EXTRA src/osx_largefilewrapper.c include/osx_largefilewrapper.h)
if(GEKKO OR NX)
list(APPEND CORE_EXTRA src/gekko_support.c include/gekko_support.h)
endif()
endif()
endif()
add_library(athena-core add_library(athena-core
src/athena/Utility.cpp src/athena/Utility.cpp
src/athena/MemoryReader.cpp src/athena/MemoryReader.cpp
@ -49,7 +36,6 @@ add_library(athena-core
src/athena/FileInfo.cpp src/athena/FileInfo.cpp
src/athena/Dir.cpp src/athena/Dir.cpp
src/athena/DNAYaml.cpp src/athena/DNAYaml.cpp
${CORE_EXTRA}
include/athena/IStream.hpp include/athena/IStream.hpp
include/athena/IStreamReader.hpp include/athena/IStreamReader.hpp
@ -81,10 +67,46 @@ add_library(athena-core
include/yaml.h include/yaml.h
include/utf8proc.h include/utf8proc.h
) )
if(WIN32)
target_sources(athena-core PRIVATE
src/win32_largefilewrapper.c
include/win32_largefilewrapper.h
src/athena/FileWriterWin32.cpp
src/athena/FileReaderWin32.cpp
)
target_compile_definitions(athena-core PRIVATE
-DNOMINMAX
-DWIN32_LEAN_AND_MEAN
)
else()
target_sources(athena-core PRIVATE
src/athena/FileWriterNix.cpp
src/athena/FileReader.cpp
)
if(APPLE OR GEKKO OR NX OR ${CMAKE_SYSTEM_NAME} MATCHES "FreeBSD")
target_sources(athena-core PRIVATE
src/osx_largefilewrapper.c
include/osx_largefilewrapper.h
)
if(GEKKO OR NX)
target_sources(athena-core PRIVATE
src/gekko_support.c
include/gekko_support.h
)
endif()
endif()
endif()
target_include_directories(athena-core PUBLIC target_include_directories(athena-core PUBLIC
$<BUILD_INTERFACE:${CMAKE_CURRENT_SOURCE_DIR}/include> $<BUILD_INTERFACE:${CMAKE_CURRENT_SOURCE_DIR}/include>
$<BUILD_INTERFACE:${ZLIB_INCLUDE_DIR}>) $<BUILD_INTERFACE:${ZLIB_INCLUDE_DIR}>
target_link_libraries(athena-core PUBLIC athena-libyaml fmt) )
target_link_libraries(athena-core PUBLIC
athena-libyaml
fmt
)
add_library(athena-sakura EXCLUDE_FROM_ALL add_library(athena-sakura EXCLUDE_FROM_ALL
src/athena/Sprite.cpp src/athena/Sprite.cpp
@ -129,7 +151,7 @@ add_library(athena-wiisave EXCLUDE_FROM_ALL
include/sha1.h include/sha1.h
) )
if(NOT MSVC AND NOT GEKKO AND NOT NX) if(NOT MSVC AND NOT GEKKO AND NOT NX)
set_source_files_properties(src/aes.cpp PROPERTIES COMPILE_FLAGS -maes) set_source_files_properties(src/aes.cpp PROPERTIES COMPILE_FLAGS -maes)
endif() endif()

