mirror of https://github.com/libAthena/athena.git
359 lines
9.7 KiB
C++
359 lines
9.7 KiB
C++
/*
|
|
* sha1.c
|
|
*
|
|
* Copyright (C) 1998, 2009
|
|
* Paul E. Jones <paulej@packetizer.com>
|
|
* All Rights Reserved
|
|
*
|
|
*****************************************************************************
|
|
* $Id: sha1.c 12 2009-06-22 19:34:25Z paulej $
|
|
*****************************************************************************
|
|
*
|
|
* Description:
|
|
* This file implements the Secure Hashing Standard as defined
|
|
* in FIPS PUB 180-1 published April 17, 1995.
|
|
*
|
|
* The Secure Hashing Standard, which uses the Secure Hashing
|
|
* Algorithm (SHA), produces a 160-bit message digest for a
|
|
* given data stream. In theory, it is highly improbable that
|
|
* two messages will produce the same message digest. Therefore,
|
|
* this algorithm can serve as a means of providing a "fingerprint"
|
|
* for a message.
|
|
*
|
|
* Portability Issues:
|
|
* SHA-1 is defined in terms of 32-bit "words". This code was
|
|
* written with the expectation that the processor has at least
|
|
* a 32-bit machine word size. If the machine word size is larger,
|
|
* the code should still function properly. One caveat to that
|
|
* is that the input functions taking u8acters and u8acter
|
|
* arrays assume that only 8 bits of information are stored in each
|
|
* u8acter.
|
|
*
|
|
* Caveats:
|
|
* SHA-1 is designed to work with messages less than 2^64 bits
|
|
* long. Although SHA-1 allows a message digest to be generated for
|
|
* messages of any number of bits less than 2^64, this
|
|
* implementation only works with messages with a length that is a
|
|
* multiple of the size of an 8-bit u8acter.
|
|
*
|
|
*/
|
|
|
|
#include "sha1.h"
|
|
#include <cstring>
|
|
#include "athena/Utility.hpp"
|
|
|
|
/*
|
|
* Define the circular shift macro
|
|
*/
|
|
#define SHA1CircularShift(bits, word) ((((word) << (bits)) & 0xFFFFFFFF) | ((word) >> (32 - (bits))))
|
|
|
|
/* Function prototypes */
|
|
void SHA1ProcessMessageBlock(SHA1Context*);
|
|
void SHA1PadMessage(SHA1Context*);
|
|
|
|
/*
|
|
* SHA1Reset
|
|
*
|
|
* Description:
|
|
* This function will initialize the SHA1Context in preparation
|
|
* for computing a new message digest.
|
|
*
|
|
* Parameters:
|
|
* context: [in/out]
|
|
* The context to reset.
|
|
*
|
|
* Returns:
|
|
* Nothing.
|
|
*
|
|
* Comments:
|
|
*
|
|
*/
|
|
void SHA1Reset(SHA1Context* context) {
|
|
context->Length_Low = 0;
|
|
context->Length_High = 0;
|
|
context->Message_Block_Index = 0;
|
|
|
|
context->Message_Digest[0] = 0x67452301;
|
|
context->Message_Digest[1] = 0xEFCDAB89;
|
|
context->Message_Digest[2] = 0x98BADCFE;
|
|
context->Message_Digest[3] = 0x10325476;
|
|
context->Message_Digest[4] = 0xC3D2E1F0;
|
|
|
|
context->Computed = 0;
|
|
context->Corrupted = 0;
|
|
}
|
|
|
|
/*
|
|
* SHA1Result
|
|
*
|
|
* Description:
|
|
* This function will return the 160-bit message digest into the
|
|
* Message_Digest array within the SHA1Context provided
|
|
*
|
|
* Parameters:
|
|
* context: [in/out]
|
|
* The context to use to calculate the SHA-1 hash.
|
|
*
|
|
* Returns:
|
|
* 1 if successful, 0 if it failed.
|
|
*
|
|
* Comments:
|
|
*
|
|
*/
|
|
int SHA1Result(SHA1Context* context) {
|
|
|
|
if (context->Corrupted) {
|
|
return 0;
|
|
}
|
|
|
|
if (!context->Computed) {
|
|
SHA1PadMessage(context);
|
|
context->Computed = 1;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* SHA1Input
|
|
*
|
|
* Description:
|
|
* This function accepts an array of octets as the next portion of
|
|
* the message.
|
|
*
|
|
* Parameters:
|
|
* context: [in/out]
|
|
* The SHA-1 context to update
|
|
* message_array: [in]
|
|
* An array of u8acters representing the next portion of the
|
|
* message.
