athena/src/Athena/Compression.cpp

362 lines
9.4 KiB
C++

// This file is part of libAthena.
//
// libAthena is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// libAthena is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with libAthena. If not, see <http://www.gnu.org/licenses/>
#include "Athena/Compression.hpp"
#include "Athena/Exception.hpp"
#include "lzo.h"
#include <iostream>
#include <zlib.h>
#include "LZ77/LZType10.hpp"
#include "LZ77/LZType11.hpp"
namespace Athena
{
namespace io
{
namespace Compression
{
atInt32 decompressZlib(const atUint8* src, atUint32 srcLen, atUint8* dst, atUint32 dstLen)
{
z_stream strm = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
strm.total_in = strm.avail_in = srcLen;
strm.total_out = strm.avail_out = dstLen;
strm.next_in = (Bytef *) src;
strm.next_out = (Bytef *) dst;
strm.zalloc = Z_NULL;
strm.zfree = Z_NULL;
strm.opaque = Z_NULL;
atInt32 err = -1;
atInt32 ret = -1;
err = inflateInit(&strm); //15 window bits, and the +32 tells zlib to to detect if using gzip or zlib
if (err == Z_OK)
{
err = inflate(&strm, Z_FINISH);
if (err == Z_STREAM_END)
ret = strm.total_out;
else
{
inflateEnd(&strm);
return err;
}
}
else
{
inflateEnd(&strm);
return err;
}
inflateEnd(&strm);
return ret;
}
atInt32 compressZlib(const atUint8 *src, atUint32 srcLen, atUint8* dst, atUint32 dstLen)
{
z_stream strm = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
strm.total_in = strm.avail_in = srcLen;
strm.total_out = strm.avail_out = dstLen;
strm.next_in = (Bytef *) src;
strm.next_out = (Bytef *) dst;
strm.zalloc = Z_NULL;
strm.zfree = Z_NULL;
strm.opaque = Z_NULL;
atInt32 err = -1;
atInt32 ret = -1;
err = deflateInit(&strm, Z_BEST_COMPRESSION);
if (err == Z_OK)
{
err = deflate(&strm, Z_FINISH);
if (err == Z_STREAM_END)
ret = strm.total_out;
else
{
deflateEnd(&strm);
return err;
}
}
else
{
deflateEnd(&strm);
return err;
}
deflateEnd(&strm);
return ret;
}
atInt32 decompressLZO(const atUint8* source, atInt32 sourceSize, atUint8* dst, atInt32& dstSize)
{
int size = dstSize;
int result = lzo1x_decode(dst, &size, (atUint8*)source, &sourceSize);
dstSize = size;
return result;
}
//src points to the yaz0 source data (to the "real" source data, not at the header!)
//dst points to a buffer uncompressedSize bytes large (you get uncompressedSize from
//the second 4 bytes in the Yaz0 header).
atUint32 yaz0Decode(const atUint8* src, atUint8* dst, atUint32 uncompressedSize)
{
atUint32 srcPlace = 0, dstPlace = 0; //current read/write positions
atInt32 validBitCount = 0; //number of valid bits left in "code" byte
atUint8 currCodeByte;
while(dstPlace < uncompressedSize)
{
//read new "code" byte if the current one is used up
if(validBitCount == 0)
{
currCodeByte = src[srcPlace];
++srcPlace;
validBitCount = 8;
}
if((currCodeByte & 0x80) != 0)
{
//straight copy
dst[dstPlace] = src[srcPlace];
dstPlace++;
srcPlace++;
}
else
{
//RLE part
atUint8 byte1 = src[srcPlace];
atUint8 byte2 = src[srcPlace + 1];
srcPlace += 2;
atUint32 dist = ((byte1 & 0xF) << 8) | byte2;
atUint32 copySource = dstPlace - (dist + 1);
atUint32 numBytes = byte1 >> 4;
if(numBytes == 0)
{
numBytes = src[srcPlace] + 0x12;
srcPlace++;
}
else
numBytes += 2;
//copy run
for(atUint32 i = 0; i < numBytes; ++i)
{
dst[dstPlace] = dst[copySource];
copySource++;
dstPlace++;
}
}
//use next bit from "code" byte
currCodeByte <<= 1;
validBitCount-=1;
}
return dstPlace;
}
// Yaz0 encode
typedef struct
{
atUint32 srcPos, dstPos;
} yaz0_Ret;
atUint32 simpleEnc(const atUint8* src, atInt32 size, atInt32 pos, atUint32 *pMatchPos);
atUint32 nintendoEnc(const atUint8* src, atInt32 size, atInt32 pos, atUint32 *pMatchPos);