View File

@ -1,19 +1,22 @@
#include <cstdint>
#include <cstdio> #include <cstdio>
#include <iostream> #include <memory>
#include "clang/AST/ASTConsumer.h" #include <string>
#include "clang/AST/RecursiveASTVisitor.h" #include <utility>
#include "clang/Frontend/CompilerInstance.h" #include <vector>
#include "clang/Frontend/FrontendAction.h"
#include "clang/Frontend/Utils.h" #include <clang/AST/ASTConsumer.h>
#include "clang/Tooling/Tooling.h" #include <clang/AST/DeclCXX.h>
#include "clang/Lex/Preprocessor.h" #include <clang/AST/RecursiveASTVisitor.h>
#include "clang/Sema/Sema.h" #include <clang/Basic/Version.h>
#include "clang/AST/RecordLayout.h" #include <clang/Frontend/CompilerInstance.h>
#include "clang/AST/DeclCXX.h" #include <clang/Frontend/FrontendAction.h>
#include "clang/AST/TypeLoc.h" #include <clang/Frontend/Utils.h>
#include "clang/Basic/Version.h" #include <clang/Sema/Sema.h>
#include "llvm/Support/Format.h" #include <clang/Tooling/Tooling.h>
#include "llvm/Support/CommandLine.h"
#include <llvm/Support/CommandLine.h>
#include <llvm/Support/Format.h>
using namespace std::literals; using namespace std::literals;
@ -134,15 +137,15 @@ class ATDNAEmitVisitor : public clang::RecursiveASTVisitor<ATDNAEmitVisitor> {
const auto* vType = static_cast<const clang::VectorType*>(field->getType().getTypePtr()); const auto* vType = static_cast<const clang::VectorType*>(field->getType().getTypePtr());
if (vType->isVectorType()) { if (vType->isVectorType()) {
const auto* eType = static_cast<const clang::BuiltinType*>(vType->getElementType().getTypePtr()); const auto* eType = static_cast<const clang::BuiltinType*>(vType->getElementType().getTypePtr());
const uint64_t width = context.getTypeInfo(eType).Width; const uint64_t typeWidth = context.getTypeInfo(eType).Width;
if (!eType->isBuiltinType() || !eType->isFloatingPoint() || (width != 32 && width != 64)) if (!eType->isBuiltinType() || !eType->isFloatingPoint() || (typeWidth != 32 && typeWidth != 64))
continue; continue;
if (vType->getNumElements() == 2) { if (vType->getNumElements() == 2) {
return width / 8 * 2; return typeWidth / 8 * 2;
} else if (vType->getNumElements() == 3) { } else if (vType->getNumElements() == 3) {
return width / 8 * 3; return typeWidth / 8 * 3;
} else if (vType->getNumElements() == 4) { } else if (vType->getNumElements() == 4) {
return width / 8 * 4; return typeWidth / 8 * 4;
} }
} }
} }
@ -164,7 +167,7 @@ class ATDNAEmitVisitor : public clang::RecursiveASTVisitor<ATDNAEmitVisitor> {
static std::string GetPropIdExpr(const clang::FieldDecl* field, const std::string& fieldName) { static std::string GetPropIdExpr(const clang::FieldDecl* field, const std::string& fieldName) {
std::string fieldStr = GetFieldString(fieldName); std::string fieldStr = GetFieldString(fieldName);
std::string propIdExpr = "\"" + fieldStr + "\"sv"; std::string propIdExpr = "\""s.append(fieldStr).append("\"sv");
for (clang::Attr* attr : field->attrs()) { for (clang::Attr* attr : field->attrs()) {
if (clang::AnnotateAttr* annot = clang::dyn_cast_or_null<clang::AnnotateAttr>(attr)) { if (clang::AnnotateAttr* annot = clang::dyn_cast_or_null<clang::AnnotateAttr>(attr)) {
llvm::StringRef textRef = annot->getAnnotation(); llvm::StringRef textRef = annot->getAnnotation();
@ -184,22 +187,39 @@ class ATDNAEmitVisitor : public clang::RecursiveASTVisitor<ATDNAEmitVisitor> {
static std::string GetOpString(const std::string& fieldName, const std::string& propIdExpr, static std::string GetOpString(const std::string& fieldName, const std::string& propIdExpr,
const std::string& endianExpr) { const std::string& endianExpr) {
return "<Op, "s + endianExpr + ">(athena::io::PropId(" + propIdExpr + "), " + fieldName + ", s)"; return "<Op, "s.append(endianExpr)
.append(">(athena::io::PropId(")
.append(propIdExpr)
.append("), ")
.append(fieldName)
.append(", s)");
} }
static std::string GetOpString(const std::string& fieldName, const std::string& propIdExpr) { static std::string GetOpString(const std::string& fieldName, const std::string& propIdExpr) {
return "<Op>(athena::io::PropId(" + propIdExpr + "), " + fieldName + ", s)"; return "<Op>(athena::io::PropId("s.append(propIdExpr).append("), ").append(fieldName).append(", s)");
} }
static std::string GetVectorOpString(const std::string& fieldName, const std::string& propIdExpr, static std::string GetVectorOpString(const std::string& fieldName, const std::string& propIdExpr,
const std::string& sizeExpr, const std::string& endianExpr) { const std::string& sizeExpr, const std::string& endianExpr) {
return "<Op, "s + endianExpr + ">(athena::io::PropId(" + propIdExpr + "), " + fieldName + ", " + sizeExpr + ", s)"; return "<Op, "s.append(endianExpr)
.append(">(athena::io::PropId(")
.append(propIdExpr)
.append("), ")
.append(fieldName)
.append(", ")
.append(sizeExpr)
.append(", s)");
} }
static std::string GetVectorOpString(const std::string& fieldName, const std::string& propIdExpr, static std::string GetVectorOpString(const std::string& fieldName, const std::string& propIdExpr,
const std::string& sizeExpr) { const std::string& sizeExpr) {
return "<Op>(athena::io::PropId(" + propIdExpr + "), " + fieldName + ", " + sizeExpr + ", s)"; return "<Op>(athena::io::PropId("s.append(propIdExpr)
.append("), ")
.append(fieldName)
.append(", ")
.append(sizeExpr)
.append(", s)");
} }
static void RecurseNestedTypeName(const clang::DeclContext* decl, std::string& templateStmt, std::string& qualType) { static void RecurseNestedTypeName(const clang::DeclContext* decl, std::string& templateStmt, std::string& qualType) {
@ -220,7 +240,7 @@ class ATDNAEmitVisitor : public clang::RecursiveASTVisitor<ATDNAEmitVisitor> {
templateStmt += ", "; templateStmt += ", ";
qualType += ", "; qualType += ", ";
} }
templateStmt += "class "s + tpParm->getName().data(); templateStmt += "class "s.append(tpParm->getName().str());
qualType += tpParm->getName(); qualType += tpParm->getName();
needsComma = true; needsComma = true;
} else if (const clang::NonTypeTemplateParmDecl* nonTypeParm = } else if (const clang::NonTypeTemplateParmDecl* nonTypeParm =
@ -229,7 +249,7 @@ class ATDNAEmitVisitor : public clang::RecursiveASTVisitor<ATDNAEmitVisitor> {
templateStmt += ", "; templateStmt += ", ";
qualType += ", "; qualType += ", ";
} }
templateStmt += nonTypeParm->getType().getAsString() + ' ' + nonTypeParm->getName().data(); templateStmt += nonTypeParm->getType().getAsString().append(1, ' ').append(nonTypeParm->getName().str());
qualType += nonTypeParm->getName(); qualType += nonTypeParm->getName();
needsComma = true; needsComma = true;
} }
@ -277,10 +297,13 @@ class ATDNAEmitVisitor : public clang::RecursiveASTVisitor<ATDNAEmitVisitor> {
int numTuples = int(specParms.size()) / numParms; int numTuples = int(specParms.size()) / numParms;
for (const auto& parent : parentSpecializations) { for (const auto& parent : parentSpecializations) {
for (int i = 0; i < numTuples; ++i) { for (int i = 0; i < numTuples; ++i) {
if (parent.first.empty()) if (parent.first.empty()) {
specializations.emplace_back(std::string(rec->getName().data()) + '<', 1); specializations.emplace_back(std::string(rec->getName().str()).append(1, '<'), 1);
else } else {
specializations.emplace_back(parent.first + "::" + rec->getName().data() + '<', parent.second + 1); auto specialization =
std::string(parent.first).append("::").append(rec->getName().str()).append(1, '<');
specializations.emplace_back(std::move(specialization), parent.second + 1);
}
bool needsComma = false; bool needsComma = false;
for (auto it = specParms.begin() + i * numParms; for (auto it = specParms.begin() + i * numParms;
it != specParms.end() && it != specParms.begin() + (i + 1) * numParms; ++it) { it != specParms.end() && it != specParms.begin() + (i + 1) * numParms; ++it) {
@ -290,7 +313,7 @@ class ATDNAEmitVisitor : public clang::RecursiveASTVisitor<ATDNAEmitVisitor> {
specializations.back().first += trimmed; specializations.back().first += trimmed;
needsComma = true; needsComma = true;
} }
specializations.back().first += ">"; specializations.back().first += '>';
} }
} }
foundSpecializations = true; foundSpecializations = true;
@ -301,16 +324,20 @@ class ATDNAEmitVisitor : public clang::RecursiveASTVisitor<ATDNAEmitVisitor> {
} }
} }
if (!foundSpecializations) if (!foundSpecializations) {
for (const auto& parent : parentSpecializations) { for (const auto& parent : parentSpecializations) {
if (const clang::NamedDecl* namedDecl = clang::dyn_cast_or_null<clang::NamedDecl>(decl)) { if (const clang::NamedDecl* namedDecl = clang::dyn_cast_or_null<clang::NamedDecl>(decl)) {
if (parent.first.empty()) if (parent.first.empty()) {
specializations.emplace_back(namedDecl->getName().data(), parent.second); specializations.emplace_back(namedDecl->getName().str(), parent.second);
else } else {
specializations.emplace_back(parent.first + "::" + namedDecl->getName().data(), parent.second); specializations.emplace_back(std::string(parent.first).append("::").append(namedDecl->getName().str()),
} else parent.second);
}
} else {
specializations.push_back(parent); specializations.push_back(parent);
}
} }
}
} }
static std::vector<std::pair<std::string, int>> GetNestedTypeSpecializations(const clang::DeclContext* decl) { static std::vector<std::pair<std::string, int>> GetNestedTypeSpecializations(const clang::DeclContext* decl) {
@ -336,8 +363,8 @@ class ATDNAEmitVisitor : public clang::RecursiveASTVisitor<ATDNAEmitVisitor> {
std::string m_fieldName; std::string m_fieldName;
std::string m_ioOp; std::string m_ioOp;
bool m_squelched = false; bool m_squelched = false;
OutputNode(NodeType type, const std::string& fieldName, const std::string& ioOp, bool squelched) OutputNode(NodeType type, std::string fieldName, std::string ioOp, bool squelched)
: m_type(type), m_fieldName(fieldName), m_ioOp(ioOp), m_squelched(squelched) {} : m_type(type), m_fieldName(std::move(fieldName)), m_ioOp(std::move(ioOp)), m_squelched(squelched) {}
}; };
std::vector<OutputNode> outputNodes; std::vector<OutputNode> outputNodes;
@ -389,24 +416,24 @@ class ATDNAEmitVisitor : public clang::RecursiveASTVisitor<ATDNAEmitVisitor> {
} }
std::string ioOp; std::string ioOp;
bool isDNAType = false;
for (const clang::TemplateArgument& arg : *tsType) { for (const clang::TemplateArgument& arg : *tsType) {
if (arg.getKind() == clang::TemplateArgument::Type) { if (arg.getKind() == clang::TemplateArgument::Type) {
if (defaultEndian) if (defaultEndian) {
ioOp = GetOpString(fieldName, propIdExpr); ioOp = GetOpString(fieldName, propIdExpr);
else } else {
ioOp = GetOpString(fieldName, propIdExpr, endianExprStr); ioOp = GetOpString(fieldName, propIdExpr, endianExprStr);
}
} }
} }
if (ioOp.empty()) { if (ioOp.empty()) {
clang::DiagnosticBuilder diag = context.getDiagnostics().Report(field->getLocation(), AthenaError); clang::DiagnosticBuilder diag = context.getDiagnostics().Report(field->getLocation(), AthenaError);
diag.AddString("Unable to use type '" + tsDecl->getName().str() + "' with Athena"); diag.AddString("Unable to use type '"s.append(tsDecl->getName().str()).append("' with Athena"));
diag.AddSourceRange(clang::CharSourceRange(field->getSourceRange(), true)); diag.AddSourceRange(clang::CharSourceRange(field->getSourceRange(), true));
continue; continue;
} }
outputNodes.emplace_back(NodeType::Do, fieldName, ioOp, false); outputNodes.emplace_back(NodeType::Do, std::move(fieldName), std::move(ioOp), false);
} else if (tsDecl->getName() == "Vector") { } else if (tsDecl->getName() == "Vector") {
llvm::APSInt endian(64, -1); llvm::APSInt endian(64, -1);
std::string endianExprStr; std::string endianExprStr;
@ -457,20 +484,20 @@ class ATDNAEmitVisitor : public clang::RecursiveASTVisitor<ATDNAEmitVisitor> {
clang::QualType templateType; clang::QualType templateType;
std::string ioOp; std::string ioOp;
bool isDNAType = false;
for (const clang::TemplateArgument& arg : *tsType) { for (const clang::TemplateArgument& arg : *tsType) {
if (arg.getKind() == clang::TemplateArgument::Type) { if (arg.getKind() == clang::TemplateArgument::Type) {
templateType = arg.getAsType().getCanonicalType(); templateType = arg.getAsType().getCanonicalType();
if (defaultEndian) if (defaultEndian) {
ioOp = GetVectorOpString(fieldName, propIdExpr, sizeExpr); ioOp = GetVectorOpString(fieldName, propIdExpr, sizeExpr);
else } else {
ioOp = GetVectorOpString(fieldName, propIdExpr, sizeExpr, endianExprStr); ioOp = GetVectorOpString(fieldName, propIdExpr, sizeExpr, endianExprStr);
}
} }
} }
if (ioOp.empty()) { if (ioOp.empty()) {
clang::DiagnosticBuilder diag = context.getDiagnostics().Report(field->getLocation(), AthenaError); clang::DiagnosticBuilder diag = context.getDiagnostics().Report(field->getLocation(), AthenaError);