|
|
* length: [in]
|
|
* The length of the message in message_array
|
|
*
|
|
* Returns:
|
|
* Nothing.
|
|
*
|
|
* Comments:
|
|
*
|
|
*/
|
|
void SHA1Input(SHA1Context* context, const unsigned char* message_array, unsigned length) {
|
|
if (!length) {
|
|
return;
|
|
}
|
|
|
|
if (context->Computed || context->Corrupted) {
|
|
context->Corrupted = 1;
|
|
return;
|
|
}
|
|
|
|
while (length-- && !context->Corrupted) {
|
|
context->Message_Block[context->Message_Block_Index++] = (*message_array & 0xFF);
|
|
|
|
context->Length_Low += 8;
|
|
/* Force it to 32 bits */
|
|
context->Length_Low &= 0xFFFFFFFF;
|
|
|
|
if (context->Length_Low == 0) {
|
|
context->Length_High++;
|
|
/* Force it to 32 bits */
|
|
context->Length_High &= 0xFFFFFFFF;
|
|
|
|
if (context->Length_High == 0) {
|
|
/* Message is too long */
|
|
context->Corrupted = 1;
|
|
}
|
|
}
|
|
|
|
if (context->Message_Block_Index == 64) {
|
|
SHA1ProcessMessageBlock(context);
|
|
}
|
|
|
|
message_array++;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* SHA1ProcessMessageBlock
|
|
*
|
|
* Description:
|
|
* This function will process the next 512 bits of the message
|
|
* stored in the Message_Block array.
|
|
*
|
|
* Parameters:
|
|
* None.
|
|
*
|
|
* Returns:
|
|
* Nothing.
|
|
*
|
|
* Comments:
|
|
* Many of the variable names in the SHAContext, especially the
|
|
* single u8acter names, were used because those were the names
|
|
* used in the publication.
|
|
*
|
|
*
|
|
*/
|
|
void SHA1ProcessMessageBlock(SHA1Context* context) {
|
|
const unsigned K[] = /* Constants defined in SHA-1 */
|
|
{0x5A827999, 0x6ED9EBA1, 0x8F1BBCDC, 0xCA62C1D6};
|
|
int t; /* Loop counter */
|
|
unsigned temp; /* Temporary word value */
|
|
unsigned W[80]; /* Word sequence */
|
|
unsigned A, B, C, D, E; /* Word buffers */
|
|
|
|
/*
|
|
* Initialize the first 16 words in the array W
|
|
*/
|
|
for (t = 0; t < 16; t++) {
|
|
W[t] = ((unsigned)context->Message_Block[t * 4]) << 24;
|
|
W[t] |= ((unsigned)context->Message_Block[t * 4 + 1]) << 16;
|
|
W[t] |= ((unsigned)context->Message_Block[t * 4 + 2]) << 8;
|
|
W[t] |= ((unsigned)context->Message_Block[t * 4 + 3]);
|
|
}
|
|
|
|
for (t = 16; t < 80; t++) {
|
|
W[t] = SHA1CircularShift(1, W[t - 3] ^ W[t - 8] ^ W[t - 14] ^ W[t - 16]);
|
|
}
|
|
|
|
A = context->Message_Digest[0];
|
|
B = context->Message_Digest[1];
|
|
C = context->Message_Digest[2];
|
|
D = context->Message_Digest[3];
|
|
E = context->Message_Digest[4];
|
|
|
|
for (t = 0; t < 20; t++) {
|
|
temp = SHA1CircularShift(5, A) + ((B & C) | ((~B) & D)) + E + W[t] + K[0];
|
|
temp &= 0xFFFFFFFF;
|
|
E = D;
|
|
D = C;
|
|
C = SHA1CircularShift(30, B);
|
|
B = A;
|
|
A = temp;
|
|
}
|
|
|
|
for (t = 20; t < 40; t++) {
|
|
temp = SHA1CircularShift(5, A) + (B ^ C ^ D) + E + W[t] + K[1];
|
|
temp &= 0xFFFFFFFF;
|
|
E = D;
|
|
D = C;
|
|
C = SHA1CircularShift(30, B);
|
|
B = A;
|
|
A = temp;
|
|
}
|
|
|
|
for (t = 40; t < 60; t++) {
|
|
temp = SHA1CircularShift(5, A) + ((B & C) | (B & D) | (C & D)) + E + W[t] + K[2];
|
|
temp &= 0xFFFFFFFF;
|
|
E = D;
|
|
D = C;
|
|
C = SHA1CircularShift(30, B);
|
|
B = A;
|
|
A = temp;
|
|
}
|
|
|
|
for (t = 60; t < 80; t++) {
|
|
temp = SHA1CircularShift(5, A) + (B ^ C ^ D) + E + W[t] + K[3];
|
|
temp &= 0xFFFFFFFF;
|
|
E = D;
|
|
D = C;
|
|