atUint32 yaz0Encode(const atUint8* src, atUint32 srcSize, atUint8* data)
{
yaz0_Ret r = { 0, 0 };
atInt32 pos = 0;
atUint8 dst[24]; // 8 codes * 3 bytes maximum
atUint32 dstSize = 0;
atUint32 i;
atUint32 validBitCount = 0; //number of valid bits left in "code" byte
atUint8 currCodeByte = 0;
while(r.srcPos < srcSize)
{
atUint32 numBytes;
atUint32 matchPos;
numBytes = nintendoEnc(src, srcSize, r.srcPos, &matchPos);
if (numBytes < 3)
{
//straight copy
dst[r.dstPos] = src[r.srcPos];
r.dstPos++;
r.srcPos++;
//set flag for straight copy
currCodeByte |= (0x80 >> validBitCount);
}
else
{
//RLE part
atUint32 dist = r.srcPos - matchPos - 1;
atUint8 byte1, byte2, byte3;
if (numBytes >= 0x12) // 3 byte encoding
{
byte1 = 0 | (dist >> 8);
byte2 = dist & 0xff;
dst[r.dstPos++] = byte1;
dst[r.dstPos++] = byte2;
// maximum runlength for 3 byte encoding
if (numBytes > 0xff+0x12)
numBytes = 0xff+0x12;
byte3 = numBytes - 0x12;
dst[r.dstPos++] = byte3;
}
else // 2 byte encoding
{
byte1 = ((numBytes - 2) << 4) | (dist >> 8);
byte2 = dist & 0xff;
dst[r.dstPos++] = byte1;
dst[r.dstPos++] = byte2;
}
r.srcPos += numBytes;
}
validBitCount++;
//write eight codes
if(validBitCount == 8)
{
data[pos] = currCodeByte;
pos++;
for (i=0;i</*=*/r.dstPos;pos++,i++)
data[pos] = dst[i];
dstSize += r.dstPos+1;
currCodeByte = 0;
validBitCount = 0;
r.dstPos = 0;
}
}
if(validBitCount > 0)
{
data[pos] = currCodeByte;
pos++;
for (i=0;i</*=*/r.dstPos;pos++,i++)
data[pos] = dst[i];
dstSize += r.dstPos+1;
currCodeByte = 0;
validBitCount = 0;
r.dstPos = 0;
}
return dstSize;
}
// a lookahead encoding scheme for ngc Yaz0
atUint32 nintendoEnc(const atUint8* src, atInt32 size, atInt32 pos, atUint32 *pMatchPos)
{
atUint32 numBytes = 1;
static atUint32 numBytes1;
static atUint32 matchPos;
static atInt32 prevFlag = 0;
// if prevFlag is set, it means that the previous position was determined by look-ahead try.
// so just use it. this is not the best optimization, but nintendo's choice for speed.
if (prevFlag == 1) {
*pMatchPos = matchPos;
prevFlag = 0;
return numBytes1;
}
prevFlag = 0;
numBytes = simpleEnc(src, size, pos, &matchPos);
*pMatchPos = matchPos;
// if this position is RLE encoded, then compare to copying 1 byte and next position(pos+1) encoding
if (numBytes >= 3) {
numBytes1 = simpleEnc(src, size, pos+1, &matchPos);
// if the next position encoding is +2 longer than current position, choose it.
// this does not guarantee the best optimization, but fairly good optimization with speed.
if (numBytes1 >= numBytes+2) {
numBytes = 1;
prevFlag = 1;
}
}
return numBytes;
}
// simple and straight encoding scheme for Yaz0
atUint32 simpleEnc(const atUint8* src, atInt32 size, atInt32 pos, atUint32 *pMatchPos)
{
int startPos = pos - 0x1000, j, i;
atUint32 numBytes = 1;
atUint32 matchPos = 0;
if (startPos < 0)
startPos = 0;
for (i = startPos; i < pos; i++)
{
for (j = 0; j < size-pos; j++)
{
if (src[i+j] != src[j+pos])
break;
}
if ((atUint32)j > numBytes)
{
numBytes = j;
matchPos = i;
}
}
*pMatchPos = matchPos;
if (numBytes == 2)
numBytes = 1;
return numBytes;
}
atUint32 decompressLZ77(const atUint8* src, atUint32 srcLen, atUint8** dst)
{
LZBase* lzCodec;
if (*(atUint8*)src == 0x11)
lzCodec = new LZType11;
else
lzCodec = new LZType10;
atUint32 retLength = lzCodec->decompress(src, dst, srcLen);
delete lzCodec;
return retLength;
}
atUint32 compressLZ77(const atUint8* src, atUint32 srcLen, atUint8** dst, bool extended)
{
LZBase* lzCodec;
if (extended)
lzCodec = new LZType11;
else
lzCodec = new LZType10(2);
atUint32 retLength = lzCodec->compress(src, dst, srcLen);
delete lzCodec;
return retLength;
}
} // Compression
} // io
} // zelda