diag.AddString("Unable to use type '" + templateType.getAsString() + "' with Athena"); diag.AddString("Unable to use type '"s.append(templateType.getAsString()).append("' with Athena"));
diag.AddSourceRange(clang::CharSourceRange(field->getSourceRange(), true)); diag.AddSourceRange(clang::CharSourceRange(field->getSourceRange(), true));
continue; continue;
} }
@ -482,7 +509,7 @@ class ATDNAEmitVisitor : public clang::RecursiveASTVisitor<ATDNAEmitVisitor> {
continue; continue;
} }
outputNodes.emplace_back(NodeType::Do, fieldName, ioOp, false); outputNodes.emplace_back(NodeType::Do, std::move(fieldName), std::move(ioOp), false);
} else if (tsDecl->getName() == "Buffer") { } else if (tsDecl->getName() == "Buffer") {
const clang::Expr* sizeExpr = nullptr; const clang::Expr* sizeExpr = nullptr;
std::string sizeExprStr; std::string sizeExprStr;
@ -514,8 +541,7 @@ class ATDNAEmitVisitor : public clang::RecursiveASTVisitor<ATDNAEmitVisitor> {
} }
std::string ioOp = GetVectorOpString(fieldName, propIdExpr, sizeExprStr); std::string ioOp = GetVectorOpString(fieldName, propIdExpr, sizeExprStr);
outputNodes.emplace_back(NodeType::Do, std::move(fieldName), std::move(ioOp), false);
outputNodes.emplace_back(NodeType::Do, fieldName, ioOp, false);
} else if (tsDecl->getName() == "String") { } else if (tsDecl->getName() == "String") {
std::string sizeExprStr; std::string sizeExprStr;
for (const clang::TemplateArgument& arg : *tsType) { for (const clang::TemplateArgument& arg : *tsType) {
@ -537,12 +563,13 @@ class ATDNAEmitVisitor : public clang::RecursiveASTVisitor<ATDNAEmitVisitor> {
} }
std::string ioOp; std::string ioOp;
if (!sizeExprStr.empty()) if (!sizeExprStr.empty()) {
ioOp = GetVectorOpString(fieldName, propIdExpr, sizeExprStr); ioOp = GetVectorOpString(fieldName, propIdExpr, sizeExprStr);
else } else {
ioOp = GetOpString(fieldName, propIdExpr); ioOp = GetOpString(fieldName, propIdExpr);
}
outputNodes.emplace_back(NodeType::Do, fieldName, ioOp, false); outputNodes.emplace_back(NodeType::Do, std::move(fieldName), std::move(ioOp), false);
} else if (tsDecl->getName() == "WString") { } else if (tsDecl->getName() == "WString") {
llvm::APSInt endian(64, -1); llvm::APSInt endian(64, -1);
std::string endianExprStr; std::string endianExprStr;
@ -585,22 +612,24 @@ class ATDNAEmitVisitor : public clang::RecursiveASTVisitor<ATDNAEmitVisitor> {
std::string ioOp; std::string ioOp;
if (!sizeExprStr.empty()) { if (!sizeExprStr.empty()) {
if (defaultEndian) if (defaultEndian) {
ioOp = GetVectorOpString(fieldName, propIdExpr, sizeExprStr); ioOp = GetVectorOpString(fieldName, propIdExpr, sizeExprStr);
else } else {
ioOp = GetVectorOpString(fieldName, propIdExpr, sizeExprStr, endianExprStr); ioOp = GetVectorOpString(fieldName, propIdExpr, sizeExprStr, endianExprStr);
}
} else { } else {
if (defaultEndian) if (defaultEndian) {
ioOp = GetOpString(fieldName, propIdExpr); ioOp = GetOpString(fieldName, propIdExpr);
else } else {
ioOp = GetOpString(fieldName, propIdExpr, endianExprStr); ioOp = GetOpString(fieldName, propIdExpr, endianExprStr);
}
} }
outputNodes.emplace_back(NodeType::Do, fieldName, ioOp, false); outputNodes.emplace_back(NodeType::Do, std::move(fieldName), std::move(ioOp), false);
} else if (tsDecl->getName() == "Seek") { } else if (tsDecl->getName() == "Seek") {
size_t idx = 0; size_t idx = 0;
std::string offsetExprStr; std::string offsetExprStr;
llvm::APSInt direction(64, 0); llvm::APSInt direction(64, false);
const clang::Expr* directionExpr = nullptr; const clang::Expr* directionExpr = nullptr;
bool bad = false; bool bad = false;
for (const clang::TemplateArgument& arg : *tsType) { for (const clang::TemplateArgument& arg : *tsType) {
@ -620,8 +649,11 @@ class ATDNAEmitVisitor : public clang::RecursiveASTVisitor<ATDNAEmitVisitor> {
offsetExprStr = offsetLiteral.toString(10); offsetExprStr = offsetLiteral.toString(10);
} }
} else { } else {
directionExpr = expr; clang::APValue result;
if (!expr->isIntegerConstantExpr(direction, context)) { if (expr->isCXX11ConstantExpr(context, &result)) {
directionExpr = expr;
direction = result.getInt();
} else {
clang::DiagnosticBuilder diag = context.getDiagnostics().Report(expr->getExprLoc(), AthenaError); clang::DiagnosticBuilder diag = context.getDiagnostics().Report(expr->getExprLoc(), AthenaError);
diag.AddString("Unable to use non-constant direction expression in Athena"); diag.AddString("Unable to use non-constant direction expression in Athena");
diag.AddSourceRange(clang::CharSourceRange(expr->getSourceRange(), true)); diag.AddSourceRange(clang::CharSourceRange(expr->getSourceRange(), true));
@ -650,15 +682,16 @@ class ATDNAEmitVisitor : public clang::RecursiveASTVisitor<ATDNAEmitVisitor> {
continue; continue;
} }
if (directionVal == 0) if (directionVal == 0) {
outputNodes.emplace_back(NodeType::DoSeek, fieldName, "<Op>("s + offsetExprStr + ", athena::Begin, s)", outputNodes.emplace_back(NodeType::DoSeek, std::move(fieldName),
false); "<Op>("s.append(offsetExprStr).append(", athena::SeekOrigin::Begin, s)"), false);
else if (directionVal == 1) } else if (directionVal == 1) {
outputNodes.emplace_back(NodeType::DoSeek, fieldName, "<Op>("s + offsetExprStr + ", athena::Current, s)", outputNodes.emplace_back(NodeType::DoSeek, std::move(fieldName),
false); "<Op>("s.append(offsetExprStr).append(", athena::SeekOrigin::Current, s)"), false);
else if (directionVal == 2) } else if (directionVal == 2) {
outputNodes.emplace_back(NodeType::DoSeek, fieldName, "<Op>("s + offsetExprStr + ", athena::End, s)", outputNodes.emplace_back(NodeType::DoSeek, std::move(fieldName),
false); "<Op>("s.append(offsetExprStr).append(", athena::SeekOrigin::End, s)"), false);
}
} else if (tsDecl->getName() == "Align") { } else if (tsDecl->getName() == "Align") {
llvm::APSInt align(64, 0); llvm::APSInt align(64, 0);
bool bad = false; bool bad = false;
@ -677,25 +710,26 @@ class ATDNAEmitVisitor : public clang::RecursiveASTVisitor<ATDNAEmitVisitor> {
if (bad) if (bad)
continue; continue;
int64_t alignVal = align.getSExtValue(); const int64_t alignVal = align.getSExtValue();
if (alignVal) { if (alignVal) {
outputNodes.emplace_back(NodeType::DoAlign, fieldName, "<Op>("s + align.toString(10, true) + ", s)", false); outputNodes.emplace_back(NodeType::DoAlign, std::move(fieldName),
"<Op>("s.append(align.toString(10, true)).append(", s)"), false);
} }
} else { } else {
const clang::NamedDecl* nd = tsDecl->getTemplatedDecl(); const clang::NamedDecl* nd = tsDecl->getTemplatedDecl();
if (const clang::CXXRecordDecl* rd = clang::dyn_cast_or_null<clang::CXXRecordDecl>(nd)) { if (const clang::CXXRecordDecl* rd = clang::dyn_cast_or_null<clang::CXXRecordDecl>(nd)) {
std::string baseDNA; std::string baseDNA2;
if (isDNARecord(rd, baseDNA)) if (isDNARecord(rd, baseDNA2)) {
outputNodes.emplace_back(NodeType::Do, fieldName, GetOpString(fieldName, propIdExpr), false); outputNodes.emplace_back(NodeType::Do, std::move(fieldName), GetOpString(fieldName, propIdExpr), false);
}
} }
} }
} } else if (regType->getTypeClass() == clang::Type::Record) {
else if (regType->getTypeClass() == clang::Type::Record) {
const clang::CXXRecordDecl* cxxRDecl = regType->getAsCXXRecordDecl(); const clang::CXXRecordDecl* cxxRDecl = regType->getAsCXXRecordDecl();
std::string baseDNA; std::string baseDNA2;
if (cxxRDecl && isDNARecord(cxxRDecl, baseDNA)) if (cxxRDecl && isDNARecord(cxxRDecl, baseDNA2)) {
outputNodes.emplace_back(NodeType::Do, fieldName, GetOpString(fieldName, propIdExpr), false); outputNodes.emplace_back(NodeType::Do, std::move(fieldName), GetOpString(fieldName, propIdExpr), false);
}
} }
} }
@ -781,7 +815,6 @@ class ATDNAEmitVisitor : public clang::RecursiveASTVisitor<ATDNAEmitVisitor> {
} }
std::string ioOp; std::string ioOp;
bool isDNAType = false;
for (const clang::TemplateArgument& arg : *tsType) { for (const clang::TemplateArgument& arg : *tsType) {
if (arg.getKind() == clang::TemplateArgument::Type) { if (arg.getKind() == clang::TemplateArgument::Type) {
if (defaultEndian) if (defaultEndian)
@ -793,7 +826,7 @@ class ATDNAEmitVisitor : public clang::RecursiveASTVisitor<ATDNAEmitVisitor> {
if (ioOp.empty()) { if (ioOp.empty()) {
clang::DiagnosticBuilder diag = context.getDiagnostics().Report(field->getLocation(), AthenaError); clang::DiagnosticBuilder diag = context.getDiagnostics().Report(field->getLocation(), AthenaError);
diag.AddString("Unable to use type '" + tsDecl->getName().str() + "' with Athena"); diag.AddString("Unable to use type '"s.append(tsDecl->getName().str()).append("' with Athena"));
diag.AddSourceRange(clang::CharSourceRange(field->getSourceRange(), true)); diag.AddSourceRange(clang::CharSourceRange(field->getSourceRange(), true));
continue; continue;
} }
@ -841,7 +874,6 @@ class ATDNAEmitVisitor : public clang::RecursiveASTVisitor<ATDNAEmitVisitor> {
clang::QualType templateType; clang::QualType templateType;
std::string ioOp; std::string ioOp;
bool isDNAType = false;
for (const clang::TemplateArgument& arg : *tsType) { for (const clang::TemplateArgument& arg : *tsType) {
if (arg.getKind() == clang::TemplateArgument::Type) { if (arg.getKind() == clang::TemplateArgument::Type) {
templateType = arg.getAsType().getCanonicalType(); templateType = arg.getAsType().getCanonicalType();
@ -854,7 +886,7 @@ class ATDNAEmitVisitor : public clang::RecursiveASTVisitor<ATDNAEmitVisitor> {
if (ioOp.empty()) { if (ioOp.empty()) {
clang::DiagnosticBuilder diag = context.getDiagnostics().Report(field->getLocation(), AthenaError); clang::DiagnosticBuilder diag = context.getDiagnostics().Report(field->getLocation(), AthenaError);
diag.AddString("Unable to use type '" + templateType.getAsString() + "' with Athena"); diag.AddString("Unable to use type '"s.append(templateType.getAsString()).append("' with Athena"));
diag.AddSourceRange(clang::CharSourceRange(field->getSourceRange(), true)); diag.AddSourceRange(clang::CharSourceRange(field->getSourceRange(), true));
continue; continue;
} }
@ -992,20 +1024,18 @@ class ATDNAEmitVisitor : public clang::RecursiveASTVisitor<ATDNAEmitVisitor> {
} else { } else {
const clang::NamedDecl* nd = tsDecl->getTemplatedDecl(); const clang::NamedDecl* nd = tsDecl->getTemplatedDecl();
if (const clang::CXXRecordDecl* rd = clang::dyn_cast_or_null<clang::CXXRecordDecl>(nd)) { if (const clang::CXXRecordDecl* rd = clang::dyn_cast_or_null<clang::CXXRecordDecl>(nd)) {
std::string baseDNA; std::string baseDNA2;
if (isDNARecord(rd, baseDNA)) { if (isDNARecord(rd, baseDNA2)) {
fileOut << " AT_PROP_CASE(" << propIdExpr << "):\n" fileOut << " AT_PROP_CASE(" << propIdExpr << "):\n"
<< " Do" << GetOpString(fieldName, propIdExpr) << ";\n" << " Do" << GetOpString(fieldName, propIdExpr) << ";\n"
<< " return true;\n"; << " return true;\n";
} }
} }
} }
} } else if (regType->getTypeClass() == clang::Type::Record) {
else if (regType->getTypeClass() == clang::Type::Record) {
const clang::CXXRecordDecl* cxxRDecl = regType->getAsCXXRecordDecl(); const clang::CXXRecordDecl* cxxRDecl = regType->getAsCXXRecordDecl();
std::string baseDNA; std::string baseDNA2;
if (cxxRDecl && isDNARecord(cxxRDecl, baseDNA)) { if (cxxRDecl && isDNARecord(cxxRDecl, baseDNA2)) {
fileOut << " AT_PROP_CASE(" << propIdExpr << "):\n" fileOut << " AT_PROP_CASE(" << propIdExpr << "):\n"
<< " Do" << GetOpString(fieldName, propIdExpr) << ";\n" << " Do" << GetOpString(fieldName, propIdExpr) << ";\n"
<< " return true;\n"; << " return true;\n";
@ -1167,24 +1197,27 @@ int main(int argc, const char** argv) {
if (Help) if (Help)
llvm::cl::PrintHelpMessage(); llvm::cl::PrintHelpMessage();
std::vector<std::string> args = {"clang-tool", std::vector<std::string> args = {
"clang-tool",
#ifdef __linux__ #ifdef __linux__
"--gcc-toolchain=/usr", "--gcc-toolchain=/usr",
#endif #endif
"-fsyntax-only", "-fsyntax-only",
"-std=c++1z", "-std=c++1z",
"-D__atdna__=1", "-D__atdna__=1",
"-Wno-expansion-to-defined", "-Wno-expansion-to-defined",
"-Wno-nullability-completeness", "-Wno-nullability-completeness",
"-Werror=shadow-field", "-Werror=shadow-field",
"-I" XSTR(INSTALL_PREFIX) "/lib/clang/" CLANG_VERSION_STRING "/include", "-I" XSTR(INSTALL_PREFIX) "/lib/clang/" CLANG_VERSION_STRING "/include",
"-I" XSTR(INSTALL_PREFIX) "/include/Athena"}; "-I" XSTR(INSTALL_PREFIX) "/include/Athena",
for (int a = 1; a < argc; ++a) };
args.push_back(argv[a]); for (int a = 1; a < argc; ++a) {
args.emplace_back(argv[a]);
}
llvm::IntrusiveRefCntPtr<clang::FileManager> fman(new clang::FileManager(clang::FileSystemOptions())); llvm::IntrusiveRefCntPtr<clang::FileManager> fman(new clang::FileManager(clang::FileSystemOptions()));
ATDNAAction* action = new ATDNAAction(); ATDNAAction* action = new ATDNAAction();
clang::tooling::ToolInvocation TI(args, action, fman.get()); clang::tooling::ToolInvocation TI(std::move(args), action, fman.get());
if (!TI.run()) if (!TI.run())
return 1; return 1;