C = SHA1CircularShift(30, B);
|
|
B = A;
|
|
A = temp;
|
|
}
|
|
|
|
context->Message_Digest[0] = (context->Message_Digest[0] + A) & 0xFFFFFFFF;
|
|
context->Message_Digest[1] = (context->Message_Digest[1] + B) & 0xFFFFFFFF;
|
|
context->Message_Digest[2] = (context->Message_Digest[2] + C) & 0xFFFFFFFF;
|
|
context->Message_Digest[3] = (context->Message_Digest[3] + D) & 0xFFFFFFFF;
|
|
context->Message_Digest[4] = (context->Message_Digest[4] + E) & 0xFFFFFFFF;
|
|
|
|
context->Message_Block_Index = 0;
|
|
}
|
|
|
|
/*
|
|
* SHA1PadMessage
|
|
*
|
|
* Description:
|
|
* According to the standard, the message must be padded to an even
|
|
* 512 bits. The first padding bit must be a '1'. The last 64
|
|
* bits represent the length of the original message. All bits in
|
|
* between should be 0. This function will pad the message
|
|
* according to those rules by filling the Message_Block array
|
|
* accordingly. It will also call SHA1ProcessMessageBlock()
|
|
* appropriately. When it returns, it can be assumed that the
|
|
* message digest has been computed.
|
|
*
|
|
* Parameters:
|
|
* context: [in/out]
|
|
* The context to pad
|
|
*
|
|
* Returns:
|
|
* Nothing.
|
|
*
|
|
* Comments:
|
|
*
|
|
*/
|
|
void SHA1PadMessage(SHA1Context* context) {
|
|
/*
|
|
* Check to see if the current message block is too small to hold
|
|
* the initial padding bits and length. If so, we will pad the
|
|
* block, process it, and then continue padding into a second
|
|
* block.
|
|
*/
|
|
if (context->Message_Block_Index > 55) {
|
|
context->Message_Block[context->Message_Block_Index++] = 0x80;
|
|
|
|
while (context->Message_Block_Index < 64) {
|
|
context->Message_Block[context->Message_Block_Index++] = 0;
|
|
}
|
|
|
|
SHA1ProcessMessageBlock(context);
|
|
|
|
while (context->Message_Block_Index < 56) {
|
|
context->Message_Block[context->Message_Block_Index++] = 0;
|
|
}
|
|
} else {
|
|
context->Message_Block[context->Message_Block_Index++] = 0x80;
|
|
|
|
while (context->Message_Block_Index < 56) {
|
|
context->Message_Block[context->Message_Block_Index++] = 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Store the message length as the last 8 octets
|
|
*/
|
|
context->Message_Block[56] = (context->Length_High >> 24) & 0xFF;
|
|
context->Message_Block[57] = (context->Length_High >> 16) & 0xFF;
|
|
context->Message_Block[58] = (context->Length_High >> 8) & 0xFF;
|
|
context->Message_Block[59] = (context->Length_High) & 0xFF;
|
|
context->Message_Block[60] = (context->Length_Low >> 24) & 0xFF;
|
|
context->Message_Block[61] = (context->Length_Low >> 16) & 0xFF;
|
|
context->Message_Block[62] = (context->Length_Low >> 8) & 0xFF;
|
|
context->Message_Block[63] = (context->Length_Low) & 0xFF;
|
|
|
|
SHA1ProcessMessageBlock(context);
|
|
}
|
|
|
|
atUint8* getSha1(atUint8* stuff, atUint32 stuff_size) {
|
|
SHA1Context sha;
|
|
SHA1Reset(&sha);
|
|
SHA1Input(&sha, (const atUint8*)stuff, stuff_size);
|
|
|
|
if (!SHA1Result(&sha))
|
|
return 0;
|
|
|
|
atUint8* ret = new atUint8[20];
|
|
memset(ret, 0, 20);
|
|
|
|
for (int i = 0; i < 5; i++) {
|
|
int val = sha.Message_Digest[i];
|
|
|
|
if (!athena::utility::isSystemBigEndian())
|
|
val = athena::utility::swap32(val);
|
|
|
|
memmove((char*)ret + (i * 4), &val, 4);
|
|
}
|
|
|
|
return ret;
|
|
}
|