View File

@ -1,7 +1,7 @@
#include <athena/DNAYaml.hpp> #include <athena/DNAYaml.hpp>
using namespace athena; using namespace athena;
typedef io::DNA<Big> BigDNA; typedef io::DNA<Endian::Big> BigDNA;
enum ETest : atUint8 { ZERO, ONE, TWO, THREE }; enum ETest : atUint8 { ZERO, ONE, TWO, THREE };
@ -54,13 +54,13 @@ struct AT_SPECIALIZE_PARMS(atUint16, 42, atUint32, 87, atUint32, 2) TESTFile : p
Value<TESTTemplateSubFile<atInt32, 36>> nestedTemplate1; Value<TESTTemplateSubFile<atInt32, 36>> nestedTemplate1;
Value<TESTTemplateSubFile<atInt64, 96>> nestedTemplate2; Value<TESTTemplateSubFile<atInt64, 96>> nestedTemplate2;
Value<atUint32, Little> arrCount[2]; Value<atUint32, Endian::Little> arrCount[2];
Vector<atUint32, AT_DNA_COUNT(arrCount[0])> array; Vector<atUint32, AT_DNA_COUNT(arrCount[0])> array;
Value<atUint32> arrAltCount; Value<atUint32> arrAltCount;
Vector<atUint32, AT_DNA_COUNT(arrAltCount)> arrayAlt; Vector<atUint32, AT_DNA_COUNT(arrAltCount)> arrayAlt;
Seek<21, Current> seek; Seek<21, SeekOrigin::Current> seek;
Value<atUint32> arrCount2; Value<atUint32> arrCount2;
Vector<TESTSubFile<ETest::ZERO>, AT_DNA_COUNT(arrCount[1] + arrCount2)> array2; Vector<TESTSubFile<ETest::ZERO>, AT_DNA_COUNT(arrCount[1] + arrCount2)> array2;

View File

@ -372,7 +372,7 @@ struct Read {
} }
static void DoSeek(atInt64 amount, SeekOrigin whence, StreamT& r) { r.seek(amount, whence); } static void DoSeek(atInt64 amount, SeekOrigin whence, StreamT& r) { r.seek(amount, whence); }
static void DoAlign(atInt64 amount, StreamT& r) { static void DoAlign(atInt64 amount, StreamT& r) {
r.seek((r.position() + amount - 1) / amount * amount, athena::Begin); r.seek((r.position() + amount - 1) / amount * amount, athena::SeekOrigin::Begin);
} }
}; };
#define __READ_S(type, endian) \ #define __READ_S(type, endian) \
@ -1148,29 +1148,29 @@ void __BinarySizeProp64(const T& obj, size_t& s) {
#define AT_SUBSPECIALIZE_DNA(...) \ #define AT_SUBSPECIALIZE_DNA(...) \
template <> \ template <> \
template <> \ template <> \
void __VA_ARGS__::Enumerate<athena::io::DNA<athena::Big>::BinarySize>(typename BinarySize::StreamT & s) { \ void __VA_ARGS__::Enumerate<athena::io::DNA<athena::Endian::Big>::BinarySize>(typename BinarySize::StreamT & s) { \
_binarySize(s); \ _binarySize(s); \
} \ } \
template <> \ template <> \
template <> \ template <> \
void __VA_ARGS__::Enumerate<athena::io::DNA<athena::Big>::Read>(typename Read::StreamT & r) { \ void __VA_ARGS__::Enumerate<athena::io::DNA<athena::Endian::Big>::Read>(typename Read::StreamT & r) { \
_read(r); \ _read(r); \
} \ } \
template <> \ template <> \
template <> \ template <> \
void __VA_ARGS__::Enumerate<athena::io::DNA<athena::Big>::Write>(typename Write::StreamT & w) { \ void __VA_ARGS__::Enumerate<athena::io::DNA<athena::Endian::Big>::Write>(typename Write::StreamT & w) { \
_write(w); \ _write(w); \
} }
#define AT_SUBSPECIALIZE_DNA_YAML(...) \ #define AT_SUBSPECIALIZE_DNA_YAML(...) \
template <> \ template <> \
template <> \ template <> \
void __VA_ARGS__::Enumerate<athena::io::DNA<athena::Big>::ReadYaml>(typename ReadYaml::StreamT & r) { \ void __VA_ARGS__::Enumerate<athena::io::DNA<athena::Endian::Big>::ReadYaml>(typename ReadYaml::StreamT & r) { \
_read(r); \ _read(r); \
} \ } \
template <> \ template <> \
template <> \ template <> \
void __VA_ARGS__::Enumerate<athena::io::DNA<athena::Big>::WriteYaml>(typename WriteYaml::StreamT & w) { \ void __VA_ARGS__::Enumerate<athena::io::DNA<athena::Endian::Big>::WriteYaml>(typename WriteYaml::StreamT & w) { \
_write(w); \ _write(w); \
} \ } \
AT_SUBSPECIALIZE_DNA(__VA_ARGS__) AT_SUBSPECIALIZE_DNA(__VA_ARGS__)

View File

@ -116,7 +116,7 @@ bool ValidateFromYAMLStream(athena::io::IStreamReader& fin) {
atUint64 pos = fin.position(); atUint64 pos = fin.position();
yaml_parser_set_input(reader.getParser(), (yaml_read_handler_t*)YAMLAthenaReader, &fin); yaml_parser_set_input(reader.getParser(), (yaml_read_handler_t*)YAMLAthenaReader, &fin);
bool retval = reader.ValidateClassType(DNASubtype::DNAType()); bool retval = reader.ValidateClassType(DNASubtype::DNAType());
fin.seek(pos, athena::Begin); fin.seek(pos, athena::SeekOrigin::Begin);
return retval; return retval;
} }

View File

@ -87,33 +87,33 @@ typedef struct stat64 atStat64_t;
#ifndef ENABLE_BITWISE_ENUM #ifndef ENABLE_BITWISE_ENUM
#define ENABLE_BITWISE_ENUM(type) \ #define ENABLE_BITWISE_ENUM(type) \
constexpr type operator|(type a, type b) { \ constexpr type operator|(type a, type b) noexcept { \
using T = std::underlying_type_t<type>; \ using T = std::underlying_type_t<type>; \
return type(static_cast<T>(a) | static_cast<T>(b)); \ return type(static_cast<T>(a) | static_cast<T>(b)); \
} \ } \
constexpr type operator&(type a, type b) { \ constexpr type operator&(type a, type b) noexcept { \
using T = std::underlying_type_t<type>; \ using T = std::underlying_type_t<type>; \
return type(static_cast<T>(a) & static_cast<T>(b)); \ return type(static_cast<T>(a) & static_cast<T>(b)); \
} \ } \
inline type& operator|=(type& a, const type& b) { \ constexpr type& operator|=(type& a, type b) noexcept { \
using T = std::underlying_type_t<type>; \ using T = std::underlying_type_t<type>; \
a = type(static_cast<T>(a) | static_cast<T>(b)); \ a = type(static_cast<T>(a) | static_cast<T>(b)); \
return a; \ return a; \
} \ } \
inline type& operator&=(type& a, const type& b) { \ constexpr type& operator&=(type& a, type b) noexcept { \
using T = std::underlying_type_t<type>; \ using T = std::underlying_type_t<type>; \
a = type(static_cast<T>(a) & static_cast<T>(b)); \ a = type(static_cast<T>(a) & static_cast<T>(b)); \
return a; \ return a; \
} \ } \
constexpr type operator~(type key) { \ constexpr type operator~(type key) noexcept { \
using T = std::underlying_type_t<type>; \ using T = std::underlying_type_t<type>; \
return type(~static_cast<T>(key)); \ return type(~static_cast<T>(key)); \
} \ } \
constexpr bool True(type key) { \ constexpr bool True(type key) noexcept { \
using T = std::underlying_type_t<type>; \ using T = std::underlying_type_t<type>; \
return static_cast<T>(key) != 0; \ return static_cast<T>(key) != 0; \
} \ } \
constexpr bool False(type key) { \ constexpr bool False(type key) noexcept { \
using T = std::underlying_type_t<type>; \ using T = std::underlying_type_t<type>; \
return static_cast<T>(key) == 0; \ return static_cast<T>(key) == 0; \
} }
@ -123,9 +123,9 @@ namespace athena {
namespace error { namespace error {
enum class Level { Message, Warning, Error, Fatal }; enum class Level { Message, Warning, Error, Fatal };
} }
enum SeekOrigin { Begin, Current, End }; enum class SeekOrigin { Begin, Current, End };
enum Endian { Little, Big }; enum class Endian { Little, Big };
namespace io { namespace io {
template <Endian DNAE> template <Endian DNAE>

View File

@ -23,9 +23,9 @@ protected:
void setError() { m_hasError = true; } void setError() { m_hasError = true; }
bool m_hasError = false; bool m_hasError = false;
#if __BYTE_ORDER == __BIG_ENDIAN #if __BYTE_ORDER == __BIG_ENDIAN
Endian m_endian = Big; Endian m_endian = Endian::Big;
#else #else
Endian m_endian = Little; Endian m_endian = Endian::Little;
#endif #endif
}; };
} // namespace athena::io } // namespace athena::io

View File

@ -143,7 +143,7 @@ public:
atInt16 readInt16() { atInt16 readInt16() {
atInt16 val = 0; atInt16 val = 0;
readUBytesToBuf(&val, 2); readUBytesToBuf(&val, 2);
return m_endian == Big ? utility::BigInt16(val) : utility::LittleInt16(val); return m_endian == Endian::Big ? utility::BigInt16(val) : utility::LittleInt16(val);
} }
template <class T> template <class T>
atInt16 readVal(std::enable_if_t<std::is_same_v<T, atInt16>>* = nullptr) { atInt16 readVal(std::enable_if_t<std::is_same_v<T, atInt16>>* = nullptr) {
@ -229,7 +229,7 @@ public:
atInt32 readInt32() { atInt32 readInt32() {
atInt32 val = 0; atInt32 val = 0;
readUBytesToBuf(&val, 4); readUBytesToBuf(&val, 4);
return m_endian == Big ? utility::BigInt32(val) : utility::LittleInt32(val); return m_endian == Endian::Big ? utility::BigInt32(val) : utility::LittleInt32(val);
} }
template <class T> template <class T>
atInt32 readVal(std::enable_if_t<std::is_same_v<T, atInt32>>* = nullptr) { atInt32 readVal(std::enable_if_t<std::is_same_v<T, atInt32>>* = nullptr) {
@ -315,7 +315,7 @@ public:
atInt64 readInt64() { atInt64 readInt64() {
atInt64 val = 0; atInt64 val = 0;
readUBytesToBuf(&val, 8); readUBytesToBuf(&val, 8);
return m_endian == Big ? utility::BigInt64(val) : utility::LittleInt64(val); return m_endian == Endian::Big ? utility::BigInt64(val) : utility::LittleInt64(val);
} }
template <class T> template <class T>
atInt64 readVal(std::enable_if_t<std::is_same_v<T, atInt64>>* = nullptr) { atInt64 readVal(std::enable_if_t<std::is_same_v<T, atInt64>>* = nullptr) {
@ -401,7 +401,7 @@ public:
float readFloat() { float readFloat() {
float val = 0.f; float val = 0.f;
readUBytesToBuf(&val, 4); readUBytesToBuf(&val, 4);
return m_endian == Big ? utility::BigFloat(val) : utility::LittleFloat(val); return m_endian == Endian::Big ? utility::BigFloat(val) : utility::LittleFloat(val);
} }
template <class T> template <class T>
float readVal(std::enable_if_t<std::is_same_v<T, float>>* = nullptr) { float readVal(std::enable_if_t<std::is_same_v<T, float>>* = nullptr) {
@ -446,7 +446,7 @@ public:
double readDouble() { double readDouble() {
double val = 0.0; double val = 0.0;
readUBytesToBuf(&val, 8); readUBytesToBuf(&val, 8);
return m_endian == Big ? utility::BigDouble(val) : utility::LittleDouble(val); return m_endian == Endian::Big ? utility::BigDouble(val) : utility::LittleDouble(val);
} }
template <class T> template <class T>
double readVal(std::enable_if_t<std::is_same_v<T, double>>* = nullptr) { double readVal(std::enable_if_t<std::is_same_v<T, double>>* = nullptr) {
@ -513,7 +513,7 @@ public:
atVec2f readVec2f() { atVec2f readVec2f() {
simd_floats val = {}; simd_floats val = {};
readUBytesToBuf(val.data(), 8); readUBytesToBuf(val.data(), 8);
if (m_endian == Big) { if (m_endian == Endian::Big) {
val[0] = utility::BigFloat(val[0]); val[0] = utility::BigFloat(val[0]);
val[1] = utility::BigFloat(val[1]); val[1] = utility::BigFloat(val[1]);
} else { } else {
@ -581,7 +581,7 @@ public:
atVec3f readVec3f() { atVec3f readVec3f() {
simd_floats val = {}; simd_floats val = {};
readUBytesToBuf(val.data(), 12); readUBytesToBuf(val.data(), 12);
if (m_endian == Big) { if (m_endian == Endian::Big) {
val[0] = utility::BigFloat(val[0]); val[0] = utility::BigFloat(val[0]);
val[1] = utility::BigFloat(val[1]); val[1] = utility::BigFloat(val[1]);
val[2] = utility::BigFloat(val[2]); val[2] = utility::BigFloat(val[2]);
@ -650,7 +650,7 @@ public:
atVec4f readVec4f() { atVec4f readVec4f() {
simd_floats val = {}; simd_floats val = {};
readUBytesToBuf(val.data(), 16); readUBytesToBuf(val.data(), 16);
if (m_endian == Big) { if (m_endian == Endian::Big) {
val[0] = utility::BigFloat(val[0]); val[0] = utility::BigFloat(val[0]);
val[1] = utility::BigFloat(val[1]); val[1] = utility::BigFloat(val[1]);
val[2] = utility::BigFloat(val[2]); val[2] = utility::BigFloat(val[2]);
@ -720,7 +720,7 @@ public:
atVec2d readVec2d() { atVec2d readVec2d() {
simd_doubles val = {}; simd_doubles val = {};
readUBytesToBuf(val.data(), 16); readUBytesToBuf(val.data(), 16);
if (m_endian == Big) { if (m_endian == Endian::Big) {
val[0] = utility::BigDouble(val[0]); val[0] = utility::BigDouble(val[0]);
val[1] = utility::BigDouble(val[1]); val[1] = utility::BigDouble(val[1]);
} else { } else {
@ -788,7 +788,7 @@ public:
atVec3d readVec3d() { atVec3d readVec3d() {
simd_doubles val = {}; simd_doubles val = {};
readUBytesToBuf(val.data(), 24); readUBytesToBuf(val.data(), 24);
if (m_endian == Big) { if (m_endian == Endian::Big) {
val[0] = utility::BigDouble(val[0]); val[0] = utility::BigDouble(val[0]);
val[1] = utility::BigDouble(val[1]); val[1] = utility::BigDouble(val[1]);
val[2] = utility::BigDouble(val[2]); val[2] = utility::BigDouble(val[2]);
@ -857,7 +857,7 @@ public:
atVec4d readVec4d() { atVec4d readVec4d() {
simd_doubles val = {}; simd_doubles val = {};
readUBytesToBuf(val.data(), 32); readUBytesToBuf(val.data(), 32);
if (m_endian == Big) { if (m_endian == Endian::Big) {
val[0] = utility::BigDouble(val[0]); val[0] = utility::BigDouble(val[0]);
val[1] = utility::BigDouble(val[1]); val[1] = utility::BigDouble(val[1]);
val[2] = utility::BigDouble(val[2]); val[2] = utility::BigDouble(val[2]);

View File

@ -91,10 +91,11 @@ public:
* @param val The value to write to the buffer * @param val The value to write to the buffer
*/ */
void writeInt16(atInt16 val) { void writeInt16(atInt16 val) {
if (m_endian == Big) if (m_endian == Endian::Big) {
utility::BigInt16(val); utility::BigInt16(val);
else } else {
utility::LittleInt16(val); utility::LittleInt16(val);
}
writeUBytes((atUint8*)&val, 2); writeUBytes((atUint8*)&val, 2);
} }
void writeVal(atInt16 val) { writeInt16(val); } void writeVal(atInt16 val) { writeInt16(val); }
@ -151,10 +152,11 @@ public:
* @param val The value to write to the buffer * @param val The value to write to the buffer
*/ */
void writeInt32(atInt32 val) { void writeInt32(atInt32 val) {
if (m_endian == Big) if (m_endian == Endian::Big) {
utility::BigInt32(val); utility::BigInt32(val);
else } else {
utility::LittleInt32(val); utility::LittleInt32(val);
}
writeUBytes((atUint8*)&val, 4); writeUBytes((atUint8*)&val, 4);
} }
void writeVal(atInt32 val) { writeInt32(val); } void writeVal(atInt32 val) { writeInt32(val); }
@ -211,10 +213,11 @@ public:
* @param val The value to write to the buffer * @param val The value to write to the buffer
*/ */
void writeInt64(atInt64 val) { void writeInt64(atInt64 val) {
if (m_endian == Big) if (m_endian == Endian::Big) {
utility::BigInt64(val); utility::BigInt64(val);
else } else {
utility::LittleInt64(val); utility::LittleInt64(val);
}
writeUBytes((atUint8*)&val, 8); writeUBytes((atUint8*)&val, 8);
} }
void writeVal(atInt64 val) { writeInt64(val); } void writeVal(atInt64 val) { writeInt64(val); }
@ -271,10 +274,11 @@ public:
* @param val The value to write to the buffer * @param val The value to write to the buffer
*/ */
void writeFloat(float val) { void writeFloat(float val) {
if (m_endian == Big) if (m_endian == Endian::Big) {
val = utility::BigFloat(val); val = utility::BigFloat(val);
else } else {
val = utility::LittleFloat(val); val = utility::LittleFloat(val);
}
writeUBytes((atUint8*)&val, 4); writeUBytes((atUint8*)&val, 4);
} }
void writeVal(float val) { writeFloat(val); } void writeVal(float val) { writeFloat(val); }
@ -307,10 +311,11 @@ public:
* @param val The value to write to the buffer * @param val The value to write to the buffer
*/ */
void writeDouble(double val) { void writeDouble(double val) {
if (m_endian == Big) if (m_endian == Endian::Big) {
utility::BigDouble(val); utility::BigDouble(val);
else } else {
utility::LittleDouble(val); utility::LittleDouble(val);
}
writeUBytes((atUint8*)&val, 8); writeUBytes((atUint8*)&val, 8);
} }
void writeVal(double val) { writeDouble(val); } void writeVal(double val) { writeDouble(val); }
@ -354,7 +359,7 @@ public:
*/ */
void writeVec2f(const atVec2f& vec) { void writeVec2f(const atVec2f& vec) {
simd_floats tmp(vec.simd); simd_floats tmp(vec.simd);
if (m_endian == Big) { if (m_endian == Endian::Big) {
tmp[0] = utility::BigFloat(tmp[0]); tmp[0] = utility::BigFloat(tmp[0]);
tmp[1] = utility::BigFloat(tmp[1]); tmp[1] = utility::BigFloat(tmp[1]);
} else { } else {
@ -398,7 +403,7 @@ public:
*/ */
void writeVec3f(const atVec3f& vec) { void writeVec3f(const atVec3f& vec) {
simd_floats tmp(vec.simd); simd_floats tmp(vec.simd);
if (m_endian == Big) { if (m_endian == Endian::Big) {
tmp[0] = utility::BigFloat(tmp[0]); tmp[0] = utility::BigFloat(tmp[0]);
tmp[1] = utility::BigFloat(tmp[1]); tmp[1] = utility::BigFloat(tmp[1]);
tmp[2] = utility::BigFloat(tmp[2]); tmp[2] = utility::BigFloat(tmp[2]);
@ -446,7 +451,7 @@ public:
*/ */
void writeVec4f(const atVec4f& vec) { void writeVec4f(const atVec4f& vec) {
simd_floats tmp(vec.simd); simd_floats tmp(vec.simd);
if (m_endian == Big) { if (m_endian == Endian::Big) {
tmp[0] = utility::BigFloat(tmp[0]); tmp[0] = utility::BigFloat(tmp[0]);
tmp[1] = utility::BigFloat(tmp[1]); tmp[1] = utility::BigFloat(tmp[1]);
tmp[2] = utility::BigFloat(tmp[2]); tmp[2] = utility::BigFloat(tmp[2]);
@ -498,7 +503,7 @@ public:
*/ */
void writeVec2d(const atVec2d& vec) { void writeVec2d(const atVec2d& vec) {
simd_doubles tmp(vec.simd); simd_doubles tmp(vec.simd);
if (m_endian == Big) { if (m_endian == Endian::Big) {
tmp[0] = utility::BigDouble(tmp[0]); tmp[0] = utility::BigDouble(tmp[0]);
tmp[1] = utility::BigDouble(tmp[1]); tmp[1] = utility::BigDouble(tmp[1]);
} else { } else {
@ -542,7 +547,7 @@ public:
*/ */
void writeVec3d(const atVec3d& vec) { void writeVec3d(const atVec3d& vec) {
simd_doubles tmp(vec.simd); simd_doubles tmp(vec.simd);
if (m_endian == Big) { if (m_endian == Endian::Big) {
tmp[0] = utility::BigDouble(tmp[0]); tmp[0] = utility::BigDouble(tmp[0]);
tmp[1] = utility::BigDouble(tmp[1]); tmp[1] = utility::BigDouble(tmp[1]);
tmp[2] = utility::BigDouble(tmp[2]); tmp[2] = utility::BigDouble(tmp[2]);
@ -590,7 +595,7 @@ public:
*/ */
void writeVec4d(const atVec4d& vec) { void writeVec4d(const atVec4d& vec) {
simd_doubles tmp(vec.simd); simd_doubles tmp(vec.simd);
if (m_endian == Big) { if (m_endian == Endian::Big) {
tmp[0] = utility::BigDouble(tmp[0]); tmp[0] = utility::BigDouble(tmp[0]);
tmp[1] = utility::BigDouble(tmp[1]); tmp[1] = utility::BigDouble(tmp[1]);
tmp[2] = utility::BigDouble(tmp[2]); tmp[2] = utility::BigDouble(tmp[2]);

View File

@ -90,11 +90,11 @@ public:
void writeUBytes(const atUint8* data, atUint64 length) override; void writeUBytes(const atUint8* data, atUint64 length) override;
protected: protected:
MemoryWriter() {} MemoryWriter() = default;
atUint8* m_data; atUint8* m_data = nullptr;
atUint64 m_length; atUint64 m_length = 0;
atUint64 m_position; atUint64 m_position = 0;
bool m_bufferOwned; bool m_bufferOwned = false;
std::string m_filepath; //!< Path to the target file std::string m_filepath; //!< Path to the target file
}; };

View File

@ -16,8 +16,8 @@ constexpr bool isSystemBigEndian() { return false; }
#else #else
constexpr bool isSystemBigEndian() { return __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__; } constexpr bool isSystemBigEndian() { return __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__; }
#endif #endif
constexpr ::athena::Endian SystemEndian = isSystemBigEndian() ? Big : Little; constexpr ::athena::Endian SystemEndian = isSystemBigEndian() ? ::athena::Endian::Big : ::athena::Endian::Little;
constexpr ::athena::Endian NotSystemEndian = isSystemBigEndian() ? Little : Big; constexpr ::athena::Endian NotSystemEndian = isSystemBigEndian() ? ::athena::Endian::Little : ::athena::Endian::Big;
#if _MSC_VER #if _MSC_VER
#define BSWAP_CONSTEXPR inline #define BSWAP_CONSTEXPR inline

View File

@ -1,7 +1,12 @@
#include "LZ77/LZLookupTable.hpp"
#include "LZ77/LZType10.hpp" #include "LZ77/LZType10.hpp"
#include <athena/MemoryWriter.hpp>
#include <cstddef>
#include <cstring> #include <cstring>
#include <memory>
#include "LZ77/LZLookupTable.hpp"
#include <athena/MemoryWriter.hpp>
LZType10::LZType10(atInt32 MinimumOffset, atInt32 SlidingWindow, atInt32 MinimumMatch, atInt32 BlockSize) LZType10::LZType10(atInt32 MinimumOffset, atInt32 SlidingWindow, atInt32 MinimumMatch, atInt32 BlockSize)
: LZBase(MinimumOffset, SlidingWindow, MinimumMatch, BlockSize) { : LZBase(MinimumOffset, SlidingWindow, MinimumMatch, BlockSize) {
@ -17,25 +22,25 @@ atUint32 LZType10::compress(const atUint8* src, atUint8** dstBuf, atUint32 srcLe
athena::io::MemoryCopyWriter outbuf("tmp"); athena::io::MemoryCopyWriter outbuf("tmp");
outbuf.writeUint32(encodeSize); outbuf.writeUint32(encodeSize);
atUint8* ptrStart = (atUint8*)src; const atUint8* ptrStart = src;
atUint8* ptrEnd = (atUint8*)(src + srcLength); const atUint8* ptrEnd = src + srcLength;
// At most their will be two bytes written if the bytes can be compressed. So if all bytes in the block can be // At most their will be two bytes written if the bytes can be compressed. So if all bytes in the block can be
// compressed it would take blockSize*2 bytes // compressed it would take blockSize*2 bytes
atUint8* compressedBytes = new atUint8[m_blockSize * 2]; // Holds the compressed bytes yet to be written auto compressedBytes = std::unique_ptr<atUint8[]>(new atUint8[m_blockSize * 2]); // Holds the compressed bytes yet to be written
while (ptrStart < ptrEnd) { while (ptrStart < ptrEnd) {
atUint8 blockLen = 0; atUint8 blockLen = 0;
// In Binary represents 1 if byte is compressed or 0 if not compressed // In Binary represents 1 if byte is compressed or 0 if not compressed
// For example 01001000 means that the second and fifth byte in the blockSize from the left is compressed // For example 01001000 means that the second and fifth byte in the blockSize from the left is compressed
atUint8* ptrBytes = compressedBytes; atUint8* ptrBytes = compressedBytes.get();
for (atInt32 i = 0; i < m_blockSize; i++) { for (atInt32 i = 0; i < m_blockSize; i++) {
// length_offset searchResult=Search(ptrStart, filedata, ptrEnd); // length_offset searchResult=Search(ptrStart, filedata, ptrEnd);
LZLengthOffset searchResult = m_lookupTable.search(ptrStart, src, ptrEnd); const LZLengthOffset searchResult = m_lookupTable.search(ptrStart, src, ptrEnd);
// If the number of bytes to be compressed is at least the size of the Minimum match // If the number of bytes to be compressed is at least the size of the Minimum match
if (searchResult.length >= (atUint32)m_minMatch) { if (searchResult.length >= static_cast<atUint32>(m_minMatch)) {
// Gotta swap the bytes since system is wii is big endian and most computers are little endian // Gotta swap the bytes since system is wii is big endian and most computers are little endian
atUint16 lenOff = (((searchResult.length - m_minMatch) & 0xF) << 12) | ((searchResult.offset - 1) & 0xFFF); atUint16 lenOff = (((searchResult.length - m_minMatch) & 0xF) << 12) | ((searchResult.offset - 1) & 0xFFF);
athena::utility::BigUint16(lenOff); athena::utility::BigUint16(lenOff);
@ -49,45 +54,50 @@ atUint32 LZType10::compress(const atUint8* src, atUint8** dstBuf, atUint32 srcLe
blockLen |= (1 << (7 - i)); blockLen |= (1 << (7 - i));
// Stores which of the next 8 bytes is compressed // Stores which of the next 8 bytes is compressed
// bit 1 for compress and bit 0 for not compressed // bit 1 for compress and bit 0 for not compressed
} else } else {
*ptrBytes++ = *ptrStart++; *ptrBytes++ = *ptrStart++;
}
} }
outbuf.writeByte(blockLen); outbuf.writeByte(blockLen);
outbuf.writeUBytes(compressedBytes, (atUint64)(ptrBytes - compressedBytes)); outbuf.writeUBytes(compressedBytes.get(), static_cast<atUint64>(ptrBytes - compressedBytes.get()));
} }
delete[] compressedBytes;
compressedBytes = nullptr;
// Add zeros until the file is a multiple of 4 // Add zeros until the file is a multiple of 4
while ((outbuf.position() % 4) != 0) while ((outbuf.position() % 4) != 0) {
outbuf.writeByte(0); outbuf.writeByte(0);
}
*dstBuf = outbuf.data(); *dstBuf = outbuf.data();
outbuf.save(); outbuf.save();
return (atUint32)outbuf.length(); return static_cast<atUint32>(outbuf.length());
} }
atUint32 LZType10::decompress(const atUint8* src, atUint8** dst, atUint32 srcLength) { atUint32 LZType10::decompress(const atUint8* src, atUint8** dst, atUint32 srcLength) {
if (*(atUint8*)(src) != 0x10) if (*src != 0x10) {
return 0; return 0;
}
atUint32 uncompressedSize = *(atUint32*)(src); // Size of data when it is uncompressed // Size of data when it is uncompressed
athena::utility::LittleUint32(uncompressedSize); // The compressed file has the filesize encoded in little endian atUint32 uncompressedSize;
uncompressedSize = uncompressedSize >> 8; // first byte is the encode flag std::memcpy(&uncompressedSize, src, sizeof(uncompressedSize));
atUint8* uncompressedData = new atUint8[uncompressedSize]; // The compressed file has the filesize encoded in little endian
atUint8* outputPtr = uncompressedData; athena::utility::LittleUint32(uncompressedSize);
atUint8* outputEndPtr = uncompressedData + uncompressedSize;
atUint8* inputPtr = (atUint8*)src + 4; // first byte is the encode flag
atUint8* inputEndPtr = (atUint8*)src + srcLength; uncompressedSize = uncompressedSize >> 8;
auto uncompressedData = std::unique_ptr<atUint8[]>(new atUint8[uncompressedSize]);
atUint8* outputPtr = uncompressedData.get();
atUint8* outputEndPtr = uncompressedData.get() + uncompressedSize;
const atUint8* inputPtr = src + 4;
const atUint8* inputEndPtr = src + srcLength;
while (inputPtr < inputEndPtr && outputPtr < outputEndPtr) { while (inputPtr < inputEndPtr && outputPtr < outputEndPtr) {
const atUint8 isCompressed = *inputPtr++;
atUint8 isCompressed = *inputPtr++; for (atUint32 i = 0; i < static_cast<atUint32>(m_blockSize); i++) {
for (atUint32 i = 0; i < (atUint32)m_blockSize; i++) {
// Checks to see if the next byte is compressed by looking // Checks to see if the next byte is compressed by looking
// at its binary representation - E.g 10010000 // at its binary representation - E.g 10010000
// This says that the first extracted byte and the four extracted byte is compressed // This says that the first extracted byte and the four extracted byte is compressed
@ -101,28 +111,29 @@ atUint32 LZType10::decompress(const atUint8* src, atUint8** dst, atUint32 srcLen
decoding.length = (lenOff >> 12) + m_minMatch; decoding.length = (lenOff >> 12) + m_minMatch;
decoding.offset = static_cast<atUint16>((lenOff & 0xFFF) + 1); decoding.offset = static_cast<atUint16>((lenOff & 0xFFF) + 1);
if ((outputPtr - decoding.offset) < uncompressedData) { if ((outputPtr - decoding.offset) < uncompressedData.get()) {
// If the offset to look for uncompressed is passed the current uncompresed data then the data is not // If the offset to look for uncompressed is passed the current uncompresed data then the data is not
// compressed // compressed
delete[] uncompressedData;
uncompressedData = nullptr;
dst = nullptr; dst = nullptr;
return 0; return 0;
} }
for (atUint32 j = 0; j < decoding.length; ++j) for (size_t j = 0; j < decoding.length; ++j) {
outputPtr[j] = (outputPtr - decoding.offset)[j]; outputPtr[j] = (outputPtr - decoding.offset)[j];
}
outputPtr += decoding.length; outputPtr += decoding.length;
} else } else {
*outputPtr++ = *inputPtr++; *outputPtr++ = *inputPtr++;
}
if (!(inputPtr < inputEndPtr && outputPtr < outputEndPtr)) if (!(inputPtr < inputEndPtr && outputPtr < outputEndPtr)) {
break; break;
}
} }
} }
*dst = uncompressedData; *dst = uncompressedData.release();
return uncompressedSize; return uncompressedSize;
} }

View File

@ -1,7 +1,12 @@
#include "LZ77/LZLookupTable.hpp"
#include "LZ77/LZType11.hpp" #include "LZ77/LZType11.hpp"
#include <athena/MemoryWriter.hpp>
#include <cstddef>
#include <cstring> #include <cstring>
#include <memory>
#include "LZ77/LZLookupTable.hpp"
#include <athena/MemoryWriter.hpp>
LZType11::LZType11(atInt32 minimumOffset, atInt32 slidingWindow, atInt32 minimumMatch, atInt32 blockSize) LZType11::LZType11(atInt32 minimumOffset, atInt32 slidingWindow, atInt32 minimumMatch, atInt32 blockSize)
: LZBase(minimumOffset, slidingWindow, minimumMatch, blockSize) { : LZBase(minimumOffset, slidingWindow, minimumMatch, blockSize) {
@ -12,32 +17,32 @@ LZType11::LZType11(atInt32 minimumOffset, atInt32 slidingWindow, atInt32 minimum
atUint32 LZType11::compress(const atUint8* src, atUint8** dst, atUint32 srcLength) { atUint32 LZType11::compress(const atUint8* src, atUint8** dst, atUint32 srcLength) {
athena::io::MemoryCopyWriter outbuff("tmp"); athena::io::MemoryCopyWriter outbuff("tmp");
if (srcLength > 0xFFFFFF) // If length is greater than 24 bits or 16 Megs if (srcLength > 0xFFFFFF) { // If length is greater than 24 bits or 16 Megs
{
atUint32 encodeFlag = 0x11; atUint32 encodeFlag = 0x11;
athena::utility::LittleUint32(encodeFlag); athena::utility::LittleUint32(encodeFlag);
athena::utility::LittleUint32(srcLength); // Filesize data is little endian athena::utility::LittleUint32(srcLength); // Filesize data is little endian
outbuff.writeUint32(encodeFlag); outbuff.writeUint32(encodeFlag);
outbuff.writeUint32(srcLength); outbuff.writeUint32(srcLength);
} else { } else {
atUint32 encodeSize = (srcLength << 8) | (0x11); atUint32 encodeSize = (srcLength << 8) | (0x11);
athena::utility::LittleUint32(encodeSize); athena::utility::LittleUint32(encodeSize);
outbuff.writeUint32(encodeSize); outbuff.writeUint32(encodeSize);
} }
atUint8* ptrStart = (atUint8*)src; const atUint8* ptrStart = src;
atUint8* ptrEnd = (atUint8*)(src + srcLength); const atUint8* ptrEnd = src + srcLength;
// At most their will be two bytes written if the bytes can be compressed. So if all bytes in the block can be // At most their will be two bytes written if the bytes can be compressed. So if all bytes in the block can be
// compressed it would take blockSize*2 bytes // compressed it would take blockSize*2 bytes
atUint8* compressedBytes = new atUint8[m_blockSize * 2]; // Holds the compressed bytes yet to be written
atUint8 maxTwoByteMatch = 0xF + 1; // Holds the compressed bytes yet to be written
atUint8 minThreeByteMatch = maxTwoByteMatch + 1; // Minimum Three byte match is maximum TwoByte match + 1 auto compressedBytes = std::unique_ptr<atUint8[]>(new atUint8[m_blockSize * 2]);
atUint16 maxThreeByteMatch = 0xFF + minThreeByteMatch;
atUint16 minFourByteMatch = maxThreeByteMatch + 1; // Minimum Four byte match is maximum Three Byte match + 1 const atUint8 maxTwoByteMatch = 0xF + 1;
atInt32 maxFourByteMatch = 0xFFFF + minFourByteMatch; const atUint8 minThreeByteMatch = maxTwoByteMatch + 1; // Minimum Three byte match is maximum TwoByte match + 1
const atUint16 maxThreeByteMatch = 0xFF + minThreeByteMatch;
const atUint16 minFourByteMatch = maxThreeByteMatch + 1; // Minimum Four byte match is maximum Three Byte match + 1
const atInt32 maxFourByteMatch = 0xFFFF + minFourByteMatch;
/* /*
Normaliazation Example: If MIN_MATCH is 3 then 3 gets mapped to 2 and 16 gets mapped to 15. Normaliazation Example: If MIN_MATCH is 3 then 3 gets mapped to 2 and 16 gets mapped to 15.
@ -57,14 +62,14 @@ atUint32 LZType11::compress(const atUint8* src, atUint8** dst, atUint32 srcLengt
atUint8 blockSize = 0; atUint8 blockSize = 0;
// In Binary represents 1 if byte is compressed or 0 if not compressed // In Binary represents 1 if byte is compressed or 0 if not compressed
// For example 01001000 means that the second and fifth byte in the blockSize from the left is compressed // For example 01001000 means that the second and fifth byte in the blockSize from the left is compressed
atUint8* ptrBytes = compressedBytes; atUint8* ptrBytes = compressedBytes.get();
for (atInt32 i = 0; i < m_blockSize; i++) { for (atInt32 i = 0; i < m_blockSize; i++) {
// length_offset searchResult=Search(filedata,ptrStart,ptrEnd); // length_offset searchResult=Search(filedata,ptrStart,ptrEnd);
LZLengthOffset searchResult = m_lookupTable.search(ptrStart, src, ptrEnd); const LZLengthOffset searchResult = m_lookupTable.search(ptrStart, src, ptrEnd);
// If the number of bytes to be compressed is at least the size of the Minimum match // If the number of bytes to be compressed is at least the size of the Minimum match
if (searchResult.length >= (atUint32)m_minMatch) { if (searchResult.length >= static_cast<atUint32>(m_minMatch)) {
// Gotta swap the bytes since system is wii is big endian and most computers are little endian // Gotta swap the bytes since system is wii is big endian and most computers are little endian
if (searchResult.length <= maxTwoByteMatch) { if (searchResult.length <= maxTwoByteMatch) {
@ -79,10 +84,10 @@ atUint32 LZType11::compress(const atUint8* src, atUint8** dst, atUint32 srcLengt
((searchResult.offset - 1) & 0xFFF) // Bits 11-0 ((searchResult.offset - 1) & 0xFFF) // Bits 11-0
); );
athena::utility::BigUint32(lenOff); athena::utility::BigUint32(lenOff);
memcpy(ptrBytes, (atUint8*)&lenOff + 1, memcpy(ptrBytes, reinterpret_cast<atUint8*>(&lenOff) + 1,
3); // Make sure to copy the lower 24 bits. 0x12345678- This statement copies 0x123456 3); // Make sure to copy the lower 24 bits. 0x12345678- This statement copies 0x123456
ptrBytes += 3; ptrBytes += 3;
} else if (searchResult.length <= (atUint32)maxFourByteMatch) { } else if (searchResult.length <= static_cast<atUint32>(maxFourByteMatch)) {
atUint32 lenOff = ((1 << 28) | // Bits 31-28 Flag to say that this is four bytes atUint32 lenOff = ((1 << 28) | // Bits 31-28 Flag to say that this is four bytes
(((searchResult.length - minFourByteMatch) & 0xFFFF) << 12) | // Bits 28-12 (((searchResult.length - minFourByteMatch) & 0xFFFF) << 12) | // Bits 28-12
((searchResult.offset - 1) & 0xFFF) // Bits 11-0 ((searchResult.offset - 1) & 0xFFF) // Bits 11-0
@ -97,83 +102,80 @@ atUint32 LZType11::compress(const atUint8* src, atUint8** dst, atUint32 srcLengt
blockSize |= (1 << (7 - i)); blockSize |= (1 << (7 - i));
// Stores which of the next 8 bytes is compressed // Stores which of the next 8 bytes is compressed
// bit 1 for compress and bit 0 for not compressed // bit 1 for compress and bit 0 for not compressed
} else } else {
*ptrBytes++ = *ptrStart++; *ptrBytes++ = *ptrStart++;
}
} }
outbuff.writeByte(blockSize); outbuff.writeByte(blockSize);
outbuff.writeUBytes(compressedBytes, (atUint64)(ptrBytes - compressedBytes)); outbuff.writeUBytes(compressedBytes.get(), static_cast<atUint64>(ptrBytes - compressedBytes.get()));
} }
delete[] compressedBytes;
compressedBytes = nullptr;
// Add zeros until the file is a multiple of 4 // Add zeros until the file is a multiple of 4
while ((outbuff.position() % 4) != 0) while ((outbuff.position() % 4) != 0) {
outbuff.writeByte(0); outbuff.writeByte(0);
}
*dst = outbuff.data(); *dst = outbuff.data();
return (atUint32)outbuff.length(); return static_cast<atUint32>(outbuff.length());
} }
atUint32 LZType11::decompress(const atUint8* src, atUint8** dst, atUint32 srcLength) { atUint32 LZType11::decompress(const atUint8* src, atUint8** dst, atUint32 srcLength) {
if (*(atUint8*)(src) != 0x11) if (*src != 0x11) {
return 0; return 0;
}
atUint32 uncompressedLen = *(atUint32*)(src); atUint32 uncompressedLen;
std::memcpy(&uncompressedLen, src, sizeof(uncompressedLen));
athena::utility::LittleUint32(uncompressedLen); // The compressed file has the filesize encoded in little endian athena::utility::LittleUint32(uncompressedLen); // The compressed file has the filesize encoded in little endian
uncompressedLen = uncompressedLen >> 8; // First byte is the encode flag uncompressedLen = uncompressedLen >> 8; // First byte is the encode flag
atUint32 currentOffset = 4; atUint32 currentOffset = 4;
if (uncompressedLen == // If the filesize var is zero then the true filesize is over 14MB and must be read in from the next 4 bytes
0) // If the filesize var is zero then the true filesize is over 14MB and must be read in from the next 4 bytes if (uncompressedLen == 0) {
{ atUint32 filesize;
atUint32 filesize = *(atUint32*)(src + 4); std::memcpy(&filesize, src + 4, sizeof(filesize));
filesize = athena::utility::LittleUint32(filesize); filesize = athena::utility::LittleUint32(filesize);
currentOffset += 4; currentOffset += 4;
} }
atUint8* uncompressedData = new atUint8[uncompressedLen]; auto uncompressedData = std::unique_ptr<atUint8[]>(new atUint8[uncompressedLen]);
atUint8* outputPtr = uncompressedData; atUint8* outputPtr = uncompressedData.get();
atUint8* outputEndPtr = uncompressedData + uncompressedLen; atUint8* outputEndPtr = uncompressedData.get() + uncompressedLen;
atUint8* inputPtr = (atUint8*)src + currentOffset; const atUint8* inputPtr = src + currentOffset;
atUint8* inputEndPtr = (atUint8*)src + srcLength; const atUint8* inputEndPtr = src + srcLength;
LZLengthOffset decoding; LZLengthOffset decoding;
atUint8 maxTwoByteMatch = 0xF + 1; const atUint8 maxTwoByteMatch = 0xF + 1;
atUint8 threeByteDenorm = maxTwoByteMatch + 1; // Amount to add to length when compression is 3 bytes const atUint8 threeByteDenorm = maxTwoByteMatch + 1; // Amount to add to length when compression is 3 bytes
atUint16 maxThreeByteMatch = 0xFF + threeByteDenorm; const atUint16 maxThreeByteMatch = 0xFF + threeByteDenorm;
atUint16 fourByteDenorm = maxThreeByteMatch + 1; const atUint16 fourByteDenorm = maxThreeByteMatch + 1;
while (inputPtr < inputEndPtr && outputPtr < outputEndPtr) { while (inputPtr < inputEndPtr && outputPtr < outputEndPtr) {
const atUint8 isCompressed = *inputPtr++;
atUint8 isCompressed = *inputPtr++;
for (atInt32 i = 0; i < m_blockSize; i++) { for (atInt32 i = 0; i < m_blockSize; i++) {
// Checks to see if the next byte is compressed by looking // Checks to see if the next byte is compressed by looking
// at its binary representation - E.g 10010000 // at its binary representation - E.g 10010000
// This says that the first extracted byte and the four extracted byte is compressed // This says that the first extracted byte and the four extracted byte is compressed
if ((isCompressed >> (7 - i)) & 0x1) { if ((isCompressed >> (7 - i)) & 0x1) {
atUint8 metaDataSize = *inputPtr >> 4; // Look at the top 4 bits const atUint8 metaDataSize = *inputPtr >> 4; // Look at the top 4 bits
if (metaDataSize >= 2) // Two Bytes of Length/Offset MetaData if (metaDataSize >= 2) { // Two Bytes of Length/Offset MetaData
{
atUint16 lenOff = 0; atUint16 lenOff = 0;
memcpy(&lenOff, inputPtr, 2); memcpy(&lenOff, inputPtr, 2);
inputPtr += 2; inputPtr += 2;
athena::utility::BigUint16(lenOff); athena::utility::BigUint16(lenOff);
decoding.length = (lenOff >> 12) + 1; decoding.length = (lenOff >> 12) + 1;
decoding.offset = (lenOff & 0xFFF) + 1; decoding.offset = (lenOff & 0xFFF) + 1;
} else if (metaDataSize == 0) // Three Bytes of Length/Offset MetaData } else if (metaDataSize == 0) { // Three Bytes of Length/Offset MetaData
{
atUint32 lenOff = 0; atUint32 lenOff = 0;
memcpy((atUint8*)&lenOff + 1, inputPtr, 3); memcpy(reinterpret_cast<atUint8*>(&lenOff) + 1, inputPtr, 3);
inputPtr += 3; inputPtr += 3;
athena::utility::BigUint32(lenOff); athena::utility::BigUint32(lenOff);
decoding.length = (lenOff >> 12) + threeByteDenorm; decoding.length = (lenOff >> 12) + threeByteDenorm;
decoding.offset = (lenOff & 0xFFF) + 1; decoding.offset = (lenOff & 0xFFF) + 1;
} else if (metaDataSize == 1) // Four Bytes of Length/Offset MetaData } else if (metaDataSize == 1) { // Four Bytes of Length/Offset MetaData
{
atUint32 lenOff = 0; atUint32 lenOff = 0;
memcpy(&lenOff, inputPtr, 4); memcpy(&lenOff, inputPtr, 4);
inputPtr += 4; inputPtr += 4;
@ -182,30 +184,30 @@ atUint32 LZType11::decompress(const atUint8* src, atUint8** dst, atUint32 srcLen
decoding.length = ((lenOff >> 12) & 0xFFFF) + fourByteDenorm; // Gets rid of the Four byte flag decoding.length = ((lenOff >> 12) & 0xFFFF) + fourByteDenorm; // Gets rid of the Four byte flag
decoding.offset = (lenOff & 0xFFF) + 1; decoding.offset = (lenOff & 0xFFF) + 1;
} else { } else {
delete[] uncompressedData;
uncompressedData = nullptr;
return 0; return 0;
} }
if ((outputPtr - decoding.offset) < uncompressedData) // If the offset to look for uncompressed is passed the // If the offset to look for uncompressed is passed the
// current uncompresed data then the data is not compressed // current uncompresed data then the data is not compressed
{ if ((outputPtr - decoding.offset) < uncompressedData.get()) {
delete[] uncompressedData;
return 0; return 0;
} }
for (atUint32 j = 0; j < decoding.length; ++j) for (size_t j = 0; j < decoding.length; ++j) {
outputPtr[j] = (outputPtr - decoding.offset)[j]; outputPtr[j] = (outputPtr - decoding.offset)[j];
}
outputPtr += decoding.length; outputPtr += decoding.length;
} else } else {
*outputPtr++ = *inputPtr++; *outputPtr++ = *inputPtr++;
}
if (!(inputPtr < inputEndPtr && outputPtr < outputEndPtr)) if (!(inputPtr < inputEndPtr && outputPtr < outputEndPtr)) {
break; break;
}
} }
} }
*dst = uncompressedData; *dst = uncompressedData.release();
return uncompressedLen; return uncompressedLen;
} }

View File

@ -145,8 +145,9 @@ atUint16 crc16CCITT(const atUint8* data, atUint64 length, atUint16 seed, atUint1
} }
atUint16 crc16(const atUint8* data, atUint64 length, atUint16 seed, atUint64 final) { atUint16 crc16(const atUint8* data, atUint64 length, atUint16 seed, atUint64 final) {
if (data) if (data == nullptr) {
return seed; return seed;
}
static const atUint16 crc16Table[256] = { static const atUint16 crc16Table[256] = {
0x0000, 0xC0C1, 0xC181, 0x0140, 0xC301, 0x03C0, 0x0280, 0xC241, 0xC601, 0x06C0, 0x0780, 0xC741, 0x0500, 0xC5C1, 0x0000, 0xC0C1, 0xC181, 0x0140, 0xC301, 0x03C0, 0x0280, 0xC241, 0xC601, 0x06C0, 0x0780, 0xC741, 0x0500, 0xC5C1,

View File

@ -303,8 +303,9 @@ atUint32 simpleEnc(const atUint8* src, atInt32 size, atInt32 pos, atUint32* pMat
} }
atUint32 decompressLZ77(const atUint8* src, atUint32 srcLen, atUint8** dst) { atUint32 decompressLZ77(const atUint8* src, atUint32 srcLen, atUint8** dst) {
if (*(atUint8*)src == 0x11) if (*src == 0x11) {
return LZType11().decompress(src, dst, srcLen); return LZType11().decompress(src, dst, srcLen);
}
return LZType10(2).decompress(src, dst, srcLen); return LZType10(2).decompress(src, dst, srcLen);
} }

View File

@ -1,5 +1,7 @@
#include "athena/FileWriter.hpp" #include "athena/FileWriter.hpp"
#include "win32_largefilewrapper.h"
#include <algorithm>
#include <limits>
namespace athena::io { namespace athena::io {
FileWriter::FileWriter(std::string_view filename, bool overwrite, bool globalErr) FileWriter::FileWriter(std::string_view filename, bool overwrite, bool globalErr)
@ -89,26 +91,36 @@ atUint64 FileWriter::position() const {
LARGE_INTEGER li = {}; LARGE_INTEGER li = {};
LARGE_INTEGER res; LARGE_INTEGER res;
SetFilePointerEx(m_fileHandle, li, &res, FILE_CURRENT); SetFilePointerEx(m_fileHandle, li, &res, FILE_CURRENT);
return res.QuadPart; return static_cast<atUint64>(res.QuadPart);
} }
atUint64 FileWriter::length() const { return utility::fileSize(m_filename); } atUint64 FileWriter::length() const { return utility::fileSize(m_filename); }
void FileWriter::writeUBytes(const atUint8* data, atUint64 len) { void FileWriter::writeUBytes(const atUint8* data, atUint64 len) {
if (!isOpen()) { if (!isOpen()) {
if (m_globalErr) if (m_globalErr) {
atError(fmt("File not open for writing")); atError(fmt("File not open for writing"));
}
setError(); setError();
return; return;
} }
DWORD ret = 0; atUint64 remaining = len;
WriteFile(m_fileHandle, data, len, &ret, nullptr); do {
if (ret != len) { const auto toWrite = static_cast<DWORD>(std::min(remaining, atUint64{std::numeric_limits<DWORD>::max()}));
if (m_globalErr) DWORD written = 0;
atError(fmt("Unable to write to stream"));
setError(); if (WriteFile(m_fileHandle, data, toWrite, &written, nullptr) == FALSE) {
} if (m_globalErr) {
atError(fmt("Unable to write to file"));
}
setError();
return;
}
remaining -= written;
data += written;
} while (remaining != 0);
} }
} // namespace athena::io } // namespace athena::io

View File

@ -8,9 +8,6 @@
#include <malloc.h> #include <malloc.h>
#endif // HW_RVL #endif // HW_RVL
#undef min
#undef max
namespace athena::io { namespace athena::io {
MemoryReader::MemoryReader(const void* data, atUint64 length, bool takeOwnership, bool globalErr) MemoryReader::MemoryReader(const void* data, atUint64 length, bool takeOwnership, bool globalErr)
: m_data(data), m_length(length), m_position(0), m_owns(takeOwnership), m_globalErr(globalErr) { : m_data(data), m_length(length), m_position(0), m_owns(takeOwnership), m_globalErr(globalErr) {

View File

@ -10,7 +10,7 @@
namespace athena::io { namespace athena::io {
MemoryWriter::MemoryWriter(atUint8* data, atUint64 length, bool takeOwnership) MemoryWriter::MemoryWriter(atUint8* data, atUint64 length, bool takeOwnership)
: m_data((atUint8*)data), m_length(length), m_position(0), m_bufferOwned(takeOwnership) { : m_data(data), m_length(length), m_bufferOwned(takeOwnership) {
if (!data) { if (!data) {
atError(fmt("data cannot be NULL")); atError(fmt("data cannot be NULL"));
setError(); setError();
@ -156,7 +156,7 @@ void MemoryWriter::setData(atUint8* data, atUint64 length, bool takeOwnership) {
if (m_bufferOwned) if (m_bufferOwned)
delete m_data; delete m_data;
m_data = (atUint8*)data; m_data = data;
m_length = length; m_length = length;
m_position = 0; m_position = 0;
m_bufferOwned = takeOwnership; m_bufferOwned = takeOwnership;
@ -185,11 +185,11 @@ void MemoryWriter::save(std::string_view filename) {
return; return;
} }
if (!filename.empty()) if (!filename.empty()) {
m_filepath = filename; m_filepath = filename;
}
FILE* out = fopen(m_filepath.c_str(), "wb"); std::unique_ptr<FILE, decltype(&std::fclose)> out{std::fopen(m_filepath.c_str(), "wb"), std::fclose};
if (!out) { if (!out) {
atError(fmt("Unable to open file '{}'"), m_filepath); atError(fmt("Unable to open file '{}'"), m_filepath);
setError(); setError();
@ -200,22 +200,24 @@ void MemoryWriter::save(std::string_view filename) {
atUint64 blocksize = BLOCKSZ; atUint64 blocksize = BLOCKSZ;
do { do {
if (blocksize > m_length - done) if (blocksize > m_length - done) {
blocksize = m_length - done; blocksize = m_length - done;
}
atInt64 ret = fwrite(m_data + done, 1, blocksize, out); const atInt64 ret = std::fwrite(m_data + done, 1, blocksize, out.get());
if (ret < 0) { if (ret < 0) {
atError(fmt("Error writing data to disk")); atError(fmt("Error writing data to disk"));
setError(); setError();
return; return;
} else if (ret == 0) }
if (ret == 0) {
break; break;
}
done += blocksize; done += blocksize;
} while (done < m_length); } while (done < m_length);
fclose(out);
} }
void MemoryWriter::writeUBytes(const atUint8* data, atUint64 length) { void MemoryWriter::writeUBytes(const atUint8* data, atUint64 length) {
@ -258,15 +260,14 @@ void MemoryCopyWriter::resize(atUint64 newSize) {
} }
// Allocate and copy new buffer // Allocate and copy new buffer
atUint8* newArray = new atUint8[newSize]; auto newArray = std::make_unique<atUint8[]>(newSize);
memset(newArray, 0, newSize); if (m_dataCopy) {
std::memmove(newArray.get(), m_dataCopy.get(), m_length);
if (m_dataCopy) }
memmove(newArray, m_dataCopy.get(), m_length); m_dataCopy = std::move(newArray);
m_dataCopy.reset(newArray);
// Swap the pointer and size out for the new ones. // Swap the pointer and size out for the new ones.
m_data = newArray; m_data = m_dataCopy.get();
m_length = newSize; m_length = newSize;
} }